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Abstract—Dense 3D reconstruction in man-made environ-
ments has to contend with weak and ambiguous observations
due to texture-less surfaces which are predominant in such
environments. This challenging task calls for strong, domain-
specific priors. These are usually modeled via regularization or
smoothness assumptions. Generic smoothness priors, e.g. total
variation are often not sufficient to produce convincing results.
Consequently, we propose a more powerful prior directly
modeling the expected local surface-structure, without the need
to utilize expensive methods such as higher-order MRFs. Our
approach is inspired by patch-based representations used in
image processing. In contrast to the over-complete dictionaries
used e.g. for sparse representations our patch dictionary is
much smaller. The proposed energy can be optimized by
utilizing an efficient first-order primal dual algorithm. Our
formulation is in particular very natural to model priors on
the 3D structure of man-made environments. We demonstrate
the applicability of our prior on synthetic data and on real
data, where we recover dense, piece-wise planar 3D models
using stereo and fusion of multiple depth images.

I. INTRODUCTION

Dense 3D modeling from images often suffers from a
lack of strong matching costs, especially in man-made en-
vironments. Such environments usually exhibit texture-less
surfaces and also non-Lambertian ones violating underlying,
e.g. brightness constancy assumptions. The presence of weak
data terms must be compensated by strong model priors in
order to obtain plausible 3D reconstructions.

In this work we propose to utilize a spatial regularization
prior for depth maps inspired by sparse representations.
While our energy clearly resembles the dictionary-based
energy functionals employed in image processing formu-
lations (e.g. [1]), there are important differences due to
the different characteristics of image (intensity) data and
depth maps. Most prominently, depth maps representing
man-made environments are typically comprised of very few
structural elements, but the specific sparsity assumption used
for processing intensity images is not necessarily appropriate
for depth maps. Thus, the over-complete dictionary used for
sparse representations can be substituted by a small one,
replacing the sparseness assumption on dictionary coeffi-
cients by different priors. One benefit of this reduced model
is the significant reduction in the number of unknowns,
therefore increasing the efficiency of numerical optimization.

Although not being the focus of this work, we anticipate
the possibility of extracting the dictionary elements and the
statistical prior on the coefficients from training data.

The smoothness prior proposed in this work shares the
main motivation with other methods aiming on regulariza-
tion terms beyond binary potentials. All of these methods
are global optimization methods, which are required in order
to properly incorporate the spatial smoothness assumptions
on the desired solution (i.e. depth map). The most generic
(and also the computationally most demanding) approach to
handle arbitrary smoothness priors is the formulation using
higher-order Markov random fields. [2] proposes to explic-
itly use second-order regularization priors for stereo in order
to obtain smooth surfaces without the typical staircasing
effects. Ishikawa and Geiger [3] argue that the human vision
system is contrary from current smoothness models; they
use second-order priors to penalize large second derivatives
of depth and thereby better reflect the behavior of human
vision.

Segmentation based stereo approximates pixel-wise
higher-order priors by enforcing the constraint that seg-
mented regions of the image should describe smooth 3D
surfaces. Often not a general smoothness prior, but a hard
constraint is applied, preventing curved surfaces; e.g. [4]
uses graph cuts to optimize in the segment domain. Contrary
to that is the explicit minimization of a second order prior
via alternating, iterative optimization over surface shape and
segmentation: Birchfield and Tomasi [5] utilize an affine
model to account for slanted surfaces, whereas Lin and
Tomasi [6] introduce a spline model to cover more general
curved and smooth surfaces. Finally [7] groups pixels of sim-
ilar appearance onto the same smooth 3D surface (planes or
B-splines) and regularizes the number of surfaces, inherently
employing soft-segmentation. A parametric formulation for
optical flow explicitly aiming on favoring piecewise planar
results (instead of generally smooth, or piecewise constant
flow fields) is presented in [8]. A recently proposed gener-
alized notion of total varation [9] is also applied to merge
several depth maps [10]. This model can be seen as a special
case of our formulation.

The contribution of our work is based on the introduc-
tion of patch-based priors, modeling higher-order priors by



means of a dictionary-based approach. The motivation for
this patch based regularization is twofold. First, as dictionar-
ies can be rather small, inference is fast; and second, compu-
tational complexity does not increase considerably with the
usage of larger patches, allowing for regularization beyond
triple cliques and second-order priors. In the following we
present the corresponding energy formulation and concen-
trate on explaining the different choices for the data fidelity
term, the dictionary and coefficient priors (Section II). An
efficient inference framework is described in Section III to
solve for depth maps and dictionary coefficients. Fusion
of several noisy depth maps using the patch-based prior is
detailed in Section IV, and a computational stereo approach
is presented in Section V. Finally, Section VI concludes with
a summarizing and prospective discussion of our approach.

II. PROPOSED FORMULATION

This section describes the basic energy functional used in
our approach and discusses the relation to existing methods.
Let Ω be the image domain (usually a 2D rectangular grid),
and φp(·) is a family of functions for p ∈ Ω modeling the
data fidelity at pixel p. φp is assumed to be convex. Further,
let Rp : RΩ → RN , be a function extracting an image
patch centered at p. Since we allow different shapes for the
extracted patches (and therefore several different functions
Rp), we will use another index k to indicate the shape
geometry, i.e. Rkp. By allowing different shape geometries
for different dictionary sets, the size of the dictionary can
be reduced substantially by not using a e.g. square patch
uniformly. We utilize the following energy model:

E(u, α) =

∫
φp(up)+η

∑
k

∥∥Rkpu−Dkαkp∥∥+ψ(∇αp) dp,

(1)
where u is the desired depth (respectively disparity) map,
αk : Ω → R|Dk| are the coefficients for the dictionary Dk,
η and µ are positive constants, and ψ(·) is a convex function.
The individual terms have the following interpretation:

1) The first term, φp(up), is the data fidelity term at pixel
p, and measures the agreement of u with the observed
data.

2) The second term,
∑
k‖Rkpu − Dkαkp‖, penalizes de-

viations of u from a pure dictionary generated patch
in a region Rkp containing p. As distance measure we
use either the L1 norm ‖·‖1, or the L2 (Euclidean)
norm, ‖·‖2. The choice of ‖·‖1 allows u to locally
deviate from the predicted patch Dkαkp at a sparse
set of pixels, whereas selecting ‖·‖2 resembles group
Lasso [11] leading to a sparse set of patches in
disagreement with Dkαkp.

3) The last term, ψ(∇αp), adds spatial regularization on
the coefficients α. Choosing ψ(∇αp) = µ‖∇αp‖ (for
some positive weight µ) leads to piece-wise constant
solutions for α.

Figure 1. Piecewise planar dictionary elements of length 5.

A. Choice for Dk

The dictionary Dk determines how the solution should
look like locally. It could be acquired by learning it from
given training data. By including a sparsity term on the co-
efficients αk it would even be possible to use over-complete
dictionaries. As this work focuses on the reconstruction of
man-made environments we define the dictionary as follows.
Man-made environments, and in particular indoor ones, are
dominated by locally planar surfaces. Hence it is natural to
strongly favor piece-wise planar depth (or disparity) maps
on the absence of strong image observations. For the pinhole
camera model, it is easy to see that planar surfaces in 3D
correspond to locally linear disparity maps (i.e. linear in
1/depth but not in the depth itself) Consequently, although
we use the terms depth map and disparity map equivalently,
the smoothness prior is always applied on the disparity rep-
resentation. For piecewise planar disparity maps the utilized
dictionary is very compact and contains only four elements
(see Fig. 1),

D1
0 = 1T D1

1 =
( 2i

Plength − 1
− 1
)Plength−1

i=0

D2
0 = 1 D2

1 = (D1
1)T , (2)

i.e. D1
1 and D2

1 are the horizontal and vertical linear gra-
dients, respectively. The coefficients corresponding to the
constant elements D1

0 and D2
0 , α1

0 and α2
0, essentially cover

the absolute disparity, whereas α1
1 and α2

1 represent the
local slope in horizontal and vertical image direction. Plength

denotes the length of the patch.

B. The Choice ψ(·)

In order to favor piecewise planar (but not piecewise
constant) disparity maps piece-wise constant solutions for
the coefficients of the linear gradient elements should be
preferred. As we do not want to penalize the actual disparity
there is no regularization on the coefficients belonging to the
constant dictionary elements. Piece-wise constant solutions
can be favored by using the total variation as a penalization:

ψ(∇αkp) = µ‖∇(αkp)2‖ (3)

We either use the isotropic L2 total variation or the
anisotropic L1 total variation.



C. Choices for φ(·)

The family of functions φp represents the fidelity of the
solution u to the observed data at pixel p. We discuss two
important choices for φp.

In the application of merging multiple depth maps, a
varying number of depth measurements (including none) is
given for each pixel. Hence, the choice of φp is reflecting
the underlying noise model in the input depth maps and
penalizes the distance to the given depth measurements
ulp. Depth estimates originating from visual information are
often subject to quantization, therefore we use a “capped”
L1-norm to allow deviations within the quantization level.
To combine multiple measurements the individual distances
are summed up:

φp(up) =
∑
l

λlp max{0, |up − ulp| − δ}, (4)

where λlp is a weight that can be specified for each depth
measurement. This enables down-weighting of measure-
ments with high matching costs or non-unique matches.
This particular choice of φp implicitly fills in missing depth
values by setting all weights of missing values to zero.

Another choice for φp addresses the task of computing
depth/disparity maps between images. φp may directly mea-
sure the similarity of pixel intensities in the reference and
matching images, I0 and I1, respectively:

φp(up) = λ
∣∣I1(up)− I0

∣∣, (5)

where λ is the weight on the data term. Since with this
choice φp is not convex, the definition above is usually
replaced by its first order approximation with respect to the
linearization point u0,

φp(up) = λ
∣∣I1(u0

p) + (up − u0
p)∇uI1 − I0

∣∣. (6)

More generally, any image similarity function can be eval-
uated locally in the neighborhood of u0 and its convex sur-
rogate utilized for φp (e.g. the second order approximation
of matching costs proposed in [12]). By using only a local
approximation of the matching score function, the numerical
procedure to find a minimizer u needs to be embedded into
a coarse-to-fine framework (or alternatively, an annealing
method like [13]).

III. DETERMINING u AND α

This section addresses the determination of the unknown
disparity map u and corresponding coefficients α for a given
dictionary and a coefficient prior. Although the functional
in Eq. 1 is convex with respect to the unknowns u and
α, it requires minimizing a non-smooth energy. There is
a large set of methods for optimizing non-smooth convex

problems with additive structure, and many of those contain
the proximity operator proxσf ,

proxσf (x̂) = arg min
x

1

2σ
‖x− x̂‖2 + f(x) (7)

for a convex function f , as a central element. Due to its
algorithmic simplicity we chose the primal-dual method
proposed in [14], which can be intuitively described as com-
bined gradient descent (in the primal domain) and ascent (in
the dual domain) followed by suitable proximity operations.
Eq. 1 can be written as convex-concave saddle-point problem
(recall that the energy is minimized with respect to u and
α),

E(u, α) =

∫
φp(up) + η

∑
k

∥∥Rkpu−Dkαkp∥∥1

+ µ‖∇αp‖2 dp

= max
q,r

∫
φp(up) +

∑
k

qTk
(
Rkpu−Dkαkp)

)
+ rT∇αp dp (8)
subject to ‖q‖∞ ≤ η, ‖r‖2 ≤ µ.

Here the constraints on q and r are formulated for the
L1 norm on the reconstruction error in the primal, and for
the isotropic total variation regularizer for α. By choosing
different norms the constraints change accordingly. The
primal-dual method requires the application of respective
proximity operations for the constraints on the dual vari-
ables, ‖q‖∞ ≤ η and ‖r‖2 ≤ µ, which are projection steps
into the corresponding domain (i.e. element-wise clamping
to [−η, η] and length normalization whenever ‖r‖2 > µ,
respectively).

This defines the general framework for using the primal-
dual method, and the implications of the different choices of
φ on the optimization method are discussed in the following
section.

IV. PIECEWISE PLANAR DEPTH MAP FUSION

Our depth map fusion takes multiple nearby depth maps
and combines them in a robust and regularized way to
achieve higher quality. One of the input depth maps acts
as a reference view, and all other depth images are warped
to the reference view-point (using OpenGL-based mesh
rendering). Thus, the task is to recover a single depth map
up from multiple depth measurements ulp per pixel. As
mentioned in Section II-C we utilize a “capped” L1 distance
accounting for the discrete/quantized nature of depth values.
We introduce additional dual variables s, and rewrite the



(a) Ground truth (b) Noisy input (c) Median fusion (d) Huber-TV

(e) TV/L1+dict./L2 (f) TV/L2+dict./L2 (g) TV/L1+dict./L1 (h) TV/L2+dict./L1

Figure 2. Top row: synthetic ground truth, one out of 5 noisy inputs, median fusion, Huber-TV fusion. Bottom row: results with the proposed piece-
wise planar prior with different norms for the dictionary and TV-term. From left to right: TV/L1 + dictionary/L2, TV/L2 + dictionary/L2, TV/L1 +
dictionary/L1, TV/L2 + dictionary/L1.

primal energy into a saddle-point one and obtain

E(u, α) =

∫ ∑
l

λlp max{0, |up − ulp| − δ}

+ η
∑
k

∥∥Rkpu−Dkαkp∥∥1
+ µ‖∇αp‖2 dp

= max
q,r,s

∫ ∑
l

slp(up − ulp) + |slp|δ

+
∑
k

qTk
(
Rkpu−Dkαkp)

)
+ rT∇αp dp (9)

s. t. ‖q‖∞ ≤ η, ‖r‖2 ≤ µ, |slp| ≤ λlp.

The proximity operator for the additional constraint is again
a projection to the feasible set for slp. It is possible to
compute the proximity operator for the above data term φ
directly (without introducing additional dual variables), but
this is relatively expensive (see e.g. [15]) and hinders data-
parallel implementations.

A. Synthetic Data

We evaluate the behavior of the proposed fusion method
for different choices of L1/L2-norms in the reconstruction
and the TV terms by using a synthetic height-map of a
man-made scene (Fig. 2(a)). The input to the fusion is
generated by adding zero-mean Gaussian noise with σ = 0.8

to the ground-truth height-map, which is in the range [0, 10]
(see Fig. 2(b) for one of the noisy input depths). Simply
taking the pixel-wise median is clearly not sufficient to
return a convincing result (Fig. 2(c)), hence enforcing spatial
smoothness is required. Adding a smoothness prior via
Huber-TV [10] (i.e. enforcing homogeneous regularization
for small depth variations and a total variation prior at large
depth discontinuities) still results in staircasing artefacts
(Fig. 2(d)).

Figs. 2(e-h) depict the results for our proposed method
using different combinations of L1 and L2 penalizers for
the reconstruction error, ‖Rkpu − Dkαkp‖, and for the TV
regularizer, ‖∇αp‖. The parameters were chosen as follows:
the patch width was fixed to 5, λlp = 1.5 and µ = 10,
to adapt to the different penalization of the reconstruction
error, we set η = 1 for L1 penalization and η = 1.5 for
L2 penalization. For the datacost we used δ = 0, which
means L1 distance penalization. In general, all results look
rather similar. There are some artifacts at the hip of the
roof when using a TV-L1 penalization for the dictionary
coefficients αp. An L2-norm penalization in the dictionary
term slightly cuts-off the edges at the eaves of the roof.
The combination of an L1-norm in the dictionary term and
and an isotropic L2-norm total variation penalization of the
dictionary coefficients visually gives the best solutions. In



the remainder of the document we only use this way of
penalization.

B. Real-World Data

For our experiments with real-world data we took datasets
with 25 images each1. To obtain the camera poses we
run a publicly available SfM software [16]. Input depth
maps are obtained by running plane sweep stereo on 5
input images using a 3 × 3 ZNCC matching score and
best half-sequence selection for occlusion handling. We
use semi-global matching [17] to extract depth maps from
the ZNCC cost volume, thereby obtaining five depth maps
used for subsequent fusion. The depth maps are warped
to the reference view by meshing and rendering the depth
maps. Implausible triangles corresponding to huge depth
discontinuities (i.e. most likely occlusion boundaries) are
culled. Further, warped depth values with a corresponding
ZNCC matching score smaller than 0.4 are also discarded.
For the fusion parameters we used the same settings for
all datasets. The patch width was set to 3, η = 1. µ = 5,
λlp = 0.3 and δ = 0.015. For the Huber-TV fusion we used
the same “capped“-L1 datacost also with δ = 0.015 and the
Huber parameter was set to 0.015 as well. In Figs. 3 and
4 we show results for piece-wise planar fusion and Huber-
TV fusion on the same input data. Although the Huber-TV
fusion aims on reducing the staircasing effect of the standard
TV, there are still visually distracting artifacts in the rendered
3D-Model. When utilizing the proposed piece-wise planar
structure prior the rendered 3D-Model is visually much more
appealing especially when rendered with texture.

Additional results and a video showing the 3D models
can be found in the supplementary material.

V. PIECE-WISE PLANAR DEPTH FROM STEREO

We can directly incorporate an image matching function
(respectively a convex surrogate) for the data fidelity term
φp in Eq. 1. We use the L1 distance between Sobel-filtered
image patches as basic matching costs (as suggested in [18],
but we utilize only a 3-by-3 window instead of the suggested
9-by-9 one to avoid over-smoothing), and convexify the
sampled matching costs using a quadratic approximation as
proposed in [12]. The necessary proximal step for this choice
of φ is given by

proxφ(u) =
u+ λc̈u0 − λċ

1 + λc̈
, (10)

where u0 is the current linearization point used to sample
the matching cost c, and ċ and c̈ are the first- and second-
order derivatives of c with respect to disparity changes,
computed via finite differences. Since the true matching cost
approximation is only valid in a neighborhood of u0, we
explicitly add the box constraint |u − u0| ≤ 1 to limit the
range of disparity updates to 1 pixel. Adding this constraint

1Datasets are available at http://people.inf.ethz.ch/chaene/

to φ means that the proximal operator above is followed by
a clamping step to force u to be in [u0 − 1, u0 + 1].

Further, the numerical procedure has to be embedded
into a coarse-to-fine framework, with optional multiple cost
sampling (i.e. image warping) steps per pyramid level.
Without a suitable initialization this comes at the risk of
missing small structures in the final disparity map (which is
an intrinsic problem of all multi-scale methods).

Figs. 5 and 6 illustrate the difference between stereo
with a total variation smoothness prior and the piecewise
planar prior using the proposed formulation. The weighting
between the data fidelity and the smoothness term in the TV
model is selected, such that the results of both formulations
are visually similar. As expected, using the TV regularizer
leads to visible staircasing, in particular in textureless re-
gions, which can be overcome by using the patch-based
prior. Using 8 CPU cores the stereo approach generates
usable depth maps for 384× 288 images at 5 Hz, and more
than 7 Hz can be achieved for 512 × 384 images using a
GPU implementation (measured on an NVidia GTX 295).
Consequently, it is conceivable e.g. to enable live and dense
reconstruction for challenging indoor environments in the
spirit of [19], [20].

VI. CONCLUSION AND FUTURE WORK

In this work we present an energy formulation for depth
map recovery utilizing a patch-based prior, and apply the
proposed framework to depth map fusion and computational
stereo. We describe an efficient method to infer depth from
given image data. One major difference of our approach
to second order regularization like [8], [2] is, that our
formulation is able to consider much larger neighborhoods,
without the computational drawbacks of higher-order MRFs
with large clique sizes.

The focus of this work was on the model formulation
and on the inference step to obtain depth maps, with the
assumption that the patch dictionary and the priors on
dictionary coefficients are known. Learning patch elements
and coefficient priors from training data is subject of future
work. Beside replacing the manual design of dictionaries
by an automated training phase, linking dictionary elements
with appearance based classifiers for category detection is
an interesting future topic. Joint optimization for depth and
semantic segmentation is recently addressed in [21], where
absolute depth and object categories are directly combined.
Linking the local depth structure (i.e. the dictionary co-
efficients) with object segmentation seems to be a more
powerful approach.
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Figure 3. Outdoor depth map fusion results. Odd rows: One out of 25 input images, one out of 5 generated input depth maps, depth map form Huber-TV
fusion, depth map with proposed piece-wise planar prior. Even rows: Untextured and textured 3D-Model. Left from Huber-TV fusion and right with
piecewise planar prior.
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Figure 4. Indoor depth map fusion results. First row: One out of 25 input images, one out of 5 generated input depth maps, depth map form Huber-TV
fusion, depth map with proposed piece-wise planar prior. Second row: Untextured and textured 3D-Model. Left from Huber-TV fusion and right with
piecewise planar prior.

Figure 5. From left to right: left and right input image, stereo result with TV prior, stereo result with piece-wise planar prior

Figure 6. Results for the four urban data sets (available from http://rainsoft.de/software/libelas.html): left input image (672x196), depth from stereo using
the TV prior, depth from stereo using the piecewise planar prior.
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