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Abstract This paper presents a new approach to estimate the motion
of objects seen from a stereo rig mounted on a ground mobile robot. We
exploit the prior knowledge on ground plane presence and rough shape
of objects, to extract a simpli�ed world model, named stixel world. The
contribution of this paper is to show that stixels motion can be estimated
directly solving a single dynamic programming problem instead of an
image wide optical �ow computation. We compare this new method with
baseline methods, show competitive results quality-wise, and a signi�cant
gain speed-wise.

Figure 1: Pipeline of our motion estimation method. We focus on step 2.

1 Introduction

For safe and robust navigation mobile robots require the prediction of traversable
space in time. In order to do such prediction we need to detect surrounding
obstacles, classify them as mobile or static, and estimate their state vector (e.g.
position, velocity, orientation).

In this paper we focus on the estimation of objects motion between two
consecutive frames. This information can be used to feed an object tracker or as
an additional cue for object classi�cation.
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Traditionally, motion estimation between two frames is done using optical
�ow methods, which are computationally expensive. The aim of this paper is
to propose a lighter method for objects motion estimation in the context of a
ground mobile robot.

We base our approach on the stixel world model [1]. Given an input stereo
pair, the stixel world model will estimate the ground plane and the distance to
the main objects in the scene (represented by �sticks� raising from the ground,
see �gure 2). The key attribute of such model is that it only focuses on the
dominant objects of the scene. By avoiding the computation of a pixel-wise
depth map, such model can be estimated much faster than traditional stereo
matching methods [2].

(a) The stixel world (b) Estimated stixels, yellow line indi-
cates the objects bottom

Figure 2: The stixel world is composed by the ground plane and vertical sticks
describing the obstacles. Illustration from [2].

In this paper we show that the motion of stixels can be computed without
the need of computing a full pixel-wise optical �ow. Instead, we can formulate
the problem as a simple dynamic programming problem; by doing so we signi�-
cantly reduce the computational load, while keeping good quality in the motion
estimation (see �gure 1).

The key insight of this work is realizing that in the stixel world, objects
motion estimation can be reduced to a 1D problem (solved via 2D dynamic
programming).

Our method will only compute the motion in the areas covered by the stixels.
It has been previously shown that stixels represent the dominant objects of the
scene adequately [2]. For applications involving moving objects detection and
object tracking, we argue that stixels motion is the su�cient level of detail.

Assumptions We assume calibrated stereo input, and that the stixel world model
holds (as veri�ed by [3] for urban scenes); i.e. the ground is locally planar and
objects of interest are mainly vertical. We also assume that the cameras are
roughly parallel to the horizon, that the objects of interest have a height in a
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known limited range (e.g. 0.5 to 3m) and that the motion of objects is bounded
by a known maximum speed.

In what follows of this section we discuss how our work contrasts to previous
ones. In section 2, our stixels motion estimation algorithm is detailed. Section 3
explains our evaluation protocol and presents experimental results. We conclude
in section 4.

1.1 Related work

The stixel world model was introduced not long ago [1], so little literature exists
yet on the subject.

Typically motion estimation is done either using optical �ow [4] and/or some
kind of tracking-by-detection framework [5,6,7]. Recent progress has enabled
running optical �ow in real-time [8,9]; however, it still requires specialized hard-
ware (GPU) and signi�cant computational resources. Our approach is, by design,
much simpler and can run in real-time using CPU only. Tracking-by-detection ap-
proaches intrinsically require some kind of class speci�c knowledge. Our proposed
method is class agnostic and attempts to track any dominant object (captured
by the stixels) using only appearance and depth cues.

The notion of dynamic stixels was introduced by Pfei�er and Franke [3].
There the velocity vector of each stixel is estimated using optical �ow as input
and per-stixel Kalman �lters for smoothness. However, the presented results lack
any quantitative evaluation of the estimated motion. In this paper we propose
to obtain similar results, but without requiring the computation of optical �ow.

An interesting related work was recently proposed by Mitzel et al. [10]. They
focus on improving detection speed by exploiting the information contained in
depth maps. Given a detected object, they propose to crop the covered depth
map and track directly the point cloud across frames. With a successful tracking
they avoid the need of re-detecting the objects on every frame. Although not
directly related with generic objects motion (due to the classi�cation step), we
will use this approach for our evaluation in section 3. In our approach, pixel-wise
depth maps are not computed.

1.2 Contribution

The contribution of this paper is two-fold:

1. We propose the �rst algorithm for stixels motion estimation without requir-
ing the computation of optical �ow. This enables much faster computation
while keeping good quality.

2. We present the �rst evaluation of the stixels motion quality. Previous work
on the topic simply skipped such evaluation [3]. We compare our method
against two baselines.

In the next section we describe our algorithm in detail.
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2 Stixel motion estimation

Stixels are estimated as an intermediate representation of obstacles in the scene
for mobile robot navigation. They can be estimated by initially computing a
depth map and using dynamic programming [1] or without the computationally
expensive depth map [2]. The details of how stixels are estimated are beyond
the scope of this paper.

Having estimated the stixels for the current frame at time t1 and having
kept the stixel estimations from the previous frame at time t0, the stixel motion
estimation process can be viewed as a matching problem between stixels at time
t1 and stixels at time t0. For the sake of simplicity, and without loss of generality,
we will assume that each stixel covers a segment of one column u in the image.
The stixel motion estimation corresponds to a search along the u direction.

The proposed method for stixel motion estimation includes two main steps.
Having estimated the stixels at time t1 and t0, a matching cost matrix is com-
puted (section 2.1) which is then used by the dynamic programming module to
�nd the optimal motion assignment for each stixel (section 2.2).

2.1 Matching cost matrix computation

Assuming properly estimated stixels and a small time di�erence between two
consecutive frames, the appearance of a stixel estimated at the current frame
should be similar to the corresponding stixel estimated at the previous frame.
They also should have the same height, in meters. We have no particular assump-
tion on the motion of the obstacles in the scene, other than a known maximum
speed vmax (set to 2.5 meters per seconds).

Without loss of generality, we assume that stixels have width of one pixel.
We use u to indicate a stixel at column u, and u1, u0 to indicate stixels covering
the same object at t1and t0 respectively.

Given the set of stixels estimated at each column of the current frame t1
and the set of stixels estimated at each column of the previous frame t0, the
stixel motion estimation can be reformulated as a procedure for the assignment
of motion m∗ (u1) (in image columns), to the stixel at u1, such that u0 = u1 +
m∗ (u1).

The motion cost cm (u1, m) is computed as,

cm (u1, m) =

{
α · SAD (u1, m) + (1− α) · |h1 (u1)− h0 (u1 +m)|

cnull

if m ∈M (u1)
otherwise

(1)
where, hi (u) is the height, in meters, of the stixel at column u on frame ti. α

is a scaling parameter set to 0.5 in our experiments. M (u) is the set of possible
motions for the stixel u (with respect to the previous frame), it depends on the
depth z1 (u) of the stixel and the frame rate at which the images are captured.
The cost value for non-valid motions is set to cnull, set to 0.6 times the maximum
possible cost value.



Stixels motion estimation without optical �ow computation 5

SAD (u1, m) is the pixel-wise sum of absolute di�erences over the RGB
colour channels between stixels u1 and u0 = u1 + m. A �xed (sampled) pixel-
wise height (e.g. 30 pixels) is used for comparison since the stixel heights, in
pixels, can be di�erent.

The stixels are estimated from stereo data. Thus, some of them correspond
to occluded areas for which no reliable information is available [2]. Accordingly,
the entries of the cost matrix cm (u1,m) are directly set to the maximum cost
value if one or both of the stixels u1 and u0 correspond to occluded areas.

Stixels do not always have a valid match on the other frame, especially if they
correspond to appearing or disappearing objects. For instance, a stixel seen for
the �rst time at the current frame does not have a valid match on the previous
frame and it cannot have a meaningful motion estimate. In order to handle this,
we introduce the label null motion mnull /∈M(u) that is assigned to any stixel u
if its assigned motion (by the dynamic programming) has a cost value cm higher
than cnull, i.e. it is a mismatch.

An example motion cost matrix cm is illustrated in �gure 3 with the estimated
motion for each stixel drawn in pink. The column index of the cost matrix is the
stixel horizontal coordinate, u, whereas the row coordinate represents the 1D
motion values, m, of the stixel, which can be positive, zero, or negative. The size
of the cost matrix is (2×maximum 1Dmotion+ 1 + 1) × number of stixels,
representing negative, zero, and positive motions in addition to the null motion.

2.2 Dynamic programming for stixel motion estimation

The optimal displacement in pixels m∗ (u1) is estimated via a standard 2D dy-
namic programming minimization, similar to the one presented in [2]. The min-
imization problem to solve is,

m∗ (u1) = argmin
m(u1)

∑
u1∈U1

cm (u1,m (u1)) +
∑

u1 ∈ U1

nm (m (u1) ,m (u1 + 1)) (2)

where U1 is the set of all columns on the input frame and nm (ma,mb) is a
smoothing constraint applied over neighbour stixels.

Neighbouring stixels can either correspond to the same object or to separate
neighbouring objects. If the stixels correspond to the same object, they should
have very similar motion. Hence, the degree of neighbouring constraint between
adjacent stixels should be proportional with the likeliness of the stixels to belong
to the same object.

Objects in a scene can have di�erent orientations with respect to the camera.
Depending on the object orientation, di�erent parts of the same object might
have di�erent depth values. However, there is a spatial continuity in depth in
small neighbourhoods of the objects. Thus, neighbour stixels corresponding to
the same object have similar depth values. In addition, spatially neighbouring
stixels of the same object are generally observed to have similar height values.
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The smoothing term nm (mu1 ,mu1+1), de�ned in equation (3), re�ects these
weak cues.

nm (m (ua) ,m (ub)) = |ma −mb| · (βz + βh) (3)

βz = kz ·max
(
αz, 1−

|z1 (ua)− z1 (ub)|
∆z

)
(4)

βh = kh ·max
(
αh, 1−

|h1 (ua)− h1 (ub)|
∆h

)
(5)

In (4) and (5), z1 (u) and h1 (u) represent respectively the depth and height
(both in meters) of stixel u at time t1. ∆z, ∆h, kz, kh, αz, αh are parame-
ters controlling the extent of stixel depth and stixel height on the smoothing
constraint. In our experiments we use ∆z = 3, ∆h = 1, αz = 0.1, αh = 0.5,
kz = pmax, kh = 0.2 · pmax where pmax is the maximum possible pixel value in
the input images.

The dynamic programming computations are performed in two passes. The
dynamic programming matrix Dm is initialized with the values of the matrix
cm. In the �rst pass, Dm (u,m) is computed recursively (from right to left) as
given in (6).

Dm (u1,m) =

 cm (u1,m) if u1 = umax

min
e∈M(u1+1)

(Dm (u1 + 1, e) + nm (m, e)) otherwise (6)

The stixel motion estimations are obtained with backtracking in the second
pass (from left to right) of dynamic programming as shown in (7).

m∗u1
=

 argmin
m

Dm (1,m) if u1 = 1

argmin
m

(
Dm (u1,m) + nm

(
m∗u1−1,m

))
otherwise

(7)

Figure 3: Example motion cost matrix (frame 8). Estimated m∗u shown in pink.
Red stixels in the lower part correspond to occluded areas in either of the stereo
images, blue stixels are the ones assigned to null motion, grey stixels are esti-
mated normally.
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3 Evaluation

3.1 Methodology

The only previous work on stixels motion estimation provided no quantitative
evaluation of their results [3]. Our paper is the �rst to provide quantitative
evaluation of the stixels motion. Doing such an evaluation is di�cult since no
ground truth is available for the 3D world; optical �ow evaluations have the
same issues. Using synthetic video sequences for evaluation is possible, but this
provides no con�dence on the expected real-world performance.

Similar to [2], we propose to use annotated pedestrian bounding boxes as a
proxy for our evaluation. Starting from ground truth annotations at frame n,
each evaluated algorithm is used to predict the bounding box positions up to
∆ frames in the future. For each predicted frame the recall is evaluated using
the standard intersection-over-union (superior to 0.5). By running this evaluation
starting from every frame in a video sequence we obtain a �recall versus∆ frames�
curve that can be used to compare algorithms. To the best of our knowledge this
is the �rst time such an evaluation is done.

Since we are interested in objects tracking, we prefer to use an object level
measure rather than standard sub-pixel optical �ow accuracy measures. By eval-
uating over multiple frames we have (indirectly) access to the overall accuracy
of the method.

We evaluated the following algorithms:

fixed As a baseline for bad performing algorithms, we use the simplest predic-
tion method possible: we assume zero motion. For each predicted frame the
detection bounding boxes are kept in the same position as the initial one.
No algorithm should be worse than this method.

greedy tracker This method serves as a baseline for good performing algo-
rithms. For each prediction frame, we estimate the bounding box motions
by doing a greedy matching between the current estimate and the ground
truth annotations for that frame. In this method the recall still falls as ∆
increases since pedestrians not present in the initial frame enter the scene in
following frames.
Although it is not a strict upper bound, since this algorithm accesses the
ground truth annotations to do the motion prediction, it is expected to be
better than any other method.

ICP tracker For each frame, we compute (o�ine) a dense depth map [11] (same
as the one used in [10], see �gure 4b). For each initial frame, we use the
ground truth annotations to extract a mask corresponding to the upper
half of the body (one mask for each annotation, see �gure 4d). We then
sample 100 points randomly inside the mask and extract their 3D positions.
Following the work of Mitzel et al. [10], we track these point clouds using
iterative closest point (ICP) matching (10 iterations per frame).
After estimating the 3D motion between two frames, we use an assumed
person height (1.8 meters), and the ground plane from the stixel world model
[2] to estimate bounding boxes on the new frame. The point cloud is kept
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�xed, and the ICP matching + bounding box estimation is repeated for each
predicted frame.
In their original work Mitzel et al. [10] evaluated their algorithm integrated
with a high level tracker, showing state-of-the-art results. However, it is hard
to know if such good results are obtained due to the object detector quality,
the high level tracker, or the low level ICP tracker. Our evaluation is more
focused and allows a better comparison.

optical flow We compute (o�ine) a high quality optical �ow (using [4], see
�gure 4c) for each frame. At each frame we use the estimated stixels and
optical �ow to propagate the detection windows across time. Given the high
quality of the optical �ow, simply sampling the middle point of the torso
provided the best results (better than when using a mask based on the
depth map). This baseline aims at emulating the results of [3]. In fact, [3]
includes more than optical �ow and it should perform better than sole optical
�ow as long as the motion �ts in the assumed (class speci�c) motion model.
However, in our work, we do not assume such model to make the comparison
fair.
Since this method uses a full-�edged optical �ow we expect it to provide
competitive results.

stixels motion We compute the stixel world [2] and the stixels motion for each
frame. Given this data we can predict the 3D motion between each frame
(since stixels include depth information), and then use the same height and
ground planes as the previous methods to estimate the bounding boxes on
each predicted frame.

3.2 Quantitative results

The proposed algorithm is evaluated on the �Bahnhof� sequence [12], which is
a challenging sequence, already used to test object detection and tracking. This
stereo sequence was captured from a child stroller on a side walk. It provides
∼ 7400 annotations of pedestrians with height ≥ 40 pixels on 999 frames, with
an image resolution of 640× 480 pixels and a frame rate of ∼ 15 fps.

The recall vs∆ frames curves are presented in �gure 5. This result is obtained
over the full Bahnhof sequence.

We observe that optical flow provides the best results, following closely
the (ground truth based) results presented by greedy tracker. As expected
no method is worse than fixed. The ICP tracker shows a low recall in the
initial frames, this indicates that our implementation fails to initialize valid depth
masks (due to noise or lack of depth information).

Our stixels motion method provides results that lie in between the ICP

tracker and the high quality optical flow results. We obtain comparable
quality, yet our algorithm runs signi�cantly faster.

Speed Both depth map computation and optical �ow computation require ex-
pensive optimizations over every pixel in the image. In comparison, our method
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(a) Input frame 8, with ground truth an-
notations

(b) Corresponding depth map

(c) Corresponding optical �ow (d) Extracted masks and sampled points
for ICP

Figure 4: Example data used in the di�erent algorithms.
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only requires solving a single 2D dynamic programming problem, that accesses
a few pixels of the image for the data term. When properly implemented, this
approach can comfortably run at more than 30 Hz in a modern CPU. Our cur-
rent naive C++ implementation (single thread, memory ine�cient, no SIMD),
runs at 11 Hz. This number can be easily improved (3× ∼ 10×); as a refer-
ence the dynamic programming used to estimate the stixels does very similar
computations, and runs at 100 Hz on CPU [2].

3.3 Qualitative results

To complement the quantitative results of section 3.2, we present typical results
of our algorithm in �gures 6 and 7.

In �gure 6 we colour coded the stixels to indicate the corresponding im-
age motion vector. It can be seen that di�erent objects are indeed associated
to di�erent type of displacements. These results are computed using only two
consecutive stereo frames.

Figure 6: Example results of our stixel motion estimation algorithm. Motion
vector orientation is colour coded (see image border). Left image shows frame 8.

In �gure 7 we show the results of linking multiple consecutive motion es-
timates. In �gures 7a and 7b we present motion tracks over 30 frames of the
Bahnhof sequence (from frame 70 to 100, and frames 230 to 260, respectively).
The bottom rainbow identi�es the stixels in the last frame. Stixels correspond-
ing to ground truth pedestrian annotations in the last frame are marked with
a lighter colour (see �gures 7e and 7f). For each previous frame we can see
the estimated stixel position, based on repeatedly propagating (backwards) the
frame-wise stixel motion estimation.

As a reference point for the computed tracks we show the ground truth
annotations per frame (horizontal u dimension only). The tracks in �gures 7e
and 7f should match the ground truth tracks on in �gures 7c and 7d, respectively.

It can be seen in these illustrative examples that our method can track visible
pedestrians along 30 frames.
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(a) Estimated tracks (b) Estimated tracks

(c) Ground truth (d) Ground truth

(e) Stixels at frame 100 (f) Stixels at frame 260

Figure 7: Example of tracks obtained by our algorithm. Sub-�gures (a) and (b)
show the tracks obtained by backward propagation of the stixels of the latest
frame (shown in (e) and (f) respectively). Lighter colours indicate stixels marked
as �pedestrian� in the ground truth annotation of the latest frame. Darker colours
are other tracked objects (the wall).
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4 Conclusion and future work

In this paper, it is shown that stixels motion estimation can solve the short term
data association problem. The described stixels motion estimation algorithm
obtains comparable performance with competing methods without the need of
depth map or optical �ow computation. While having comparable results quality
wise, our method is signi�cantly faster than depth map or optical �ow compu-
tation. Both the proposed algorithm and the quantitative evaluation of stixel
motion methods are novel results.

Stixels motion estimation can be used as a low level tracker that feeds infor-
mation to a higher level tracker. We are currently working on such an integration.
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