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Abstract— Detection and tracking of moving traffic partic-
ipants like vehicles, pedestrians or bicycles from a mobile
platform using a stereo camera system plays a key role in
traffic scene understanding and for future driver assistance
and safety systems. To this end, this work presents a Bayesian
segmentation approach based on the Dynamic Stixel World,
an efficient super-pixel object representation. The existence
and state estimation of an (initially) unknown number of
moving objects and the detection of stationary background is
formulated as a time-recursive energy minimization problem
that can be solved in real-time by means of the alpha-expansion
multi-class graph cut optimization scheme. In order to handle
noise, this approach integrates 3D and motion features as
well as spatio-temporal prior knowledge in a probabilistic
conditional random field (CRF) framework. An optional fusion
step with an additional radar sensor combines the advantages of
both measuring instruments and yields superior overall results.
The performance and robustness of the presented approach is
evaluated quantitatively in various challenging traffic scenes.

I. INTRODUCTION

The use of camera systems for capturing dense 3D and
motion information has increased tremendously in the last
years and has allowed the development of numerous driver
assistance systems. In view of the steadily increasing number
of driver assistance systems, the introduction of a medium-
level representation called Stixel World [23], [22] has proven
to be highly advantageous. This is because the Stixel World
yields the important freespace information and it provides an
efficient object representation that is required by many driver
assistance applications. Furthermore, it allows reducing the
computational burden for these subsequent applications, in
some cases by several orders of magnitude, see e.g. [11],
[10], [3].
In this contribution, an Expectation-Maximization-like (EM)
[9] CRF approach is derived that can detect and track the
moving objects in stereo image sequences based on the
Dynamic Stixel World. The actual number of objects is part
of the objective function to be minimized. The main steps of
the presented approach are summarized in Figure 1. Firstly,
a dense depth image is computed. These experiments use
the Semi-Global Matching (SGM) algorithm [16], [15], as
shown in Figure 1(b). Secondly, the multi-layered Stixel
World [23] shown in Figure 1(c) is computed. Subsequently,
the stixels are tracked over time to estimate their motion state
by applying the 6D-Vision principle [14], [22] as shown in
Figure 1(d).
However, the Dynamic Stixel World does not contain any
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(a) Left original gray value image.

(b) SGM [15] stereo image. The distance is color encoded
ranging from red (close) to green (far away).

(c) Multi-Layered Stixel World [21].

(d) Dynamic Stixel World [22]. The arrows show the predicted
position of the stixels for the next half second.

(e) Object segmentation result. The color encodes the different
object classes, the static background is shown in black.

Fig. 1. Processing chain of the segmentation.

information about their relation to each other. This indepen-
dence assumption could result in inconsistent scene interpre-
tations in the event of strong noise under adverse conditions.
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For this reason, a grouping of the stixels into objects is
desirable. In this work, a segmentation approach for this step
is proposed. The segmentation step partitions the Dynamic
Stixel World into several moving objects, exemplarily shown
in Figure 1(e).
The remainder of this article is structured as follows: Sec-
tion II briefly reviews related work. Section III derives the
presented approach from probability theory and Section IV
evaluates this approach in real-world scenes using ground-
truth material. Finally, Section V concludes this contribution.

II. RELATED WORK

Segmentation in the presence of strong noise requires
strong regularization and redundancies. Especially Condi-
tional Random Fields (CRFs) [19] have proven to be re-
markably powerful since they can model spatio-temporal
correlations and can be solved nearly optimally by means of
efficient inference methods [17]. Classical CRF approaches
consider segmentation as a labeling problem, where each
(super-) pixel needs to be assigned to exactly one object class
like street, sky or car, c.f. [12], [6], [7]. These approaches
are restricted to static scenes and do not allow separating
between different instances of one object class, e.g. between
different moving objects.
Accordingly, the CRF concept has been extended for object
detection, see e.g. [30], [18]. In [30], the CRF acts as a
mediator between the output of different part-based classifier
responses ensuring some global ordering relations. However,
this approach considers a pure appearance-based classifica-
tion for static scenes, in contrast to the scope of the present
approach.
Besides, for many applications the discrete class choice made
in the contributions mentioned above seems imprecise since
objects have continuous parameters. Markov Random Fields
have been generalized to the continuous domain requiring
user interaction as done in [25], or [28]. In [29], Unger
et al. proposed a joint segmentation and motion estimation
approach in the continuous domain. However, the authors
conclude that their approach is still too slow for many
practical purposes. Besides that, the inclusion of further
segmentation classes during the optimization is done in an
ad-hoc manner. The approach presented here derives this
quantity based on probability theory.
In [13], Wang et al. propose a vertical extension to the binary
graph cut segmentation problem for an unknown number of
class labels using different split-and-merge schemes.
An Expectation-Maximization approach related to the one
being presented has been published by Bachmann in [1].
However, the regularization on the pixel level was found to
be often insufficient in the presence of strong noise. Besides
that, the actual number of objects is derived heuristically in
that work.
Another concept is layer decomposition like [27] which is
still too slow for real-time applicability.
The most similar work has been done by Barth et al. [2],
which use dense depth and motion information for multi-
class traffic scene segmentation. However, using the Stixel

World instead of individual pixels is more robust and is at
least three orders of magnitude faster, thus, the Stixel World
enables automotive real-time operation in the first place.
Besides that, the approach by Barth does not estimate the
motion state of the moving objects by itself, this information
has to be provided externally.
Finally, in [11] the present authors proposed a related ap-
proach also based on the Dynamic Stixel World. However,
this approach performs motion class segmentation into a
predefined number of classes. In the present work, the actual
motion state is arbitrary and part of the estimation process.

III. PROBABILISTIC FORMULATION
In this section, the segmentation task is formulated as

a Bayesian optimization problem. The given stereo camera
system records an image sequence I with dense stereo
information, that is subsequently segmented into the multi-
layered Stixel World as proposed in [21]. This (static) Stixel
World partitions an input image It ∈ I at time step t
column-wise into several layers of one of the two classes
CStixel ∈ {street, obstacle}, c.f. 1(c). In the following, the
street area is left unchanged and the focus is on obstacle
stixels. Subsequently, the stixels are tracked over time in
order to estimate their motion state [22].
In summary, each stixel with index i is defined by solely five
observations. That is its 3D world position {Xt

i , H
t
i , Z

t
i},

where Ht
i denotes the height of the stixel relative to the

camera coordinate system, Xt
i is the lateral position pointing

to the right and Zt
i is the longitudinal position in driving

direction and its velocity {Ẋt
i , Ż

t
i}. Moving objects such

as cars or bicycles are assumed to move in the ground
plane, so it is sufficient to estimate a 2D motion vector.
These five observations form a feature vector for each stixel,
~z t
i = {Ẋt

i , Ż
t
i , X

t
i , H

t
i , Z

t
i}T. These feature vectors are

again combined in a measurement array
Zt = {~z t

1 , ... , ~z
t
N}.

Now, let Lt = {lt1, ... , ltN}T denote a labeling for a given
input image It containing N dynamic stixels. A labeling
assigns each stixel to exactly one of K moving objects or to
static background, lti ∈ {O1, O2, ... OK , bg}.
The most probable labeling maximizes

p
(
Lt | Zt,Lt−1) ∝ p (Zt | Lt

)︸ ︷︷ ︸
Data Term

· p
(
Lt−1 | Lt

)︸ ︷︷ ︸
Temporal Term

· p
(
Lt
)︸ ︷︷ ︸

Prior Term

,

(1)

taking into account the previous segmentation Lt−1. The
probability of such a labeling is modeled as a CRF with
a maximum clique size of two, i.e.

p
(
Zt | Lt

)
∝

N∏
i=1

p
(
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)
·
∏
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p
(
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t
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)
,
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)
∝
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p
(
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)
,

p
(
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)
∝

N∏
i=1

p
(
l ti
)
·
∏

(i,j)∈N2

p
(
l ti , l

t
j

)
. (2)
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In this context, N2 denotes the set of adjacent stixels. Equiv-
alently to Equation 1 one minimizes E := − log p (Zt | Lt)

E ∝−
N∑
i=1

log p
(
lti
)

︸ ︷︷ ︸
:=logQ(Lt)

−
N∑
i=1

log p
(
lt−1i | lti

)
︸ ︷︷ ︸

:=log p(Lt−1|Lt)

−
N∑
i=1

log p
(
~z t
i | lti

)
︸ ︷︷ ︸

:=logQ(Zt|Lt)

−
∑

(i, j)∈N2

log p
(
lti , l

t
j | ~z t

i , ~z
t
j

)
︸ ︷︷ ︸

:=logB(Lt|Zt)

,

(3)

exploiting p
(
~z t
i , ~z

t
j | lti , ltj

)
· p
(
l ti , l

t
j

)
∝ p

(
lti , l

t
j | ~z t

i , ~z
t
j

)
.

Next the hidden object parameter set Θ is introduced de-
scribing the state of the K moving objects in the scene, that
is the position of the j-th object described by its geometric
center Xj and Zj , the object velocity Vxj and Vzj , and its
object dimensions, namely the object width |∆Xj |, height
Hj and length |∆Zj |:

Θ = {Θ1, ... ,ΘK} and
Θj = {Xj , Zj , Vxj , Vzj , |∆Xj | , Hj , |∆Zj |}. (4)

This way, the global energy function in Equation 3 becomes

E =− logQ
(
Lt
)
− log p

(
Lt−1 | Lt

)
−

log

∫
Θ

Q
(
Zt, Θ | Lt

)
dΘ− logB

(
Lt | Zt

)
. (5)

Applying Bayes’ theorem and Taylor expanding the inte-
grand using the Laplace method [26] yields

logQ
(
Zt, Θ | Lt

)
= logQ

(
Zt | Lt, Θ

)
Q
(
Θ | Lt

)
≈ logQ

(
Zt | Lt, Θmap

)
Q
(
Θmap | Lt

)
− 1

2
(Θ−Θmap)

T
A (Θ−Θmap) + ... ,

(6)

where Θmap denotes the value of Θ at the mode of the
integrand and A is the Hessian matrix of second derivatives

A = −∇∇ logQ
(
Zt | Lt, Θmap

)
Q
(
Θmap | Lt

)
. (7)

In this case, the integral given in equation 5 can be solved
analytically resulting in

E =− logQ
(
Lt
)
− log p

(
Lt−1 | Lt

)
− logQ

(
Zt, | Θmap, Lt

)
− logQ

(
Θmap | Lt

)
− M

2
log (2π) +

1

2
log (|A|)− logB

(
Lt | Zt

)
, (8)

where M is the parameter dimension of Θ (M = 7 · K).
The determinant |A| can be approximated very roughly [4]

1

2
log (|A|) ≈ M

2
log (N) , (9)

assuming the prior Q (Θ | Lt) is broad and that the mea-
surements Zt originate from statistically independent degra-
dations, i.e. the measurements are conditionally independent,

given the object parameters Θ [20]. In summary, the energy
function

E =− logQ
(
Lt
)︸ ︷︷ ︸

prior term

− log p
(
Lt−1 | Lt

)︸ ︷︷ ︸
temporal consistency

− logQ
(
Zt | Θmap, Lt

)︸ ︷︷ ︸
data term

− M

2

(
log

2π

N

)
︸ ︷︷ ︸

BIC

− logB
(
Lt | Zt

)︸ ︷︷ ︸
smoothness term

(10)

is minimized.
For the temporal consistency term, for almost all stixels
at time step t a predecessor stixel in the previous frame
t−1 is determined using optical flow correspondences. This
term respresents a temporal class transition matrix that is
estimated on the basis of ground truth material [11].
The data term given by Equation 10 is decomposed into a
height term, a position term and a motion term

p
(
~z t
i | Θmap, l

t
i

)
≈ p

(
Ẋt

i , Ż
t
i | Θmap, Z

t
i , l

t
i

)
︸ ︷︷ ︸

motion term

·

p
(
Xt

i , Z
t
i | Θmap, l

t
i

)︸ ︷︷ ︸
position term

·

p
(
Ht

i | Θmap, l
t
i

)︸ ︷︷ ︸
height term

. (11)

These terms were also learned from a large ground truth
database, c.f. [11].
The prior term Q (Lt) favors the static background class.
Typically, about 85% of all stixels in usual traffic scenes
are stationary background [11].
Finally, the binary term is modeled as a distance-sensitive
Potts model [11].
It is computationally infeasible to optimize Equation 10
directly because Θ and Lt are dependent on each other.
For that reason, a two-stage optimization technique is used
to find the maximum likelihood solution. Note that this is
just a local optimum in general. A good initialization is a
prerequisite to achieve good results.
This contribution proposes two approaches to this goal: the
first approach tries to estimate the hidden object parameters
in an iterative manner over time, the second approach uses
a radar sensor to be a source for this parameter vector.
The following subsections III-A and III-B describe both
approaches in more detail.

A. Vision-based Iterative Parameter Optimization

The vision-based segmentation approach alternates in an
EM-like manner between segmentation cycles to find the
most probable segmentation Lt for fixed object parameters
Θt−1 and it re-estimates the object parameters Θt for a
fixed segmentation Lt. Instead of iterating until convergence
for a single image, the optimization is performed over
several images. This way, the approach exploits the strong
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(a) First image. Two moving objects are already detected, the
car on the right side is starting to drive.

(b) Second image. The moving object on the right side is
detected as an unknown moving object shown in white. Subse-
quently, its object parameter vector will be estimated as described
in the main text.

(c) Third image. The unknown moving object is a known object
now with its parameter vector Θ3.

Fig. 2. Visualization of the optimization algorithm on the basis of three
successive images.

correlations between neighboring images of a whole
image sequence and it is considerably faster. As a result,
the approach can formulate temporal expectations and it
combines the segmentation step with an object tracking.
See Algorithm 1 for a detailed description and Figure 2 for
visualization.

Data: Dynamic Stixel World at time t
Result: Stixel Object class segmentation Lt and object

parameter estimation Θt.
1 Compute MAP solution Lt using α− expansion
graph cut for fixed Θt−1;
2 Extract single unknown moving objects via clustering
analysis;
3 Re-estimate object parameters Θt by gradient-descent
in equation 10;

Algorithm 1: Alternating labeling and parameter estima-
tion strategy.

In order to initialize the parameters of the moving
objects, a distinction is made between known objects,
which have been observed before and that have an already
existing parameter vector Θt−1

j , and unknown moving
objects. Unknown moving objects have not been observed

so far and will change their status to a known object in the
next frame t + 1. The unknown moving object class helps
to initialize a new known object. When a new unknown
moving object is detected as shown in Figure 2(b), its object
parameters Θt

j are estimated, see Equation 3 in Algorithm
1 via gradient-descent in equation 10. In the next frame
t + 1 shown in Figure 2(c), the unknown moving object is
a known object since Θt

j is known.
This kind of object initialization turns out to be far more
efficient and less error-prone than the usual random object
parameter initialization [8].
The decision between stationary background and unknown
moving objects has been described in detail in [11].
The optimal solution of this sub-problem that minimizes
Equation 10 for a fixed parameter vector Θt can be found
using the multi-class alpha-expansion graph-cut scheme [5],
[8].
In the case of multiple, undetected moving objects, the
segmented Stixels with class unknown moving object might
contain more than one physical objects. This information
is not contained in the unknown moving object class. For
that reason, initially a simple spatial clustering is performed
once for the Stixels labeled as unknown moving object, in
order to extract the different unknown moving objects in
the scene.

B. Radar-based Parameter Optimization

For the Radar-based object initialization strategy, the ini-
tial object state Θmap is obtained by an additional radar
sensor instead of the detour via the unknown moving object
class. After that initialization, also Algorithm 1 is executed.
A radar sensor is very well suited for detecting parallel
traffic, because it can directly measure such movement via
Doppler Shift. However, the lateral resolution is limited in
comparison to a camera system and hence the accuracy
with which crossing traffic can be observed. This higher
measurement uncertainty has to be taken into account in
the sensor model Q (Zt | Θmap, Lt). Thus it is beneficial
to combine both sensors.
The radar sensor used here (Continental ARS 300) provides a
large amount of object hypotheses, c.f. Figure III-B. The en-
ergy proposed in equation 10 takes into account the Bayesian
Information Criterion (BIC) which penalizes the complexity
of the model where complexity refers to the number M of
parameters in the model. This number is proportional to the
number of objects K in the scene. Taking this term into
account, it is possible to find the true number of objects
in the scene based on the BIC measure. The BIC decides
which object hypotheses to choose, because those hypotheses
reduce Equation 10 significantly without overfitting. Sensor
fusion is considered in this approach as the joint optimization
at sensor observation level. It is possible to take into account
individual measurement uncertainties at this level.

IV. EXPERIMENTS

The experiments use a stereo camera system mounted
behind the windshield of the experimental vehicle. The
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(a) Radar object hypotheses. Each radar object hypothesis
marked by a flipped, yellow T symbol can define the full pa-
rameter vector defined in equation 4. The BIC permits inferring
the actual number of objects in the scene, rejecting the phantom
hypotheses.

(b) Radar object hypotheses shown in brids-eye view relative to
the ego-vehicle. The grid size is 5 m, the magenta arrows show
the predicted position within the next half second.

height of the camera is 1.17 m with a base line of about 22
cm and the image resolution is 1024x440 px. The camera
system records image sequences at 25 Hz. The optical flow
correspondences for the stixel tracking are obtained from
the well-known Kanade-Lucas-Tomasi (KLT) [24] tracker.
In order to determine the required ego motion estimation,
speed and yaw rate are extracted from the inertial sensors of
the experimental vehicle.
The segmentation step takes about 1 ms on a single CPU
core. For each frame, only one segmentation cycle con-
sisting of a segmentation step to find Lt and a parameter
estimation step for Θt is performed. In order to evaluate the
performance of this approach, the segmentation results were
compared with a manually labeled ground truth data set. This
data set contains about 80 000 images, the complete data
from a test drive with a length of about one hour. The data
set roughly consists half of rural roads and half of urban sce-
narios. All images shown in this contribution were obtained
from this test drive. Every 80th image has been manually
labeled to provide ground truth material as a representative
sample and to avoid strong correlations between neighboring
frames. In this ground truth database, there are several (stixel-
wise) labeled moving objects in addition to labeled stationary
background. Objects are included in the evaluation up to the
detection limit of the Stixel World (about 130 m).
The experimental results are summarized in Figure 3 and
Figure 4. There, the x-axis specifies the required minimum
overlap: objects are considered to be segmented correctly if
they overlap more than x% with a labeled object. Besides
that, the figures differentiate between various distances. Fig-
ure 3 shows the detection rate of different moving objects
for the vision-only based solution and in Figure 4 for
the radar assisted approach. Adding the radar information

Fig. 3. Moving object detection rate based on the vision-only solution. The
x-axis specifies the minimum required overlap of the segmentation result
with a ground truth object. A distinction is made between different distance
ranges.

increases the detection rate by about ten to fifteen percent in
comparison to the vision-only solution. Especially for large
distances, it is extremely difficult to separate oncoming cars
from stationary background, based on their motion.
For a better grading of the results and to discuss some of the
remaining error cases, see Figure 5(a) and Figure 5(b). In
Figure 5(b), a pedestrian walking slowly in front of a wall
is not detected but such slowly moving pedestrians appear
in the ground truth. Usually, the measurement motion noise
is higher than the pedestrian movement, so the pedestrian
cannot be reliably detected. In future work, the intention is
to take into account a pedestrian classification step in order
to increase the sensitivity of the system.
If requesting for a very high overlap (≥ 90%), the detection
rate drops significantly. This decrease is comprehensible and
corresponds to - depending on the distance - one or two
stixels at the border of objects due to fluctuations in the
stixel segmentation.
Complementary to this investigation, the correctly labeled
stationary background (false alarms) is summarized in Table
I. The low phantom rate observed in the experiments is a

Fig. 4. Moving object detection rate based on the radar assisted solution.
The x-axis specifies the minimum required overlap of the segmentation
result with a ground truth object. A distinction is made between different
distance ranges.

direct consequence of the strong regularization applied in
this approach. See Figure 5(a) for an example of a remaining
false positive detection. There are about 40 phantom stixels
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for the vision-only solution, this corresponds to a phantom
rate of one phantom stixel every twentieth image. Using the
radar assisted approach, the phantom rate is higher, it is
about one phantom stixel every six images. There are several
phantom measurements, especially due to erroneous radar
reflections at guardrails, c.f. Figure 5(a).

(a) Phantom example. A guardrail is incorrectly segmented as
a moving object due to erroneous radar reflections and weak
texture that complicates the vision-based tracking.

(b) False negative example. A slowly moving pedestrian
is not separated from the stationary background.

Fig. 5. Error cases to visualize the discussion in the main text.

approach correct background
with radar 99.18 %

without radar 99.64 %

TABLE I
THE CORRECT LABELED STATIONARY BACKGROUND STIXEL

PERCENTAGE DEFINING A PHANTOM RATE.

V. CONCLUSIONS AND OUTLOOK

An EM-like CRF model for traffic scene segmentation has
been presented. The difficulty of an (theoretically) uncount-
able infinite number of object states and classes is solved in
a time-recursive fashion. The effectiveness of the proposed
method has been demonstrated on the basis of ground truth
data in various, challenging traffic scenes. The presented
real-time capable approach has been extensively tested in
the experimental vehicle.
There are further ways to develop this approach towards an
increasingly powerful vision system. One intention is to take
into account appearance cues, e.g. pedestrian classification.
This step will help to further increase the sensitivity of the
system especially for slowly moving pedestrians. Besides
that, incorporating further scenario-specific knowledge from
externally provided maps has the potential to yield significant
improvements. Thirdly it might be beneficial to introduce a

feedback loop from the object segmentation back to the stixel
tracking.
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