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ABSTRACT:

We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle
unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction;
and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The
key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling
of neighborhood relations. By choosing appropriate definitions of a point’s (multi-scale) neighborhood, we obtain a feature set that is
both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform
and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the
art with respect to per-point classification accuracy, while at the same time being much faster to compute.

1. INTRODUCTION

Dense 3D acquisition technologies like laser scanning and auto-
mated photogrammetric reconstruction have reached a high level
of maturity, and routinely deliver point clouds with many mil-
lions of points. Due to their lack of structure, raw point clouds
are of limited use for downstream applications beyond visual-
ization and simple distance measurements, therefore much effort
has gone into developing automated approaches for point cloud
interpretation. The two main tasks are on the one hand to derive
semantic information about the scanned objects, and on the other
hand to convert point clouds into higher-level, CAD-like geomet-
ric representations. Both tasks have turned out to be surprisingly
difficult to automate.

In this work we are concerned with the first problem. Much like
in semantic image segmentation (a.k.a. pixel labelling), we at-
tempt to attach a semantic label to every single 3D point. Point-
wise labels are per se also not a final result. But like several other
authors, e.g. (Golovinskiy et al., 2009, Lafarge and Mallet, 2012),
we argue that it makes sense to extract that information at an early
stage, in order to support later processing steps. In particular, se-
mantic labels (respectively, soft class probabilities) allow one to
utilize class-specific a-priori models for subsequent tasks such as
surface fitting, object extraction, etc.

Early work on semantic segmentation of airborne LiDAR data
aimed to classify buildings, trees and the ground surface, and
sometimes also to reconstruct the buildings. In many cases the
point cloud is first converted to a heightfield, so that standard
image processing methods can be applied, e.g. (Hug and Wehr,
1997, Haala et al., 1998). More recent work in aerial imaging has
followed the more general approach to directly label 3D points,
using geometric information derived from a set of neighbors in
the point cloud, e.g. (Chehata et al., 2009, Yao et al., 2011).
3D point labelling is also the standard method for terrestrial mo-
bile mapping data, for which it is not obvious how to generate a
consistent 2.5-dimensional height (respectively, range) map, e.g.
(Golovinskiy et al., 2009, Weinmann et al., 2013). Like many
other recent works we follow the standard pipeline of discrimina-
tive classification: First, extract a rich, expressive set of features

Figure 1. The task: given an unstructured, inhomogeneous point
cloud, assign point-wise semantic labels.

that capture the geometric properties of a point’s neighborhood.
Then, train an off-the-shelf classifier to predict class-conditional
probabilities from those features.

Compared to existing work, we aim to handle all kinds of scan
data, including point clouds from static terrestrial laser scanning
(TLS) or close-range photogrammetry. Due to the measurement
principle (polar recording from a limited number of instrument
locations), this type of data exhibits huge variations in point den-
sity. First of all, point density naturally decreases quadratically
with distance. Second, the laser intensity (respectively, for image-
based reconstruction the amount of accurately localisable surface
detail) also decreases with distance, so that more points do not
generate a return at all. Third, the setup with few viewpoints from
close range makes it all but impossible to avoid large occlusions.

A second goal of this work is computational efficiency. Real
point clouds are big – a single laser scan nowadays has tens of
millions of points. Therefore a practically useful method should
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not involve expensive computations: if one uses 1 millisecond
per point, it already takes approximately 3 hours to classify 10
million points. The contribution of the present paper is a feature
set that addresses both variations in point density and computa-
tional efficiency. We propose variants and approximations of a
number of existing features to capture the geometry in a point’s
local neighborhood. Central to the improved feature definitions
is the concept of neighborhood. By appropriately chosing which
nearby points form the basis for computing features at different
scales, the proposed method (i) is robust against strong variations
of the local point density, respectively point-to-point distance;
and (ii) greatly speeds up the pointwise feature extraction that
constitutes the computational bottleneck.

We present experimental evaluations on several different datasets
from both mobile mapping and static terrestrial LiDAR, see Fig-
ure 1. For Paris-Rue-Cassette and Paris-Rue-Madame the pro-
posed method reaches overall classification accuracies of 95-98%
at a mean class recall 93-99%, to our knowledge the best results
reported to date. The end-to-end computation time of our system
on these datasets is < 4 minutes per 10 million points, compared
to several hours reported in previous work.

2. RELATED WORK

Semantic segmentation of point clouds has mostly been inves-
tigated for laser scanner data captured from airplanes, mobile
mapping systems, and autonomous robots. Some of the earli-
est work on point cloud classification dealt with airborne LiDAR
data, with a focus on separating buildings and trees from the
ground surface, and on reconstructing the buildings. Often the
point cloud is converted to a regular raster heightfield, in order
to apply well-known image processing algorithms like edge and
texture filters for semantic segmentation (Hug and Wehr, 1997),
usually in combination with maximum likelihood classification
(Maas, 1999) or iterative bottom-up classification rules (Haala et
al., 1998, Rottensteiner and Briese, 2002). Given the focus on
buildings, another natural strategy is to model them with a lim-
ited number of geometric 2D (Schnabel et al., 2007, Pu and Vos-
selman, 2009) or 3D (Li et al., 2011, Xiao and Furukawa, 2014)
primitives, which are fitted to the points – see also (Vosselman et
al., 2004) for an overview of early work. A limitation of such
methods is that for most realistic scenes a fixed shape library
is insufficient. It has thus been proposed to fill the remaining
gaps with unstructured triangle meshes, generated by triangulat-
ing the raw points (Lafarge and Mallet, 2012). Recent work in
aerial imaging has followed the more general strategy also used
in this paper, namely to first attach semantic meaning to individ-
ual points through supervised classification, and then continue
high-level modelling from there (Charaniya et al., 2004, Chehata
et al., 2009, Niemeyer et al., 2011, Yao et al., 2011). Also re-
lated to that strategy are methods for classifying tree species in
forestry, e.g. (Orka et al., 2012, Dalponte et al., 2012).

A second main application area is the semantic classification of
point clouds acquired with mobile mapping systems, sometimes
in combination with airborne LiDAR (Kim and Medioni, 2011);
to extract for example roads (Boyko and Funkhouser, 2011), build-
ings (Pu et al., 2011), street furniture (Golovinskiy et al., 2009) or
trees (Monnier et al., 2012). Several authors solve for all relevant
object classes at once, like we do here, by attaching a label to ev-
ery single 3D point (Weinmann et al., 2013, Dohan et al., 2015).
Related work in robotics uses point classification to separate the
ground from trees and other obstacles (Lalonde et al., 2006).

At the heart of point-wise semantic labelling is the task of de-
signing appropriate features (descriptors), which capture the ge-
ometric properties of a point’s neighborhood such as roughness,

surface orientation, height over ground, etc. A large variety of
geometric 3D point descriptors exist. Among the most popu-
lar ones are spin images (Johnson and Hebert, 1999), fast point
feature histograms (FPFH) (Rusu et al., 2009) and signatures
of histograms (SHOT) (Tombari et al., 2010). These methods
were originally developed as descriptors for sparse keypoints, and
while they do work well also as dense features for point labelling,
they tend to be expensive to compute and thus do not scale well
to large point clouds. Features designed for dense point cloud de-
scription are often based on the structure tensor of a point’s neigh-
borhood (Demantké et al., 2011), custom descriptors for vertical
cylindrical shapes (Monnier et al., 2012) and the height distri-
bution in a vertical column around the point (Weinmann et al.,
2013). Some authors have tried to avoid the analysis of the struc-
ture tensor to describe shape, e.g. by characterising the shape with
a randomised set of histograms (Blomley et al., 2014). In our ex-
perience this does not improve the results, but has significantly
higher runtime. For speech and image understanding, end-to-end
feature learning with convolutional neural networks (CNNs) has
in the last few years become a de-facto standard. To our knowl-
edge, it has only been used – with some success – for 3D voxel
grids (Lai et al., 2014, Wu et al., 2015), but not yet for generic
point clouds; Presumably because the convolutional strategy is
not efficient in the absence of a regular neighborhood structure.

We found that features derived from the structure tensor and the
vertical point distribution work well over a wide range of scales,
and are particularly fast when combined with an efficient approxi-
mation of a point’s multi-scale neighborhood (Pauly et al., 2003).
Our proposed feature extraction can thus be seen as a fast multi-
scale extension of (Weinmann et al., 2013). A common strategy
to account for correlations between class labels (e.g. smoothness,
or frequent neighborhood patterns) is to use the point-wise class
probabilities as unary term in some sort of random field model.
This has also been tried for point cloud classification. For exam-
ple, (Shapovalov et al., 2010) propose a non-associative Markov
random field for semantic 3D point cloud labelling, after a pre-
segmentation of the point cloud into homogeneous 3D segments.
(Najafi et al., 2014) follow the same idea and add higher-order
cliques to represent long-range correlations in aerial and mobile
mapping scans of cities. (Rusu et al., 2009) use FPFH together
with a Conditional random field (CRF) to label small indoor Li-
DAR point clouds. (Niemeyer et al., 2011, Schmidt et al., 2014)
use a CRF with Random Forest unaries to classify urban objects,
respectively land-cover in shallow coastal areas. In the present
work we do not model correlations between points explicitly.
However, since our method outputs class-conditional probabil-
ities for each point, it is straight-forward to combine it with a
suitable random field prior. We note, however, that at least local
Potts-type interactions would probably have at most a small ef-
fect, because smoothness is implicitly accounted for by the high
proportion of common neighbors shared between nearby points.
On the other hand, inference is expensive even in relatively sim-
ple random field models. To remain practical for real point clouds
one might have to ressort to local tiling schemes, or approximate
inference with fast local filtering methods (He et al., 2010).

3. METHOD

Our goal is efficient point cloud labelling in terms of both runtime
and memory, such that the algorithm is applicable to point clouds
of realistic size. The main bottleneck, which significantly slows
down processing, are the large number of 3D nearest-neighbor
queries. For each single point, sets of nearest neighbors must
be found at multiple scales, as a basis for computing geometric
features. Although efficient search structures exist for nearest-
neighbor search, they are still too slow to retrieve large sets of
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neighbors for many millions of points. The trick is to resort to
an approximate procedure. Instead of computing (almost) exact
neighborhoods for each point, we down-sample the entire point
cloud to generate a multi-scale pyramid with decreasing point
density, and compute a separate search structure per scale level
(Section 3.1). The search then returns only a representative sub-
set of all nearest neighbors within some radius, but that subset
turns out to be sufficient for feature computation. The approxi-
mation makes the construction of multi-scale neighbourhoods so
fast that we no longer need to limit the number of scale levels.
Empirically, feature extraction for ten million points over nine
scale levels takes about 3 minutes on a single PC, see Section 4.
I.e., rather than representing the neighborhood at a given scale by
all points within a certain distance, we only sample a subset of
those points; but in return gain so much speed that we can ex-
haustively cover all relevant scale levels, without having to select
a single “best” scale for a point, e.g. (Weinmann et al., 2013).

3.1 Neighborhood approximation

Generally speaking, there are two different ways to determine
a point’s neighborhood: geometrical search, for instance radius
search, as well as k-nearest-neighbor search. From a purely con-
ceptual viewpoint radius search is the correct procedure, at least
for point clouds with reasonably uniform point density, because a
fixed radius (respectively, volume) corresponds to a fixed geomet-
ric scale in object space. On the other hand, radius search quickly
becomes impractical if the point density exhibits strong variations
within the data set, as in terrestrial scans. A small radius will en-
close too few neighbors in low-density regions, whereas a large
radius will enclose too many points in high-density regions. We
thus prefer k-nearest neighbor search, which in fact can be inter-
preted as an approximation to a density-adaptive search radius.

Brute force nearest neighbor search has computational complex-
ityO(n), linear in the number of points n. A classical data struc-
ture to speed up the search, especially in low dimensions, are
kD-trees (Friedman et al., 1977). By recursive, binary splitting
they reduce the average complexity to O(logn), while the mem-
ory consumption is O(d · n), with d the dimension of the data.
Beyond the basic kD-tree, a whole family of approximate search
techniques exists that are significantly faster, including approxi-
mate nearest neighbor search with the best-bin-first heuristic, and
randomized search with multiple bootstrapped kD-trees. We use
the method of (Muja and Lowe, 2009) to automatically select and
configure the most suitable kD-tree ensemble for our problem.

However, finding all neighbors at a large scale will require a large
number k, respectively a large search radius, such that kD-trees
become computationally demanding, too. To further accelerate
processing it has been proposed to approximate larger neighbor-
hoods, by first downsampling the point cloud and then picking
a proportionally smaller number k of nearest neighbors as rep-
resentatives (Brodu and Lague, 2012). Embedded in our multi-
scale setting this leads to the following simple algorithm (Fig-
ure 2): (i) generate a scale pyramid by repeatedly downsampling
the point cloud with a voxel-grid filter; and (ii) compute features
at each scale from a fixed, small number k of nearest neighbors.
The widely used voxel-grid filter proceeds by dividing the bound-
ing volume into evenly spaced cubes (“voxels”) of a given size,
and replacing the points inside a voxel by their centroid. The
method is computationally efficient: the memory footprint is rel-
atively small, because the data is sparse and only voxels con-
taining at least one point must be stored; and parallelization over
different voxels is straight-forward. Moreover, the filtering grad-
ually evens out the point density by skipping points only in high-
density regions, such that a constant k will at high scale levels

Figure 2. Sampling a point cloud at different scales (denoted by
colors) reveals different properties of the underlying surface –
here different surface normals (colored arrows). Multi-scale fea-
ture extraction therefore improves classification.

approximate a fixed search radius. As a side effect, the reduced
variation in point density also makes radius search feasible. We
will exploit this to generate height features (see Table 1), because
kNN is not reliable for cylindrical neighborhoods. In our imple-
mentation we choose k = 10, which proved to be a suitable value
(Weinmann et al., 2015), set the smallest voxel spacing to 2.5 cm,
and use 9 rounds of standard multiplicative downsampling with a
factor of 2 from one level to the next. These settings ensure that
the memory footprint is at most twice as large as that of the high-
est resolution, and reach a maximum voxel size (point spacing)
of 6.4m. In terms of runtime, the benefit of approximating the
multi-scale neighborhood is twofold. First, a small k is sufficient
to capture even long-range geometric context, while the approxi-
mation of the true neighborhood with a small, but well-distributed
subsample is acceptable for coarse long-range information. Sec-
ond, repeated downsampling greatly reduces the total number
n of points, hence the neighborhood search itself gets faster at
coarse scales. We point out that, alternatively, one could also
generate a similar multi-scale representation with octrees (Else-
berg et al., 2013).

3.2 Feature extraction

In our application we face a purely geometric classification prob-
lem. We avoid using color and/or intensity values, which, de-
pending on the recording technology, are not always available;
and often also unreliable due to lighting effects. Given a point
p and its neighborhood P , we follow (Weinmann et al., 2013)
and use 3D features based on eigenvalues1 λ1 ≥ λ2 ≥ λ3 ≥ 0
and corresponding eigenvectors e1, e2, e3 of the covariance ten-
sor C = 1

k

∑
i∈P(pi − p)(pi − p)>, where P is the set of k

nearest neighbors and p = medi∈P(pi) is its medoid. Eigenval-
ues are normalised to sum up to 1, so as to increase robustness
against changes in point density. We augment the original feature
set with four additional features that help to identify crease edges
and occlusion boundaries, namely the first and second order mo-
ments of the point neighborhood around the eigenvectors e1 and
e2. Finally, in order to better describe vertical and/or thin objects
like lamp posts, traffic signs or tree trunks, we also compute three
further features from the height values (z-coordinates) in upright,
cylindrical neighborhoods. Table 1 gives a summary and formal
definition of all features.

The local structure tensor is computed from k = 10 points (cur-
rent point plus 9 neighbors) over 9 scale levels ranging from voxel
size 0.025 × 0.025 × 0.025m3 to 6.4 × 6.4 × 6.4m3. In total
this amounts to 144 feature dimensions. Note, the downsampling
only affects which neighbors are found, via the kD-trees. Every
point in the original data is classified, but in regions of extremely
high point density multiple points may fall into the same voxel
already at 2.5 cm resolution, and thus have the same neighbors.

1We note that it is computationally more efficient to analytically solve
for eigenvectors and eigenvalues of a 3 × 3 matrix, rather than use a
numerical solver from a linear algebra library.
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Sum λ1 + λ2 + λ3

Omnivariance (λ1 · λ2 · λ3)
1
3

Eigenentropy −
∑3

i=1 λi · ln(λi)
Anisotropy (λ1 − λ3)/λ1

covariance Planarity (λ2 − λ3)/λ1

Linearity (λ1 − λ2)/λ1

Surface Variation λ3/(λ1 + λ2 + λ3)
Sphericity λ3/λ1

Verticality 1− |〈[0 0 1], e3〉|
1st order, 1st axis

∑
i∈P〈pi − p, e1〉

moment 1st order, 2nd axis
∑

i∈P〈pi − p, e2〉
2nd order, 1st axis

∑
i∈P〈pi − p, e1〉2

2nd order, 2nd axis
∑

i∈P〈pi − p, e2〉2
Vertical range zmax − zmin

height Height below z − zmin

Height above zmax − z

Table 1. Our basic feature set consists of geometric features based
on eigenvalues of the local structure tensor, moments around the
corresponding eigenvectors, as well as features computed in ver-
tical columns around the point.

3.2.1 Approximate 3D shape context. The above covariance-
based features describe surface properties. However, for more
complex objects they may be insufficient, especially near contour
edges. We found that explicit contour features in some situa-
tions improve classification. To encode contour information, if
needed, we have also developed efficient variants of Shape Con-
text 3D (SC3D) (Frome et al., 2004) and Signature of Histogram
of Orientations (SHOT) (Tombari et al., 2010). SC3D and SHOT
are histogram-based descriptors similar in spirit to the original
shape context for images (Belongie et al., 2002). Both divide the
surroundings of a point into multiple smaller (radial) bins, see
Figure 3, and therefore require large neighborhoods to be effec-
tive. The main difference is that SC3D fills a single histogram
with vectors from the center to the neighbors, whereas SHOT
consists of a set of histograms over the point-wise normals, taken
separately per bin. We have tried both descriptors in their origi-
nal versions, and found that computing them densely for a single
laser scan of moderate size (≈ 106 points) takes multiple days
on a good workstation. Moreover, it turned out that, except near
contour edges, the original SHOT and SC3D did not add much
extra information to our feature set, and were almost completely
ignored during classifier training. We therefore first learn a binary
classifier that predicts from the features of Table 1 which points
lie on (or near) a contour (Hackel et al., 2016). Only points with
high contour likelihood are then used to fill the descriptors. This
turns out to make them more informative, and at the same time
speeds up the computation.

Again, our scale pyramid (Section 3.1) greatly accelerates the
feature extraction. We do not compute all bins with the same
(highest) point density. Instead, only histogram counts inside
the smallest radial shell are computed at the highest resolution,
whereas counts for larger shells are computed from progressively
coarser scales. As long as there are more than a handful of points
in each bin, the approximation roughly corresponds to rescaling
the bin counts of the original histograms as a function of the ra-
dius, and still characterizes the point distributions well. We dub
our fast variants approximate SHOT (A-SHOT) and approximate
SC3D (A-SC3D). Even with the proposed approximation, com-
puting either of these descriptors densely takes ≈ 30 minutes for
3 ·107 points. As will be seen in Section 4., they only slightly im-
prove the results, hence we recommend the additional descriptors
only for applications that require maximum accuracy.

Figure 3. Histogram bins (shells are different colored spheres).

3.3 Classification and training

Given feature vectors x, we learn a supervised classifier that pre-
dicts conditional probabilities P (y|x) of different class labels y.
We use a Random Forest classifier, because it is straight-forward
to parallelize, is directly applicable to multi-class problems, by
construction delivers probabilities, and has been shown to yield
good results in reasonable time on large point clouds (Chehata
et al., 2009, Weinmann et al., 2015). Random Forest parameters
are found by minimizing the generalization error via 5-fold cross
validation. We find 50 trees, Gini index as splitting criterion, and
tree depths ≈ 30 to be optimal parameters for our application.
For our particular problem, the class frequencies in a certain scan
do not necessarily represent the prior distribution over the class
labels, because objects closer to the scanner have quadratically
more samples per unit of area than those further away. This ef-
fect is a function of the scene layout and the scanner viewpoint.
It can lead to heavily biased class frequencies and thus has to
be accounted for. We resolve the issue pragmatically, by down-
sampling the training set to approximately uniform resolution.
Besides better approximating the true class distributions, down-
sampling has the side effect that labelled data from a larger area
fits into memory, which improves generalization capability of the
classifier.

For maximum efficiency at test time we also traverse the random
forest after training and build a list of the used features. Features
that are not used are subsequently not extracted from test data.2

In practice all covariance features are used, only if one adds also
the A-SC3D or A-SHOT descriptors some histogram bins are not
selected. Note that reducing the feature dimension for testing
only influences computation time. Memory usage is not affected,
because at test time we only need to store point coordinates and
the precomputed kD-tree structure. Features are computed on the
fly and not stored. For very large test sets it is straight-forward to
additionally split the point cloud into smaller (volumetric) slices
or tiles with only the minimum overlap required for feature com-
putation (Weinmann et al., 2015).

4. EXPERIMENTS

For our evaluation, data from different recording technologies
was classified. To compare to prior art, we use well-known data-
bases from mobile mapping devices, namely Paris-Rue-Cassette
and Paris-Rue-Madame. These point clouds were recorded in
Paris using laser scanners mounted on cars (Serna et al., 2014,
Vallet et al., 2015). Both datasets are processed with the same
training and test sets as in (Weinmann et al., 2015), which consist
of 1000 training samples per class and ≈ 1.2 · 107, respectively
≈ 2 · 107 test samples. Furthermore, we test our method on
multiple terrestrial laser scans from locations throughout Europe

2Note that this type of feature selection does not influence the classi-
fication result at all.
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Paris-rue-Madame Our Method (Weinmann et al., 2015)
Recall Precision F1 Recall Precision F1

Façade 0.9799 0.9902 0.9851 0.9527 0.9620 0.9573
Ground 0.9692 0.9934 0.9811 0.8650 0.9782 0.9182
Cars 0.9786 0.9086 0.9423 0.6476 0.7948 0.7137
Motorcycles 0.9796 0.4792 0.6435 0.7198 0.0980 0.1725
Traffic signs 0.9939 0.3403 0.5070 0.9485 0.0491 0.0934
Pedestrians 0.9987 0.2414 0.3888 0.8780 0.0163 0.0320
Overall accuracy 0.9755 0.8882
Mean class recall 0.9833 0.8353
Mean F1-score 0.7413 0.4812

Paris-rue-Cassette Our Method (Weinmann et al., 2015)
Recall Precision F1 Recall Precision F1

Façade 0.9421 0.9964 0.9685 0.8721 0.9928 0.9285
Ground 0.9822 0.9871 0.9847 0.9646 0.9924 0.9783
Cars 0.9307 0.8608 0.8943 0.6112 0.6767 0.6423
Motorcycles 0.9758 0.5199 0.6784 0.8285 0.1774 0.2923
Traffic signs 0.8963 0.1899 0.3134 0.7657 0.1495 0.2501
Pedestrians 0.9687 0.2488 0.3960 0.8225 0.0924 0.1661
Vegetation 0.8478 0.5662 0.6790 0.8602 0.2566 0.3953
Overall accuracy 0.9543 0.8960
Mean class recall 0.9348 0.8178
Mean F1-score 0.7020 0.5218

Table 2. Quantitative results for iQmulus / TerraMobilita and Paris-Rue-Madame databases.

and Asia. Each scan contains ≈ 3 · 107 points and has been ac-
quired from a single viewpoint, such that the data exhibits strong
variations in point density. We learn the classifier from 8 scans
(sub-sampled for training, see Section 3.3) and test on the other
10 scans. On these more challenging examples we also evaluate
the influence of the additional A-SHOT and A-SC3D descriptors.
As performance metrics for quantitative evaluation, we use preci-
sion, recall and F1-score, individually for each class. Moreover,
we show overall accuracy and mean class recall over the whole
dataset, to evaluate the overall performance.

4.1 Implementation Details

All software is implemented in C++, using the Point Cloud Li-
brary (pointclouds.org), FLANN (github.com/mariusmuja/
flann) for nearest-neighbor search and the ETH Random For-
est Template Library (prs.igp.ethz.ch/research/Source_
code_and_datasets.html). All experiments are run on a stan-
dard desktop PC with Intel Xeon E5-1650 CPU (hexa-core, 3.5
GHz) and 64 GB of RAM. The large amount of RAM is only
needed for training, whereas classification of a typical point cloud
requires < 16 GB. Point-wise classification is parallelized with
OpenMP(openmp.org/wp) across the available CPU cores. In-
tuitively, porting the classification part to the GPU should be
straight-forward and could further reduce runtime.

Our classification routine consists of two computational stages.
First, for each scale level the kD-tree structure is pre-computed.
Second, the feature computation is run for each individual point,
at each scale level (Section 3.2). During training, this is done for
all points, so that all features are available for learning the classi-
fier. The Random Forest uses Gini impurity as splitting criterion,
its hyper-parameters (number and depth of trees) are found with
grid search and 5-fold cross-validation. Typically, 50 trees of
maximum depth ≈ 30 are required. Having found the best pa-
rameters, the classifier is relearned on the entire training set. At
test time, the feature vector for each point is needed only once,
hence features are not precomputed, but rather evaluated on the
fly to save memory.

Paris-rue-Cassette (Weinmann et al., 2015) this paper
features 23,000 s 191 s
training 2 s 16 s
classification 90 s 60 s
total 23’092 s 267 s

Table 3. Computation times for processing the Paris-Rue-
Cassette database an a single PC. Our feature computation is
much faster. The comparison is indicative, implementation de-
tails and hardware setup may differ, see text.

4.2 Results on Mobile Mapping Data

On the MLS datasets we can compare directly to previous work.
The best results we are aware of are those of (Weinmann et al.,
2015). Quantitative classification results with the base features
(covariance, moment and height) are shown in Table 2. Our mean
class recall is 98.3% for Paris-Rue-Madame and 93.5% for Paris-
Rue-Cassette, while our overall accuracy is 97.6%, respectively
95.4%. Most precision and recall values, as well as all F1-scores,
are higher than the previously reported numbers. On average
our F1-scores are more than 20% higher. We attribute the gains
mainly to the fact that we need not restrict the number of scales,
or select a single one, but instead supply the classifier with the
full multi-scale pyramid from 0.025 to 6.4m. The fact that prac-
tically all features are used by the Random Forest supports this
assertion. Moreover, the additional moment features, which are
almost for free once the eigen-decomposition of the structure ten-
sor has been done, seem to improve the performance near occlu-
sion boundaries. Example views of the classified point clouds are
depicted in Figure 4. A feature relevance test was performed by
removing each feature in turn and re-training the classifier. The
feature with the strongest individual influence is z − zmin with a
performance drop by 5 percent points. Leaving out one of the re-
maining features changes the result by less than 1 percent point.
Due to the small amount of training data neither A-SHOT nor
A-SC3D were used for the mobile mapping databases. We also
tested our system on further parts of the data, for which there is
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Figure 4. Results from iQmulus / TerraMobilita dataset. Top row: Paris-Rue-Madame (left) and Paris-Rue-Cassette (right) with classes:
façade, ground, cars, motorcycles, traffic signs, pedestrians and vegetation. Bottom row: Further results without ground truth.

no ground truth, see Figure 4. Visually the method yields good
results even though we do not use more training data, but stick
with only 1000 training samples per class. Besides better accu-
racy, our algorithm also greatly outperforms the baseline in terms
of runtime, in spite of the higher-dimensional feature representa-
tion. Our system is two orders of magnitude faster, see Table 3.
We point out that the comparison should be seen as indicative: the
timings for the baseline are those reported by the authors. Their
software is also written in C++ (called from Matlab). But it is
single-threaded, and it was run on a different, albeit comparable,
machine (64 GB RAM, Intel Core i7-3820 quad-core, 3.6 GHz).

4.3 Results on Terrestrial Laser Scans

The terrestrial laser scans are more challenging, for several rea-
sons. The data was captured in both urban and rural environ-
ments, so that there is more variety, and a greater degree of oc-
clusion. Also, the training and testing datasets are from different
physical locations, and constitute a stricter test of the classifier’s
ability to generalize. Finally, the surveying-grade scanners used
for recording have better angular resolution and higher range,
leading to massive variations in point density between nearby
and distant objects. There is also more data. The training data
has ≈ 500, 000 points, sampled from a total of 2 · 108 points in
the training scans. The test set has more than 3 ·108 points. Table
4 shows that our proposed framework is able to cope rather well
with the TLS data. Overall accuracy achieved with only base fea-
tures is 90.3%, at a mean class recall of 79.7%. This results in
74.4% F1-score. Recall and precision values for the larger and
easier classes are – as expected – lower than for the Paris, on the
other hand the precision of smaller classes is significantly better,
leading to a higher average F1-score. The computation time for
the complete test set is 90 minutes, including disk I/O.

These results can be further improved with additional histogram
descriptors (Section 3.2.1), especially for the low vegetation class,

where the gains in F1-score reach 8-9 percent points. Overall, A-
SC3D works a bit better than A-SHOT and is to be preferred.
With the latter, classification of scanning artifacts on moving ob-
jects is less reliable (−4 percent points). However, the gains are
rather small, at least for our class nomenclature, and they come
at considerable computational cost. The following configuration
gave the best trade-off between quality and speed: four shells
with radii {1, 2, 4, 16}m, 12 bins per shell, and 4 bins per local
histogram of A-SHOT. With these settings the results improve for
6 out of 7 classes, only for scanning artifacts the additional de-
scriptors potentially hurt performance. Mean F1-score goes up
by 1.7 percent points. On the other hand, the feature computa-
tion takes ≈ 3× longer than for the base features, so adding A-
SC3D or A-SHOT quadruples the processing time. Still, even
large datasets with tens of millions of points are processed in
less than one hour, which we consider acceptable for many ap-
plications. Based on our results we do not generally recommend
histogram-based descriptors, but note that they could have a sig-
nificant impact for certain tasks and object classes.

5. CONCLUSION

We have described an efficient pipeline for point-wise classifica-
tion of 3D point cloud data. The core of our method is an efficient
strategy to construct approximate multi-scale neighborhoods in
3D point data. That scheme makes it possible to extract a rich
feature representation in very little time, even in the presence of
wildly varying point density. As a consequence, the proposed
classification system outperforms the state of the art in terms of
classification accuracy, while at the same time being fast enough
for operational use on a single desktop machine.

There are several directions we would like to explore in future
work. One idea is to use larger-scale context or even global
CRF-type models to further improve the classification. This may
be challenging in terms of computational cost. Alternatively,
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Terrestrial Original Features Original Features + A-SHOT Original Features + A-SC3D
Laser Scans Recall Precision F1 Recall Precision F1 Recall Precision F1

Man made terrain 0.8758 0.9433 0.9083 0.8757 0.9627 0.9171 0.8788 0.9651 0.9200
Natural terrain 0.8809 0.8921 0.8864 0.9064 0.8774 0.8916 0.9127 0.8747 0.8933
High vegetation 0.9129 0.8102 0.8585 0.8086 0.9254 0.8631 0.8655 0.8785 0.8720
Low vegetation 0.6496 0.4021 0.4967 0.6356 0.5364 0.5818 0.6685 0.5052 0.5755
Buildings 0.9592 0.9878 0.9733 0.9726 0.9813 0.9769 0.9676 0.9859 0.9766
Remaining hard scape 0.7879 0.4878 0.6025 0.8419 0.4743 0.6068 0.8256 0.4824 0.6090
Scanning artefacts 0.5127 0.4595 0.4847 0.3995 0.5039 0.4457 0.4197 0.5684 0.4829
Overall accuracy 0.9028 0.9097 0.9114
Mean class recall 0.7970 0.7772 0.7912
Mean F1-score 0.7443 0.7547 0.7613

Table 4. Quantitative results for terrestrial laser scans.

Figure 5. Results for terrestrial laser scans. Top row: urban street in St. Gallen (left), market square in Feldkirch (right). Bottom row:
church in Bildstein (left), cathedral in St. Gallen (right) with classes: man-made terrain, natural terrain, high vegetation, low vegetation,
buildings, remaining hard scape and scanning artefacts.

one could try to explicitly detect and reconstruct line features
to help in delineating the classes. Another possible direction is
to sidestep feature design altogether and adapt the recently very
successful deep neural networks to point clouds. The challenge
here will be to remain efficient in the absence of a regular grid, al-
though the voxel-grid neighborhoods built into our pipeline may
provide a good starting point. Finally, on the technical level it
would be interesting to port the method to the GPU to further
improve speed.
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