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Abstract. Omnidirectional vision systems can provide panoramic alert-
ness in surveillance, improve navigational capabilities, and produce panor-
amic images for multimedia. Catadioptric realizations of omnidirectional
vision combine reflective surfaces and lenses. A particular class of them,
the central panoramic systems, preserve the uniqueness of the projection
viewpoint. In fact, every central projection system including the well
known perspective projection on a plane falls into this category.

In this paper, we provide a unifying theory for all central catadioptric
systems. We show that all of them are isomorphic to projective mappings
from the sphere to a plane with a projection center on the perpendicular
to the plane. Subcases are the stereographic projection equivalent to
parabolic projection and the central planar projection equivalent to every
conventional camera. We define a duality among projections of points and
lines as well as among different mappings.

This unification is novel and has a a significant impact on the 3D in-
terpretation of images. We present new invariances inherent in parabolic
projections and a unifying calibration scheme from one view. We describe
the implied advantages of catadioptric systems and explain why images
arising in central catadioptric systems contain more information than
images from conventional cameras. One example is that intrinsic cali-
bration from a single view is possible for parabolic catadioptric systems
given only three lines. Another example is metric rectification using only
affine information about the scene.

1 Introduction

Artificial visual systems face extreme difficulties in tasks like navigating on un-
even terrain or detecting other movements when they are moving themselves.
Paradoxically, these are tasks which biological systems like insects with very
simple brains can very easily accomplish. It seems that this is not a matter
of computational power but a question of sensor design and representation. The
representation of visual information has to be supported by the adequate sensors
in order to be direct and efficient. It is therefore surprising that most artificial
visual systems use only one kind of sensor: a CCD-camera with a lens.

We believe that the time has come to study the question of representation
in parallel to the design of supportive sensing hardware. As in nature these sen-
sors and representations should depend on the tasks and the physiology of the
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observer. Omnidirectional or panoramic visual sensors are camera designs that
enable capturing of a scene with an almost hemi-spherical field of view. Origi-
nally introduced mainly for monitoring activities they now are widely used in
multimedia and robotics applications. The advantages of omnidirectional sensing
are obvious for applications like surveillance, immersive telepresence, videocon-
ferencing, mosaicing, and map building. A panoramic field of view eliminates
the need for more cameras or a mechanically turnable camera. We prove in this
paper that a class of omnidirectional sensors, the central panoramic systems,
can recover information about the environment that conventional models of per-
spective projection on a plane cannot.

First let us summarize recent activities on omnidirectional vision. A panoramic
field of view camera was first proposed by Rees [13]. After 20 years the concept
of omnidirectional sensing was reintroduced in robotics [16] for the purpose of
autonomous vehicle navigation. In the last five years, several omnidirectional
cameras have been designed for a variety of purposes. The rapid growth of mul-
timedia applications has been a fruitful testbed for panoramic sensors [7,8,11]
applied for visualization. Another application is telepresence [14,1] where the
panoramic sensor achieves the same performance as a remotely controlled rotat-
ing camera with the additional advantage of an omnidirectional alert awareness.
Srinivasan [2] designed omnidirectional mirrors that preserve ratios of elevations
of objects in the scene and Hicks [5] constructed a mirror-system that rectifies
planes perpendicular to the optical axis. The application of mirror-lens systems
in stereo and structure from motion has been prototypically described in [15,4].
Our work is hardly related to any of the above approaches. The fact that lines
project to conics is mentioned in the context of epipolar lines by Svoboda [15]
and Nayar [10].

Omnidirectional sensing can be realized with dioptric or catadioptric sys-
tems. Dioptric systems consist of fish-eye lenses while catadioptric systems are
combinations of mirrors and lenses. These sensors can be separated into two clas-
sifications, determined by whether they have a unique effective viewpoint. Coni-
cal and spherical mirror systems as well as most fish-eye lenses do not possess a
single vantage-point. Among those that do have a unique effective viewpoint are
systems which are composed of multiple planar mirrors and perspective cameras
all of whose viewpoints coincide, as well as a hyperbolic mirror in front of a per-
spective camera, and a parabolic mirror in front of a orthographic camera. The
uniqueness of a projection point is equivalent to a purely rotating planar camera
with the nice property that a rotated image is a collineation of an original one.
Hence, every part of an image arising from such a catadioptric sensor can easily
re-warped into the equivalent image of a planar camera looking to the desired
direction without knowledge of the depths of the scene. It is worth mentioning
that simple dioptric systems — conventional cameras — are included in this class
of catadioptric systems because they are equivalent to catadioptric systems with
a planar mirror.

In this paper, we present a unifying theory for all central panoramic systems,
that means for all catadioptric systems with a unique effective viewpoint. We
prove that all cases of a mirror surface—parabolic, hyperbolic, elliptic, planar—
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with the appropriate lens—orthographic or perspective—can be modeled with
a projection from the sphere to the plane where the projection center is on a
sphere diameter and the plane perpendicular to it. Singular cases of this model
are stereographic projection, which we show to be equivalent to the projection
induced by a parabolic mirror through a orthographic lens, and central projection
which is well known to be equivalent to perspective projection.

Given this unifying projection model we establish two kinds of duality: a
duality among point projections and line projections and a duality among two
sphere projections from two different centers. We show that parallel lines in space
are projected onto conics whose locus of foci is also a conic. This conic is the
horizon of the plane perpendicular to all of the original lines, but the horizon
is obtained via the dual projection. In case of perspective projection all conics
degenerate to lines and we have the well known projective duality between lines
and points in P 2.

The practical implications are extremely useful. The constraints given by
the projection of lines are natural for calibration by lines. We prove that three
lines are sufficient for intrinsic calibration of the catadioptric system without any
metric information about the environment. We give a natural proof why such a
calibration is not possible for conventional cameras showing thus the superiority
of central catadioptric systems. The unifying model we have provided allows us
to study invariances of the projection. Perhaps most importantly, in the case
of parabolic systems we prove that angles are preserved because the equivalent
projection—stereographic—is a conformal mapping. This allows us to estimate
the relative position of the plane and facilitates a metric rectification of a plane
without any assumption about the environment.

In section 2 we prove the equivalence of the catadioptric and spherical pro-
jections and develop the duality relationships. In section 3 we present the com-
putational advantages derived from this theory and in section 4 we show our
experimental results.

2 Theory of Catadioptric Image Geometry

The main purpose of this section is to prove the equivalence of the image geome-
tries obtained by the catadioptric projection and the composition of projections
of a sphere. We first develop the general spherical projection, and then the cata-
dioptric projections, showing in turn that each are equivalent to some spherical
projection. Then we will show that two projections of the sphere are dual to
each other, and that parabolic projection is dual to perspective projection.

2.1 Projection of the Sphere to a Plane

We introduce here a map from projective space to the sphere to an image plane.
A point in projective space is first projected to an antipodal point pair on the
sphere. An axis of the sphere is chosen, as well as a point on this axis, but
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within the sphere. From this point the antipodal point pair is projected to a pair
of points on a plane perpendicular to the chosen axis.

Assume that the sphere is the unit sphere centered at the origin, the axis is
the z-axis and the point of projection is the point (0, 0, l). Let the plane z = −m
be the image plane. If ∼ is the equivalence relation relating antipodal points on
the sphere, then the map from projective space to the sphere s : P 3(IR)→ S2/∼
is given by

s(x, y, z, w) =
(
±x

r
,±y

r
,±z

r

)
where r =

√
x2 + y2 + z2. To determine the second part of the map, we need

only determine the perspective projection to the plane z = −m from the point
(0, 0, l). Without taking the equivalence relation into account the projection of
(x, y, z) is

pl,m(x, y, z) =
(

x(l + m)
lr − z

,
y(l + m)
lr − z

,−m

)
.

Now applying the equivalence relation we have a map p∗l,m : P 3(IR)→ IR2
∼ ,

p∗l,m(x, y, z, w) =
(
±x(l + m)

lr ∓ z
,±y(l + m)

lr ∓ z
,−m

)
.

Here IR2
∼ is IR2 with the equivalence relation induced on it by the map pl,m and

∼ on the sphere.
If we move the projection plane to z = −α, then the relation between the

two projections is

p∗l,m(x, y, z, w) =
l + m

l + α
p∗l,α(x, y, z, w) .

So they are the same except for a scale factor. Thus if m is not indicated it is
assumed that m = 1.

Remark. When l = 1 and m = 0, i.e. the point of projection is the north pole,
we obtain

p∗1,0(x, y, z, w) =

(
± x√

x2 + y2 + z2 ∓ z
,± y√

x2 + y2 + z2 ∓ z

)
,

which is a case of stereographic projection [9] (when (x, y, z) is restricted to
the sphere). On the other hand, when l = 0 and m = 1, we have perspective
projection:

p∗0,1(x, y, z, w) =
(x

z
,
y

z

)
.

2.2 Catadioptric Projection

In this section we will describe the projections using conical section mirrors.
Throughout the section we will refer to figures 2 and 3.
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l

m

x′
x′′

P = (x, y, z, w)

−(x, y, z)/r

(x, y, z)/r

Fig. 1. A point P = (x, y, z, w) is projected via s to two antipodal points
(±x,±y,±z)/r on the sphere. The two antipodal points are projected to the image
plane z = −m via projection from the point (0, 0, l).

Parabolic Mirror. We call the projection induced by a parabolic mirror to
an image plane a parabolic projection. The parabolic projection of a point P in
space is the orthographic projection of the intersection of the line PF (where F
is the parabola’s focus) and the parabola. The orthographic projection is to the
image plane perpendicular to the axis of the parabola. Any line (in particular
a ray of light) incident with the focus is reflected such that it is perpendicular
to the image plane, and (ideally) these are the only rays that the orthographic
camera receives.

The projection described is equivalent to central projection of a point to the
parabola, followed by standard orthographic projection. Thus we proceed in a
similar fashion as we did for the sphere. Assume that a parabola is placed such
that its axis is the z-axis, its focus is located at the origin, and p is its focal
length. Then

S =
{

(x, y, z)
∣∣ 1
4p

(x2 + y2 − p = z

}
is the surface of the parabola. Now define ∼ such that if P, Q ∈ S, then P ∼ Q
if and only if there exists a λ ∈ IR such that P = λQ. We now determine the
projection sp : P 3(IR)→ S/∼,

sp(x, y, z, w) =
(
± 2px

r ∓ z
,± 2py

r ∓ z
,± 2pz

r ∓ z

)
,

where r =
√

x2 + y2 + z2. The next step is to project orthographically to the
plane z = 0 (the actual distance of the plane to the origin is of course inconse-
quential). We thereby obtain q∗p : P 3(IR)→ IR2/∼ given by

q∗p(x, y, z, w) =
(
± 2px

r ∓ z
,± 2py

r ∓ z

)
.
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P ′

P ′′
x′

x′′
z′

Q′Q′′

4p

P = (x, y, z, w)

Fig. 2. Cross-section of a parabolic mirror. The image plane is through the focal point.
The point in space P is projected to the antipodal points P ′ and P ′′, which are then
orthographically projected to Q′ and Q′′ respectively.

P ′

P ′′

Q′

Q′′

4p

d

x′

P = (x, y, z, w)

Fig. 3. Cross-section of a hyperbolic mirror, again the image plane is through the
focal point. The point in space P is projected to the antipodal points P ′ and P ′′,
which are then perspectively projected to Q′ and Q′′ from the second focal point.
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Again, IR2/∼ is IR2 with the equivalence relation carried over by orthographic
projection of the parabola.

Remark. Note that

q∗p(x, y, z, w) = 2p p∗1,0(x, y, z, w) = p∗1,2p−1(x, y, z, w) .

Hyperbolic and Elliptical Mirrors. As with the paraboloid, hyperbolic pro-
jection is the result of reflecting rays off of a hyperbolic mirror. Rays incident
with one the focal points of the hyperbola are reflected into rays incident with
the second focal point. To obtain the projection of a point, intersect the line
containing the point and the focal point with the hyperbola. Take the two in-
tersection points and projection them to the image plane. The same applies to
ellipses.

Assume a hyperbola is placed such that its axis is the z-axis, one of its foci
is the origin, the other (0, 0,−d), and its latus rectum is 4p. Then the surface of
the hyperbola is

S =

{
(x, y, z)

∣∣∣∣∣
(

z + d/2
a

)2

−
(x

b

)2

−
(y

b

)2

= 1

}

where

a =
1
2

(√
d2 + 4p2 − 2p

)
, and b =

√
p
√

d2 + 4p2 − 2p2 .

Let ∼ be similarly defined for points of S, identifying antipodal points of the
hyperbola’s surface with respect to the focus. The projection sp,d(x, y, z, w) :
P 3(IR) → S/∼ may be obtained by intersecting the line through the point and
the origin, however it is of too great a length to include here. Nevertheless,
once obtained we then proceed by applying a perspective projection of the the
antipodal point pair given by sp,d(x, y, z, w) from the point (0, 0,−d) to the plane
z = 0, calling this projection r∗p,d : P 3(IR)→ IR2/∼. We find that

r∗p,d(x, y, z, w) =


±2xdp/

√
d2 + 4p2

d√
d2+4p2

r ∓ z
,±2ydp/

√
d2 + 4p2

d√
d2+4p2

r ∓ z


 ,

where r =
√

x2 + y2 + z2.

Remark. Notice that

r∗p,d(x, y, z, w) = p∗ d√
d2+4p2

, d(1−2p)√
d2+4p2

(x, y, z, w) .

For an ellipsoid similarly placed so that its foci are (0, 0, 0) and (0, 0,−d),
and latus rectum of 4p, we have

S =

{
(x, y, z)

∣∣∣∣∣
(

z + d/2
a

)2

+
(x

b

)2

+
(y

b

)2

= 1

}
,
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where

a =
1
2

(√
d2 + 4p2 + 2p

)
, and b =

√
p
√

d2 + 4p2 + 2p2 .

We then derive that t∗p,d(x, y, z, w) : P 3(IR)→ IR2/∼ is given by

t∗p,d(x, y, z, w) =

(
± 2xdp

dr ± z
√

d2 + 4p2
,± 2ydp

dr ± z
√

d2 + 4p2

)
.

Remark. We have that t∗p,d satisfies

t∗p,d(x, y, z, w) = r∗p,d(x, y,−z, w) = p∗ d√
d2+4p2

, d(1−2p)√
d2+4p2

(x, y,−z, w) .

Thus the ellipse gives the same projection as the hyperbola, modulo a reflection
about z = 0.

2.3 Equivalence of Catadioptric and Spherical Projections

From the discussion above we may write a general theorem which will allow us
to more generally develop the theory of catadioptric image geometry. We have
the following central theorem.

Theorem 1 (Projective Equivalence). Catadioptric projection with a single
effective viewpoint is equivalent to projection to a sphere followed by projection
to a plane from a point.

Proof. In the past two sections we have the following relationships for the pro-
jection functions:

r∗p,d(x, y, z, w) = p∗
d√

d2+4p2
, d(1−2p)√

d2+4p2

(x, y, z, w) (hyperbola←→ sphere) ,

t∗p,d(x, y, z, w) = p∗
d√

d2+4p2
, d(1−2p)√

d2+4p2

(x, y,−z, w) (ellipse←→ sphere) ,

q∗p(x, y, z, w) = p∗1,2p−1(x, y, z, w) (parabola←→ sphere) ,(
fx
z , fy

z

)
= p∗0,f (x, y, z, w) (perspective←→ sphere) .

Each are maps from P 3(IR) to IR2
∼ , and for any point in space the relations show

that they map to the same point in the image plane. ��
We now have a unified theory of catadioptric projection, and in further discus-

sion we need only consider projections of the sphere. In the interest of conciseness
we wish to give a name to this class of projections. We write πl,m to represent
the projective plane induced by the projection p∗l,m. Recall that if l = 1 then we
have the projective plane obtained from stereographic projection, or equivalently
parabolic projection. If l = 0 then we have the projective plane obtained from
perspective projection.

Having demonstrated the equivalence with the sphere we now wish to describe
in more detail the structure of the projective plane πl,m. We therefore describe
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the images of lines under these projections, therefore the “lines” of the projective
planes. But because of the equivalence with the sphere, we may restrict ourselves
to studying the projections of great circles and antipodal points. Thus let sl,m :
S2/∼→ IR2/∼ project points of the sphere to the image plane. Figure 4 shows
the projection of the great circle to the image plane, the equator is projected to
a circle of radius l+m

l ; this is the horizon of the fronto-parallel since the equator
is the projection of the line at infinity in the plane z = 0. The proposition below
describes the family of conics which are images of lines.

Proposition 1. The image of a line is a conic whose major axis (when it exists)
intersects the image center. It has the property that it intersects the fronto-
parallel horizon antipodally and its major axis intersects the image center.

Proof. Note first that the intersection of a great circle (which is itself the image
of a line in space) with the equator are two points which are antipodal. Their
projection to the image plane gives two points which again are antipodal on the
image of the equator. The image of the great circle must be symmetric about
the axis made by the perpendicular bisector of the two intersection points. This
axis contains the image center since the midpoint of the intersection points is
the image center.

The actual image may be obtained by taking a cone whose vertex is the point
of projection (0, 0, l) and which contains the great circle, then intersecting the
cone with the image plane. The intersection of a plane and a skew cone is still a
conic. ��

Q

Q
P

P

′

′

Fig. 4. A line in space is projected to a great circle on the sphere, which is then
projected to a conic section in the plane via p∗

l,m. The equator is mapped to the fronto-
parallel horizon, the dotted circle in the plane.

Note that if a conic has the properties in the proposition it is not necessarily
the image of a line. There is an additional constraint on the foci of the conic.
Let us therefore determine the image of a great circle. Let n̂ = (nx, ny, nz) be
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the normal of a plane containing some great circle. To obtain the quadratic form
of the conic section we find the quadratic form of the cone through (0, 0, l) and
the great circle. To do this we first rotate to a coordinate system (x′ , y′, z′) such
that the great circle lies in the plane z′ = 0. Then the vertex of the cone is
(l
√

1− n2
z, 0, lnz). Points of the cone, in the rotated coordinate system, then

satisfy

p′




1 0
√

1−n2
z

nz
0

0 1 0 0√
1−n2

z

nz
0

1− 1
l2

−n2
z

n2
z

0 0 1
lnz

−1


 p′T .

By rotating back to the original coordinate system we have,

p


−n2

xα− l2(n2
x + n2

yn2
z) (l2 − 1)nxnyα lnxnzα

(l2 − 1)nxnyα −n2
yα− l2(n2

y + n2
xn2

z) lnynzα
lnxnzα lnynzα −l2n2

zα


 pT ,

where α = n2
z − 1 = n2

x + n2
y. Let Cn̂ be the matrix above. From this form we

may extract the axes, center, eccentricity and foci, finding that

c = ( (l+m)nx|nz |
n2

x+n2
y−l2 ,

(l+m)ny |nz |
n2

x+n2
y−l2 ) (center) ,

f± =
(

(l+m)nx(|nz |±
√

1−l2)
n2

x+n2
y−l2 ,

(l+m)ny(|nz |±
√

1−l2)
n2

x+n2
y−l2

)
(foci) ,

a = l(l+m)nz

l2−n2
x−n2

y
(minor axis) ,

b = l+m√
l2−n2

x−n2
y

(major axis) ,

ε =
√

(1−l2)(n2
x+n2

y)

l2−n2
x−n2

y
(eccentricity) .

Meet and join. We find that the set of “points” of the projective plane πl,m,

Π(πl,m) =

{(
± (l + m)mx

l ∓mz
,± (l + m)my

l ∓mz

) ∣∣∣∣∣n̂ ∈ S2

}
.

A line is the set of points,

[n̂] =
{

(x, y)
∣∣ (x y

)
Cn̂

(
x
y

)}
.

Thus the set of “lines” of the projective plane πl,m,

Λ(πl,m) =
{
[n̂]
∣∣ n̂ ∈ S2

}
.

We may then define the operator meet ∧ : Λ(πl,m)×Λ(πl,m)→ Π(πl,m) to take a
pair of lines to their intersection, and the operator join ∨ : Π(πl,m)×Π(πl,m)→
Λ(πl,m) to take a pair of points to the line through them.
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2.4 Duality

In this section we will show that two projections of the sphere are dual to each
other. The antipodal point pairs of one projection are the foci of line images
in another projection, and vice versa. When the projection is stereographic (i.e.
parabolic) the dual is the usual perspective projection.

We have seen that images of lines are conics, we would like to know if there
is anything special about families of line images which intersect the same point.
A set of longitudes on the sphere all intersect in two antipodal points, what are
their projections? It is clear that the images must all intersect in two points
since incidence relationships are preserved, but is there anything special about
this particular pencil of conics?

Proposition 2. The locus of foci of a set of line images, where the great circles
corresponding to the lines intersect antipodally, is a conic whose foci are the
images of the intersection points.

Proof. Assume l and m are constant. Choose some point m̂ = (mx, my, mz) on
the sphere, by rotational symmetry we may assume without loss of generality
that my = 0. The normals of all lines perpendicular to m̂, i.e. those which
intersect m̂, are

(nθ
x, nθ

y, nθ
z) = (mx sin θ, cos θ, mz sin θ) .

Substituting into the formula found for the first focus, we have

fθ
1 =

(
(l + m)nθ

x

(
nθ

z +
√

1− l2
)

nθ
x
2 + nθ

y
2 − l2

,
(l + m)nθ

y

(
nθ

z +
√

1− l2
)

nθ
x
2 + nθ

y
2 − l2

)

=
(

(l + m)mx sin θ√
1− l2 −mz sin θ

,
(l + m) cos θ√

1− l2 −mz sin θ

)
.

But this is just the projection of (nθ
x, nθ

y, n
θ
z) by

p∗√
1−l2,l+m−√

1−l2
.

So let l′ =
√

1− l2 and m′ = l + m − √1− l2. Under the projection p∗l′,m′

the image of the great circle perpendicular to (mx, my, mz), i.e. the points
{(nθ

x, nθ
y, nθ

z)}, is once again a conic. One of its foci is

f ′
1 =


 (l′ + m′)mx

(
mz +

√
1− l′2

)
n2

x − l′2
, 0


 =

(
(l + m)mx

l −mz
, 0
)

.

This is the image of (mx, 0, my) under p∗l,m. ��
Define the map fl,m such that given the normal of a line it produces the foci

of the line’s image. Note that this map is injective and therefore its inverse is
well defined. We have the following theorem on duality.
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 C U  V

F1

F2

G1
G2

Fig. 5. The two ellipses are projections of two lines in space. Their foci F1, F2, and
G1, G2 respectively lie on a hyperbola containing the foci of all all ellipses through U
and V . The foci of this hyperbola are the points U and V .

Theorem 2 (Duality). Given the two projective planes π1 = πl,m and π2 =
πl′,m′ where l, m, l′ and m′ satisfy

l2 + l′2 = 1 and l + m = l′ + m′ ,

the following is true,

fl,m : Λ(π1)→ Π(π2),

f−1
l,m : Π(π2)→ Λ(π1),

fl′,m′ : Λ(π2)→ Π(π1),

f−1
l′,m′ : Π(π1)→ Λ(π2) .

In fact the two projective planes π1 and π2 are dual. If l1, l2 are lines of π1 and
p1, p2 are points of π1, then:

f−1
l′,m′(l1 ∧ l2) = fl,m(l1) ∨ fl,m(l2)

fl,m(p1 ∨ p2) = f−1
l′,m′(p1) ∧ f−1

l′,m′(p2) .

Proof. The preceding proposition showed that the foci of a pencil of lines {lλ}
lied on a conic c, where c ∈ Λ(π2). The foci of c were the two points of intersection
of the pencil of lines, so fl′,m′(c) = lλ1 ∧ lλ2 . But c = fl,m(lλ1) ∨ fl,m(lλ2), and
so

f−1
l′,m′(lλ1 ∧ lλ2) = fl,m(lλ1) ∨ fl,m(lλ2) .

The second is true because so is the dual to the proposition, namely that a set
of collinear points (in π1) produce a line whose foci are a single point of π2. ��
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Corollary 1. The projective planes π1,0 and π0,1 are dual. The first is obtained
from stereographic projection, and the second from perspective projection. The
center of every circle in a parabolic projection is a point in the perspective projec-
tion; every point of a parabolic projection is a focal point of a line in a perspective
projection.

3 Advantages of Catadioptric Projection

The presented unifying theory of catadioptric projections enables a direct and
natural insight on the invariances of these projections. The perspective projection
is a degenerate case of a catadioptric projection which fact as we will show
directly reveals its inferiority to the other catadioptric projections (parabolic
and hyperbolic).

3.1 Recovery of Geometric Properties

We have shown that parabolic projection is equivalent to stereographic projec-
tion, as well as being dual to perspective projection. Stereographic projection is
a map with several important properties. First the projection of any circle on
the sphere is a circle in the plane. In particular the projection of a great circle is
a circle. What is also important is that the map is conformal. The angle between
two great circles (i.e. the inverse cosine of the dot product of the normals of their
planes) is the same angle between the circles which are their projections. This
is important because it means for one thing that if two circles are horizons of
some planes, and they are orthogonal, then the planes are perpendicular.

Corollary 2. The angle between great circles on the sphere is equal to the angle
between their projections.

Proof of this fact is given in almost any book on geometry, e.g. [12], and is
a direct result of the fact that stereographic projection is a conformal mapping.
This implies that the angles between the horizons of two planes is equal to the
angle between the two planes; orthogonal planes have orthogonal horizons.

3.2 Calibration

Almost all applications in computer vision require that the imaging sensor’s
intrinsic parameters be calibrated. The intrinsic parameters include focal length,
image center and aspect ratio, as well as any other parameters which determine
the projection induced by the sensor such as radial distortion. Sometimes it
is possible to calibrate one or more of those parameters with minimal prior
information about scene geometry or configuration. For example, it has been
shown that radial distortion can be calibrated for, using only the images of lines.
The only assumption is that points have been gathered in the image which are
projections of points in space lying on some straight line. Using this information
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not only is it possible to determine the radial distortion parameters, but the
image center also may be obtained.

We have shown prior to this work that it is possible to calibrate all of the
intrinsic parameters of a parabolic catadioptric sensor, again using only lines.
Let us gain some intuition as to why this is true, and why it is not possible to
calibrate a normal perspective camera with these simple assumptions.

First examine the perspective case. Assuming that aspect ratio is one, there
are two intrinsic parameters, namely the image center and focal length. The
image of a line in space is a line in the image plane, and any given line may be
uniquely determined by two points. From any image line it is possible only to
determine the orientation of the plane containing the line in space and the focal
point; the orientation of this plane can be parameterized by two parameters.
Given n lines, how many constraints are there and how many unknowns? If for
some n the number of constraints exceeds the number of unknowns, then we
have a hope of obtaining the unknowns, and thus calibrate the sensor. However,
for every line added we gain two more constraints and two more unknowns; we
will always be short by three equations. Therefore self-calibration from lines,
without any metric information, and in one frame is hopeless in the perspective
case.

What about the parabolic case? There are a total of three unknowns, focal
length and image center (alone giving two unknowns). The projection of any line
is a circle, and which is completely specified by as few as three points, therefore
three constraints. The orientation of the plane containing the line gives two
unknowns. So, for every line that we obtain we reduce the number of unknowns
by one. If there are three lines, we have 9 constraints and 9 unknowns, and thus
we can perform self-calibration with only three lines.

Finally the hyperbolic case. There are four unknowns and each line adds two
for orientation. The projection of a line is a conic which may be specified by five
points. Thus when we have two lines we have 8 unknowns and 10 constraints.
So, with only two lines the system is over-determined, but nevertheless we can
still perform a calibration.

We give here a simple and compact algorithm for calibrating the parabolic
projection. It is based on the fact that a sphere whose equator is an image line
in the image plane contains the point (cx, cy, 2p), where (cx, cy) is assumed to
be the image center, though initially unknown. This is by symmetry, since the
image circle intersects the fronto-parallel plane at points a distance 2p from the
image center. Thus the intersection of at least three spheres so-constructed will
produce the points (cx, cy,±2p), giving us both image center and focal length
simultaneously.

In the presence of noise, the intersection will not be defined for more than
three spheres, yet we may minimize the distance from a point to all of the spheres,
i.e. find the point (cx, cy, p) such that

n∑
i=1

(
(di

x − cx)2 + (di
y − cy)2 + 4p2 − r2

i

)2
(1)
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is a minimum over all points. Here (di
x, di

y) is the center of the i-th image circle,
and ri is its radius. The intersection is not defined for fewer than three spheres,
since the intersection of two spheres gives only the circle within which the point
lies, but not the point itself.

4 Experiment

We present here a short experiment with real data as a proof of concept. We will
show how given a single catadioptric image of a plane (left image in Fig. 6) we can
recover the intrinsic parameters of the camera and metrically rectify this plane,
too. The system used is an off-shelf realization (S1 model, Cyclovision Inc.) of a
parabolic catadioptric system invented by Nayar [8]. The algorithm detects edge
points and groups them in elliptical arcs using a Delaunay triangulation of the
points and a subsequent Hough transform. An ellipse fitting algorithm [3] is then
applied on the clustered points. The aspect ratio is eliminated and the ellipses
are transformed to circles (Fig. 6, middle). We additionally assume that these
lines are coplanar and that they belong to two groups of parallel lines. However,
we do not make any assumption about the angles between these lines.

From the parallelism assumption we know that the intersections of the circles
are the antipodal projections of vanishing points. The calibration theory devel-
oped above tells us that the intersection of the lines connecting the antipodal
points gives the image center.

Two vanishing points and the focal point define a plane parallel to the plane
viewed. Imagine the horizon of this plane (line at infinity) defined by the two
sets of vanishing points. Imagine also a pole on the sphere corresponding to the
plane spanned by the horizon and the focal point. The parabolic projection of the
horizon is a circle (the horizon conic) and its center is the projection of the pole.
However, this pole gives exactly the normal where all the lines lie. This center
is the dual point to the line which is the horizon of the perspective projection.
Given the calculation (1) the focal length is directly obtained. This focal length
is the effective focal length required for any operation in the catadioptric system
(we can not decouple the mirror from the lens focal length). We have thus been
able to compute image center, focal length, and the normal of a plane without
assuming any metric information. We visualize the result on the right of Fig. 6
where we have rectified the ceiling plane so that it looks as if it were fronto-
parallel. Unlike the planar perspective case [6] metric rectification of a plane
from a single image is possible with a parabolic catadioptric system without any
metric information.

5 Conclusion

In this paper, we presented a novel theory on the geometry of central panoramic
or catadioptric vision systems. We proved that every projection can be mod-
eled with the projection of the sphere to a horizontal plane from a point on the
vertical axis of the sphere. This modeling includes traditional cameras which
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Fig. 6. Top left: Original image of the ceiling recorded by the catadioptric camera
slanted approx. 45 deg. with respect to the ceiling. Top right: Two groups of four and
three circles, respectively, fitted on the images of the ceiling-edges. The lines through
the vanishing points intersect at the image center and all the vanishing points lie on
a circle. Bottom middle: Both, the collinearity of the edge elements and the perpen-
dicularity of the edges show a superior performance in estimating intrinsics as well as
pan-tilt of the ceiling using only natural landmarks.

are equivalent to a catadioptric projection via a planar mirror. In this case the
projection point of our model is the center of the sphere. In the parabolic case,
the projection point becomes the north-pole and the projection is a stereogra-
phy. The conformal mapping properties of the stereography show the power of
the parabolic systems. Hyperbolic or elliptical mirrors correspond to projections
from points on the vertical diameter within the sphere. We showed that pro-
jections of point and lines in space are points and conics, respectively. Due to
preservation of the incidence relationship we can regard the conics as projective
lines. We showed that these projective lines are indeed dual to the points and
vice versa.

Very useful practical implications can be directly derived from this theory.
Calibration constraints are natural and we provided a geometric argument why
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all catadioptric systems except the conventional planar projection can be cal-
ibrated from one view. We gave an experimental evidence using a parabolic
mirror where we also showed that metric rectification of a plane is possible if
we have only affine but not metric information about the environment. We plan
to extend our theory to multiple catadioptric views as well as to the study of
robustness of scene recovery using the above principles.
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