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Abstract— Accurate 3d perception from video sequences is
a core subject in computer vision and robotics, since it forms
the basis of subsequent scene analysis. In practice however,
online requirements often severely limit the utilizable camera
resolution and hence also reconstruction accuracy. Further-
more, real-time systems often rely on heavy parallelism which
can prevent applications in mobile devices or driver assistance
systems, especially in cases where FPGAs cannot be employed.

This paper proposes a novel approach to build 3d maps
from high-resolution stereo sequences in real-time. Inspired by
recent progress in stereo matching, we propose a sparse feature
matcher in conjunction with an efficient and robust visual
odometry algorithm. Our reconstruction pipeline combines both
techniques with efficient stereo matching and a multi-view
linking scheme for generating consistent 3d point clouds. In
our experiments we show that the proposed odometry method
achieves state-of-the-art accuracy. Including feature matching,
the visual odometry part of our algorithm runs at 25 frames
per second, while – at the same time – we obtain new depth
maps at 3-4 fps, sufficient for online 3d reconstructions.

I. INTRODUCTION

Today, laser scanners are still widely used in robotics and
autonomous vehicles, mainly because they directly provide
3d measurements in real-time. However, compared to tra-
ditional camera systems, 3d laser scanners are often more
expensive and more difficult to seamlessly integrate into
existing hardware designs (e.g., cars or trains). Moreover,
they easily interfere with other sensors of the same type as
they are based active sensing principles. Also, their vertical
resolution is limited (e.g., 64 laser beams in the Velodyne
HDL-64E). Classical computer vision techniques such as
appearance-based object detection and tracking are hindered
by the large amount of noise in the reflectance measurements.

Motivated by those facts and the emergent availability
of high-resolution video sensors, this paper proposes a
novel system enabling accurate 3d reconstructions of static
scenes, solely from stereo sequences1. To the best of our
knowledge, ours is the first system which is able to process
images of approximately one Megapixel resolution online
on a single CPU. Our contributions are threefold: First, we
demonstrate real-time scene flow computation with several
thousand feature matches. Second, a simple but robust visual
odometry algorithm is proposed, which reaches significant
speed-ups compared to current state-of-the-art. Finally, using
the obtained ego-motion, we integrate dense stereo mea-
surements from LIBELAS [12] at a lower frame rate and

1Source code available from: www.cvlibs.net
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Fig. 1. Real-time 3d reconstruction based on stereo sequences: Our
system takes stereo images (top) as input and outputs an accurate 3d model
(bottom) in real-time. All processing is done on a single CPU.

solve the associated correspondence problem in a greedy
fashion, thereby increasing accuracy while still maintaining
efficiency. Fig. 1 illustrates the input to our system and
resulting live 3d reconstructions on a toy example.

II. RELATED WORK

As video-based 3d reconstruction is a core topic in com-
puter vision and robotics, there exists a large body of related
work, sketched briefly in the following:

Simultaneous Localisation and Mapping (SLAM) [6],
[19], [7], [26], [5] is the process by which a mobile robot
incrementally builds a consistent map of its environment
and at the same time uses this map to compute its own
location. However, for computational reasons, most of the
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Fig. 2. System overview: We use two worker threads in order to
obtain egomotion estimates and disparity maps in parallel: While the stereo
matching and 3d reconstruction part runs at 3-4 fps (Sec. III C+D), our
sparse feature matching and visual odometry system (Sec. III A+B) achieves
25 fps. Taken together, this is sufficient for online 3d reconstruction.

proposed approaches are only able to handle very sparse sets
of landmarks in real-time, while here we are interested in a
dense mapping solution.

With the seminal work by Hoiem et al. [14] learning-
based approaches to geometry estimation from monocular
images have seen a revival [23], [13]. Those methods typ-
ically segment images into superpixels and, based on local
appearance as well as global constraints, infer the most likely
3d configuration of each segment. Even though impressive
results have been demonstrated recently [13], those methods
are still too inaccurate and erroneous to directly support
applications like mobile navigation or autonomous driving.

3d reconstruction from uncalibrated image collections has
been shown by Koch [17], Pollefeys [22], Seitz [24] et
al. using classical Structure-from-Motion (SfM) techniques.
Extensions to urban reconstruction have been demonstrated
in [2], [9], [10]. More recently, the availability of photo
sharing platforms like Flickr led to efforts of modeling cities
as large as Rome [1], [8]. However, in order to obtain
accurate semi-dense reconstructions, powerful multi-view
stereo schemes are employed, which, even on small image
collections, easily take up to several hours while making
extensive use of parallel processing devices. Further, most of
the proposed methods require several redundant viewpoints,
while our application target is a continuously moving mobile
platform, where objects can be observed only over short
periods of time.

In [3] Badino et al. introduces Stixel World as medium-
level representation to reduce the amount of incoming sensor
information. They observe that free space in front of a
vehicle is usually limited by objects with vertical surfaces,
and represent those by adjacent rectangular sticks of fixed
width, which are tracked over time [21]. Another kind of
frequently employed mid-level representations are occupancy
grids [15], [18], which discretize the 3d world into binary
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Fig. 3. Blob/corner detector and feature descriptor: Our feature
detections are minima and maxima of blob and corner filter responses. The
descriptor concatenates Sobel filter responses using the layout given in (c).

(a) Feature matching (2 frames, moving camera)

(b) Feature tracking (5 frames, static camera)

Fig. 4. Feature matching: (a) Matching features in a circle, colors encode
disparities. (b) Feature tracking, colors encode track orientation.

2d cells. Though useful in many applications, those types of
abstractions are not detailed enough to represent curbstones
or overhanging objects such as trees, signs or traffic lights.
Alternatively, 3d voxel grids can be employed. However,
without waiving resolution, computational complexity in-
creases dramatically. In this paper instead, we are interested
in representing the perceived information as detailed as
possible, but without losing real-time performance.

III. 3D RECONSTRUCTION PIPELINE

Our 3d reconstruction pipeline consists of four stages:
Sparse feature matching, egomotion estimation, dense stereo
matching and 3d reconstruction. We assume two cores of
a CPU available, such that two threads can carry out work
in parallel: As illustrated in Fig. 2 the first worker thread
performs feature matching and egomotion estimation at 25
fps, while the second thread performs dense stereo matching
and 3d reconstruction at 3 to 4 fps. As we show in our
experiments, this is sufficient for online 3d reconstruction of
static scenes. In the following we will assume a calibrated
stereo setup and rectified input images, as this represents the
standard case and simplifies computations.

A. Feature Matching

The input to our visual odometry algorithm are features
matched between four images, namely the left and right
images of two consecutive frames. In order to find stable
feature locations, we first filter the input images with 5× 5



blob and corner masks, as given in Fig. 3. Next, we employ
non-maximum- and non-minimum-suppression [20] on the
filtered images, resulting in feature candidates which belong
to one of four classes (i.e., blob max, blob min, corner max,
corner min). To reduce computational efforts, we only match
features within those classes.

In contrast to methods concerned with reconstructions
from unordered image collections, here we assume a smooth
camera trajectory, superseding computationally intense rota-
tion and scale invariant feature descriptors like SURF [4].
Given two feature points, we simply compare 11× 11 block
windows of horizontal and vertical Sobel filter responses to
each other by using the sum of absolute differences (SAD)
error metric. To speed-up matching, we quantize the Sobel
responses to 8 bits and sum the differences over a sparse
set of 16 locations (see Fig. 3(c)) instead of summing over
the whole block window. Since the SAD of 16 bytes can be
computed efficiently using a single SSE instruction we only
need two calls (for horizontal + vertical Sobel responses) in
order to evaluate this error metric.

Our egomotion estimation mechanism expects features
to be matched between the left and right images and two
consecutive frames. This is achieved by matching features
in a ’circle’: Starting from all feature candidates in the
current left image, we find the best match in the previous left
image within a M ×M search window, next in the previous
right image, the current right image and last in the current
left image again. A ’circle match’ gets accepted, if the
last feature coincides with the first feature. When matching
between the left and right images, we additionally make use
of the epipolar constraint using an error tolerance of 1 pixel.
Sporadic outliers are removed by establishing neighborhood
relations as edges of a 2d Delaunay triangulation [25] on the
feature locations in the current left image. We only retain
matches which are supported by at least two neighboring
matches, where a match is supporting another match, if its
disparity and flow differences fall within some threshold
τdisp or τflow respectively. If required, sub-pixel refinement
via parabolic fitting can be employed to further improve
feature localization.

Even though our implementation is very efficient, estab-
lishing several thousands to ten thousands of correspon-
dences still takes time in the order of seconds, hence making
it too slow for online applications. By transferring ideas
already employed in previous works on stereo matching [12],
further significant speed-ups are possible: In a first pass, we
match only a subset of all features, found by non-maxima-
suppression (NMS) using a larger NMS neighborhood size
(factor 3). Since this subset is much smaller than the full
feature set, matching is very fast. Next, we assign each
feature in the current left image to a 50 × 50 pixel bin of
an equally spaced grid. Given all sparse feature matches,
we compute the minimum and maximum displacements for
each bin. Those statistics are used to locally narrow down the
final search space, leading to faster matching and a higher
number of matches at the same time, as evidenced in the
experimental section. Fig. 4 illustrates feature matching and

tracking results using our method.

B. Egomotion Estimation
Given all ’circular’ feature matches from the previous

section, we compute the camera motion by minimizing the
sum of reprojection errors and refining the obtained velocity
estimates by means of a Kalman filter.

First, bucketing is used to reduce the number of features
(in practice we retain between 200 and 500 features) and
spread them uniformly over the image domain. Next, we
project feature points from the previous frame into 3d via
triangulation using the calibration parameters of the stereo
camera rig. Assuming squared pixels and zero skew, the
reprojection into the current image is given byuv
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with
• homogeneous image coordinates (u v 1)T

• focal length f
• principal point (cu, cv)
• rotation matrix R(r) = Rx(rx)Ry(ry)Rz(rz)
• translation vector t = (tx ty tz)T

• 3d point coordinates X = (x y z)T

• and shift s = 0 (left image), s = baseline (right image).
Let now π(l)(X; r, t) : R3 → R2 denote the projection
implied by Eq. 1, which takes a 3d point X and maps it
to a pixel x(l)

i ∈ R2 on the left image plane. Similarly, let
π(r)(X; r, t) be the projection onto the right image plane.
Using Gauss-Newton optimization, we iteratively minimize
N∑
i=1
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with respect to the transformation parameters (r, t). Here
x(l)
i and x(r)

i denote the feature locations in the current left
and right images respectively. The required Jacobians Jπ(l)

and Jπ(r) are readily derived from Eq. 1. In practice we note
that even if we initialize r and t to 0, a couple of iterations
(e.g., 4-8) are sufficient for convergence. To be robust against
outliers, we wrap our estimation approach into a RANSAC
scheme, by first estimating (r, t) for 50 times independently
using 3 randomly drawn correspondences. All inliers of the
winning iteration are then used for refining the parameters,
yielding the final transformation (r, t).

On top of this simple, but efficient estimation procedure
we place a standard Kalman filter, assuming constant ac-
celeration. To this end, we first obtain the velocity vector
v = (r t)T /∆t as the transformation parameters divided by
the time between frames ∆t. The state equation is given by(

v
a
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and the output equation reduces to
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Fig. 5. Multi-view reconstruction: In order to fuse 3d points we greedily
associate them by reprojection into the image plane of the current frame.

since we directly observe v. Here, a denotes acceleration,
I is the 6 × 6 identity matrix and ε, ν represent Gaussian
process and measurement noise, respectively.

C. Stereo Matching

For obtaining dense disparity maps, we use a method
called ELAS [12], which is freely available. ELAS is a novel
approach to binocular stereo for fast matching of high-
resolution imagery. It builds a prior on the disparities by
forming a triangulation on a set of support points which can
be robustly matched, reducing matching ambiguities of the
remaining points. This allows for efficient exploitation of
the disparity search space, yielding accurate and dense re-
constructions without global optimization. Also, the method
automatically determines the required disparity search range,
which is important for outdoor scenarios. ELAS achieves
state-of-the-art performance on the large-scale Middlebury
benchmark while being significantly faster than existing
methods: For the outdoor sequences used in our experiments
(≈ 0.5 Megapixel resolution), we obtain 3 − 4 frames per
second on a single i7 CPU core running at 3.0 GHz.

D. 3d Reconstruction

The last step in our reconstruction pipeline creates consis-
tent point-based models from the large amount of incoming
data (i.e., ≈ 500.000 points, 3 − 4 times every second).
The simplest method to point-based 3d reconstructions maps
all valid pixels to 3d and projects them into a common
coordinate system according to the estimated camera motion.
However, without solving the association problem, storage
requirements will grow rapidly. Further, redundant informa-
tion can not be used for improving reconstruction accuracy.
On the other hand, traditional multi-view optimizations such
as bundle adjustment are computationally infeasible for
dense real-time systems as the proposed one.

Instead, here we propose a greedy approach which solves
the association problem by reprojecting reconstructed 3d
points of the previous frame into the image plane of the
current frame. In case a point falls onto a valid disparity, we
fuse both 3d points by computing their 3d mean. This does
not only dramatically reduce the number of points which
have to be stored, but also leads to improved accuracy by
averaging out measurement noise over several frames. Fig.
5 illustrates our approach for two frames: Parts of the points
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Stage Time
Filter 6.0 ms
NMS 12 ms
Matching 1 2.8 ms
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Refinement 5.1 ms
Total time 36.6 ms
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Stage Time
RANSAC 3.8 ms
Refinement 0.4 ms
Kalman filter 0.1 ms
Total time 4.3 ms

(b) Visual odometry

Fig. 6. Sparse feature matching and visual odometry running times.
The tables show timings for individual parts of our algorithm when parame-
terized to the online settings (2 scales, NMS neighborhood 3 corresponding
to approximately 500 to 2000 feature matches and 50 RANSAC iterations).
For timings of the stereo matching stage we refer the reader to [12].

captured in frame one (blue) get fused with points captured
in frame two (orange), after the camera underwent a forward
movement. Our method only involves projections and pointer
book keeping and hence can be implemented very efficiently:
Appending a single disparity map to the 3d model typically
takes less than 50 ms, hence only adding minor computations
to the stereo matching and reconstruction thread.

Since our reconstructed sequences are relatively short,
we do not consider the ’soft reset problem’ in this paper.
However, a simple solution would be to remove all 3d points
associated with depth maps of ’outdated’ poses.

IV. EXPERIMENTAL RESULTS

In this section we compare our results to [16], a freely
available visual odometry library. All experiments were
performed on image sequences of the Karlsruhe dataset
(www.cvlibs.net), which provides ground truth GPS+IMU
data as well as stereo sequences at a resolution of 1344×391
pixels and 10 fps. Our real-time parameterization uses the
standard settings for LIBELAS stereo matching [12], and
sparse feature matching at 2 scales with 50 RANSAC itera-
tions, an inlier threshold of 1.5 pixels and τdisp = τflow = 5
pixels. For egomotion estimation, we empirically set the
measurement noise parameters of the Kalman filter to ν ∼
N (0, 10−2×I), ε1..6 ∼ N (0, 10−8×I) and ε7..12 ∼ N (0, I).
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Fig. 7. Visual odometry results on the Karlsruhe data set. Best viewed in color.

A. Feature matching

Fig. 6(a) illustrates sparse feature matching running times
over the number of matched features. We compare the pro-
posed method to a version evaluated at half-size resolution
and refined at full resolution, and to the baseline by Kitt et
al. [16]. We observe that our multi-stage matching approach
helps in reducing running times significantly, while at the
same time increasing the number of feature matches. This
beneficial behaviour is mainly due to reduced ambiguities in
the second matching stage. Also, note that a two scale match-
ing approach, which computes features at half resolution and
refines them at full resolution, further reduces running time,
while preserving a reasonable amount of feature matches for
visual odometry (500-2000): Using this setting we are able to
achieve feature matching over 25 fps on a single CPU core,
as shown in the table, which lists running times of individual
parts ouf our algorithm.

B. Visual Odometry

As evidenced by Fig. 6(b), we are also able to cut
visual odometry running times significantly with respect
to the CVMLIB-based version of the algorithm presented
in [16]. While Kitt et al. requires about one second to
process 200 feature matches, 4.3 milliseconds are sufficient
for our method, leading to speed ups of more than factor
200. This is mainly due to the relatively complex nature
of the observation model employed in [16], which is based
on trifocal tensors and requires inverting matrices growing
linearly with the number of matched features, while our
matrix inversions are constant in this number. In Fig. 7 we
further compare our visual odometry trajectories to Kitt et
al. and ’ground truth’ output of a OXTS RT 3003 GPS/IMU
system on the Karlsruhe dataset. Even though running much
faster, our method achieves localization accuracy comparable
to [16]. Please note that the GPS/IMU system can only
be considered as ’weak’ ground truth, because localization
errors of up to two meters may occur in inner-city scenarios
due to limited satellite availability.

C. 3d Reconstruction

We also qualitatively evaluate our complete reconstruction
pipeline. Fig. 8 illustrates 3d reconstructions obtained by our

system for three different sequences (rows) and from four
different viewpoints (columns).

V. CONCLUSION

In this paper we have demonstrated a system to generate
accurate dense 3d reconstructions from stereo sequences.
Compared to existing methods, we were able to reduce run-
ning times of feature matching and visual odometry by more
than one or two orders of magnitude, respectively, allowing
real-time 3d reconstructions from large-scale imagery on
the CPU. We believe our system will be valuable for other
researchers working on higher-level reasoning for robots and
intelligent vehicles. In the future we intend to combine our
visual odometry system with GPS/INS systems to reduce
localization errors in narrow urban scenarios with restricted
satellite reception. We also plan on handling dynamic objects
and on using our maps for 3d scene understanding at road
intersections [11].
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