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Pedestrian Detection:
An Evaluation of the State of the Art

Piotr Dollár, Christian Wojek, Bernt Schiele, and Pietro Perona

Abstract—Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively
impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily.
However, multiple datasets and widely varying evaluation protocols are used, making direct comparisons difficult. To address these
shortcomings, we perform an extensive evaluation of the state of the art in a unified framework. We make three primary contributions:
(1) we put together a large, well-annotated and realistic monocular pedestrian detection dataset and study the statistics of the size,
position and occlusion patterns of pedestrians in urban scenes, (2) we propose a refined per-frame evaluation methodology that allows
us to carry out probing and informative comparisons, including measuring performance in relation to scale and occlusion, and (3) we
evaluate the performance of sixteen pre-trained state-of-the-art detectors across six datasets. Our study allows us to assess the state
of the art and provides a framework for gauging future efforts. Our experiments show that despite significant progress, performance
still has much room for improvement. In particular, detection is disappointing at low resolutions and for partially occluded pedestrians.

Index Terms—pedestrian detection, object detection, benchmark, evaluation, dataset, Caltech Pedestrian Dataset
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1 INTRODUCTION

People are among the most important components of a
machine’s environment, and endowing machines with
the ability to interact with people is one of the most
interesting and potentially useful challenges for modern
engineering. Detecting and tracking people is thus an
important area of research, and machine vision is bound
to play a key role. Applications include robotics, enter-
tainment, surveillance, care for the elderly and disabled,
and content-based indexing. Just in the US, nearly 5,000
of the 35,000 annual traffic crash fatalities involve pedes-
trians [1], hence the considerable interest in building
automated vision systems for detecting pedestrians [2].

While there is much ongoing research in machine
vision approaches for detecting pedestrians, varying
evaluation protocols and use of different datasets makes
direct comparisons difficult. Basic questions such as
“Do current detectors work well?”, “What is the best
approach?”, “What are the main failure modes?” and
“What are the most productive research directions?” are
not easily answered.

Our study aims to address these questions. We fo-
cus on methods for detecting pedestrians in individual
monocular images; for an overview of how detectors are
incorporated into full systems we refer readers to [2].
Our approach is three-pronged: we collect, annotate and
study a large dataset of pedestrian images collected from
a vehicle navigating in urban traffic; we develop infor-
mative evaluation methodologies and point out pitfalls
in previous experimental procedures; finally, we com-
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Fig. 1. Example images (cropped) and annotations from six
pedestrian detection datasets. We perform an extensive evalu-
ation of pedestrian detection, benchmarking sixteen detectors
on each of these six datasets. By using multiple datasets and
a unified evaluation framework we can draw broad conclusion
about the state of the art and suggest future research directions.

pare the performance of sixteen pre-trained pedestrian
detectors on six publicly available datasets, including
our own. Our study allows us to assess the state of the
art and suggests directions for future research.

All results of this study, and the data and tools for
reproducing them, are posted on the project website:
www.vision.caltech.edu/Image Datasets/CaltechPedestrians/ .

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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1.1 Contributions

Dataset: In earlier work [3], we introduced the Caltech
Pedestrian Dataset, which includes 350,000 pedestrian
bounding boxes labeled in 250,000 frames and remains
the largest such dataset to date. Occlusions and temporal
correspondences are also annotated. Using the extensive
ground truth, we analyze the statistics of pedestrian
scale, occlusion, and location and help establish condi-
tions under which detection systems must operate.

Evaluation Methodology: We aim to quantify and
rank detector performance in a realistic and unbiased
manner. To this effect, we explore a number of choices
in the evaluation protocol and their effect on reported
performance. Overall, the methodology has changed
substantially since [3], resulting in a more accurate and
informative benchmark.

Evaluation: We evaluate sixteen representative state-
of-the-art pedestrian detectors (previously we evaluated
seven [3]). Our goal was to choose diverse detectors
that were most promising in terms of originally re-
ported performance. We avoid retraining or modifying
the detectors to ensure each method was optimized
by its authors. In addition to overall performance, we
explore detection rates under varying levels of scale and
occlusion and on clearly visible pedestrians. Moreover,
we measure localization accuracy and analyze runtime.

To increase the scope of our analysis, we also bench-
mark the sixteen detectors using a unified evalua-
tion framework on six additional pedestrian detection
datasets including the ETH [4], TUD-Brussels [5], Daim-
ler [6] and INRIA [7] datasets and two variants of
the Caltech dataset (see Figure 1). By evaluating across
multiple datasets, we can rank detector performance
and analyze the statistical significance of the results
and, more generally, draw conclusions both about the
detectors and the datasets themselves.

Two groups have recently published surveys which
are complementary to our own. Geronimo et al. [2]
performed a comprehensive survey of pedestrian de-
tection for advanced driver assistance systems, with
a clear focus on full systems. Enzweiler and Gavrila
[6] published the Daimler detection dataset and an ac-
companying evaluation of three detectors, performing
additional experiments integrating the detectors into full
systems. We instead focus on a more thorough and
detailed evaluation of state-of-the-art detectors.

This paper is organized as follows: we introduce the
Caltech Pedestrian Dataset and analyze its statistics in
§2; a comparison of existing datasets is given in §2.4.
In §3 we discuss evaluation methodology in detail. A
survey of pedestrian detectors is given in §4.1 and in
§4.2 we discuss the sixteen representative state-of-the-
art detectors used in our evaluation. In §5 we report
the results of the performance evaluation, both under
varying conditions using the Caltech dataset and on six
additional datasets. We conclude with a discussion of the
state of the art in pedestrian detection in §6.
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MiniDV Camcorder (HV10)

Non-reflective Cloth

Camera Mount

(a)

total frames ∼1000k
labeled frames ∼250k
frames w peds. ∼132k
# bounding boxes ∼350k
# occluded BB ∼126k
# unique peds. ∼2300
ave ped. duration ∼5s
ave labels/frame ∼1.4
labeling time ∼400h

(b)
Fig. 2. Overview of the Caltech Pedestrian Dataset. (a)
Camera setup. (b) Summary of dataset statistics (1k = 103).
The dataset is large, realistic and well-annotated, allowing us to
study statistics of the size, position and occlusion of pedestrians
in urban scenes and also to accurately evaluate the state or the
art in pedestrian detection.

2 THE CALTECH PEDESTRIAN DATASET

Challenging datasets are catalysts for progress in com-
puter vision. The Barron et al. [8] and Middlebury [9]
optical flow datasets, the Berkeley Segmentation Dataset
[10], the Middlebury Stereo Dataset [11], and the Caltech
101 [12], Caltech 256 [13] and PASCAL [14] object recog-
nition datasets all improved performance evaluation,
added challenge, and helped drive innovation in their
respective fields. Much in the same way, our goal in
introducing the Caltech Pedestrian Dataset is to provide
a better benchmark and to help identify conditions under
which current detectors fail and thus focus research
effort on these difficult cases.

2.1 Data Collection and Ground Truthing

We collected approximately 10 hours of 30Hz video
(∼106 frames) taken from a vehicle driving through
regular traffic in an urban environment (camera setup
shown in Figure 2(a)). The CCD video resolution is 640×
480, and, not unexpectedly, the overall image quality is
lower than that of still images of comparable resolution.
There are minor variations in the camera position due
to repeated mountings of the camera. The driver was
independent from the authors of this study and had
instructions to drive normally through neighborhoods
in the greater Los Angeles metropolitan area chosen
for their relatively high concentration of pedestrians
including LAX, Santa Monica, Hollywood, Pasadena,
and Little Tokyo. In order to remove effects of the vehicle
pitching and thus simplify annotation, the video was
stabilized using the inverse compositional algorithm for
image alignment by Baker and Matthews [15].

After video stabilization, 250,000 frames (in 137 ap-
proximately minute long segments extracted from the
10 hours of video) were annotated for a total of 350,000
bounding boxes around 2300 unique pedestrians. To
make such a large scale labeling effort feasible we created
a user-friendly labeling tool, shown in Figure 3. Its
most salient aspect is an interactive procedure where the
annotator labels a sparse set of frames and the system
automatically predicts pedestrian positions in interme-
diate frames. Specifically, after an annotator labels a
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Fig. 3. The annotation tool allows annotators to efficiently
navigate and annotate a video in a minimum amount of time.
Its most salient aspect is an interactive procedure where the
annotator labels only a sparse set of frames and the system au-
tomatically predicts pedestrian positions in intermediate frames.
The annotation tool is available on the project website.

bounding box (BB) around the same pedestrian in at least
two frames, BBs in intermediate frames are interpolated
using cubic interpolation (applied independently to each
coordinate of the BBs). Thereafter, every time an anno-
tator alters a BB, BBs in all the unlabeled frames are re-
interpolated. The annotator continues until satisfied with
the result. We experimented with more sophisticated
interpolation schemes, including relying on tracking;
however, cubic interpolation proved best. Labeling the
∼2.3 hours of video, including verification, took ∼400
hours total (spread across multiple annotators).

For every frame in which a given pedestrian is visible,
annotators mark a BB that indicates the full extent of
the entire pedestrian (BB-full); for occluded pedestrians
this involves estimating the location of hidden parts. In
addition a second BB is used to delineate the visible re-
gion (BB-vis), see Figure 5(a). During an occlusion event,
the estimated full BB stays relatively constant while the
visible BB may change rapidly. For comparison, in the
PASCAL labeling scheme [14] only the visible BB is
labeled and occluded objects are marked as ‘truncated’.

Each sequence of BBs belonging to a single object
was assigned one of three labels. Individual pedestrians
were labeled ‘Person’ (∼1900 instances). Large groups
for which it would have been tedious or impossible to
label individuals were delineated using a single BB and
labeled as ‘People’ (∼300). In addition, the label ‘Person?’
was assigned when clear identification of a pedestrian
was ambiguous or easily mistaken (∼110).

2.2 Dataset Statistics
A summary of the dataset is given in Figure 2(b).
About 50% of the frames have no pedestrians, while
30% have two or more, and pedestrians are visible for
5s on average. Below, we analyze the distribution of
pedestrian scale, occlusion and location. This serves to
establish the requirements of a real world system and
to help identify constraints that can be used to improve
automatic pedestrian detection systems.
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Fig. 4. (a) Distribution of pedestrian pixel heights. We define
the near scale to include pedestrians over 80 pixels, the medium
scale as 30-80 pixels, and the far scale as under 30 pixels.
Most observed pedestrians (∼69%) are at the medium scale.
(b) Distribution of BB aspect ratio; on average w ≈ .41h. (c)
Using the pinhole camera model, a pedestrian’s pixel height h is
inversely proportional to distance to the camera d: h/f ≈ H/d.
(d) Pixel height h as a function of distance d. Assuming an urban
speed of 55 km/h, an 80 pixel person is just 1.5s away, while a 30
pixel person is 4s away. Thus, for automotive settings, detection
is most important at medium scales (see §2.2.1 for details).

2.2.1 Scale Statistics

We group pedestrians by their image size (height in pix-
els) into three scales: near (80 or more pixels), medium
(between 30-80 pixels) and far (30 pixels or less). This di-
vision into three scales is motivated by the distribution of
sizes in the dataset, human performance and automotive
system requirements.

In Figure 4(a), we histogram the heights of the
350,000 BBs using logarithmic sized bins. The heights
are roughly lognormally distributed with a median of
48 pixels and a log-average of 50 pixels (the log-average
is equivalent to the geometric mean and is more rep-
resentative of typical values for lognormally distributed
data than the arithmetic mean, which is 60 pixels in this
case). Cutoffs for the near/far scales are marked. Note
that ∼69% of the pedestrians lie in the medium scale,
and that the cutoffs for the near/far scales correspond to
about ±1 standard deviation (in log space) from the log-
average height of 50 pixels. Below 30 pixels, annotators
have difficulty identifying pedestrians reliably.

Pedestrian width is likewise lognormally distributed,
and moreover so is the joint distribution of width and
height (not shown). As any linear combination of the
components of a multivariate normal distribution is
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Fig. 5. Occlusion statistics. (a) For all occluded pedestrians annotators labeled both the full extent of the pedestrian (BB-full)
and the visible region (BB-vis). (b) Most pedestrians (70%) are occluded in at least one frame, underscoring the importance of
detecting occluded people. (c) Fraction of occlusion can vary significantly (0% occlusion indicates that a BB could not represent
the extent of the visible region). (d) Occlusion is far from uniform with pedestrians typically occluded from below. (e) To observe
further structure in the types of occlusions that actually occur, we quantize occlusion into a fixed number of types. (f) Over 97% of
occluded pedestrians belong to just a small subset of the hundreds of possible occlusion types. Details in §2.2.2.

also normally distributed, so should the BB aspect ratio
(defined as w/h) since log(w/h) = log(w) − log(h). A
histogram of the aspect ratios, using logarithmic bins,
is shown in Figure 4(b), and indeed the distribution is
lognormal. The log-average aspect ratio is .41, meaning
that typically w ≈ .41h. However, while BB height does
not vary considerably given a constant distance to the
camera, the BB width can change with the pedestrian’s
pose (especially arm positions and relative angle). Thus,
although we could have defined the near, medium and
far scales using the width, the consistency of the height
makes it better suited.

Detection in the medium scale is essential for automo-
tive applications. We chose a camera setup that mirrors
expected automotive settings: 640 × 480 resolution, 27◦

vertical field of view, and focal length fixed at 7.5mm.
The focal length in pixels is f ≈ 1000 (obtained from
480/2/f = tan(27◦/2) or using the camera’s pixel size of
7.5µm). Using a pinhole camera model (see Figure 4(c)),
an object’s observed pixel height h is inversely propor-
tional to the distance d to the camera: h ≈ Hf/d, where
H is the true object height. Assuming H ≈ 1.8m tall
pedestrians, we obtain d ≈ 1800/h m. With the vehicle
traveling at an urban speed of 55 km/h (∼15 m/s),
an 80 pixel person is just 1.5s away, while a 30 pixel
person is 4s away (see Figure 4(d)). Thus detecting near
scale pedestrians may leave insufficient time to alert the
driver, while far scale pedestrians are less relevant.

We shall use the near, medium, and far scale def-
initions throughout this work. Most pedestrians are
observed at the medium scale and for safety systems
detection must occur in this scale as well. Human per-
formance is also quite good in the near and medium
scales but degrades noticeably at the far scale. However,

most current detectors are designed for the near scale
and perform poorly even at the medium scale (see
§5). Thus there is an important mismatch in current
research efforts and the requirements of real systems.
Using higher resolution cameras would help; neverthe-
less, given the good human performance and lower cost,
we believe that accurate detection in the medium scale
is an important and reasonable goal.

2.2.2 Occlusion Statistics

Occluded pedestrians were annotated with two BBs that
denote the visible and full pedestrian extent (see Fig-
ure 5(a)). We plot frequency of occlusion in Figure 5(b),
i.e., for each pedestrian we measure the fraction of
frames in which the pedestrian was at least somewhat
occluded. The distribution has three distinct regions:
pedestrians that are never occluded (29%), occluded in
some frames (53%) and occluded in all frames (19%).
Over 70% of pedestrians are occluded in at least one
frame, underscoring the importance of detecting oc-
cluded people. Nevertheless, little previous work has
been done to quantify occlusion or detection perfor-
mance in the presence of occlusion (using real data).

For each occluded pedestrian, we can compute the
fraction of occlusion as one minus the visible pedestrian
area divided by total pedestrian area (calculated from
the visible and full BBs). Aggregating, we obtain the
histogram in Figure 5(c). Over 80% occlusion typically
indicates full occlusion, while 0% is used to indicate that
a BB could not represent the extent of the visible region
(e.g. due to a diagonal occluder). We further subdivide
the cases in between into partial occlusion (1-35% area
occluded) and heavy occlusion (35-80% occluded).
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We investigated which regions of a pedestrian were
most likely to be occluded. For each frame in which a
pedestrian was partially to heavily occluded (1-80% frac-
tion of occlusion), we created a binary 50× 100 pixel oc-
clusion mask using the visible and full BBs. By averaging
the resulting ∼54k occlusion masks, we computed the
probability of occlusion for each pixel (conditioned on
the person being partially occluded); the resulting heat
map is shown in Figure 5(d). Observe the strong bias
for the lower portion of the pedestrian to be occluded,
particulary the feet, and for the top portion, especially
the head, to be visible. An intuitive explanation is that
most occluding objects are supported from below as
opposed to hanging from above (another but less likely
possibility is that it is difficult for annotators to detect
pedestrians if only the feet are visible). Overall, occlusion
is far from uniform, and exploiting this finding could
help improve the performance of pedestrian detectors.

Not only is occlusion highly non-uniform, there is
significant additional structure in the types of occlusions
that actually occur. Below, we show that after quantizing
occlusion masks into a large number of possible types,
nearly all occluded pedestrians belong to just a handful
of the resulting types. To quantize the occlusions, each
BB-full is registered to a common reference BB that has
been partitioned into qx by qy regularly spaced cells;
each BB-vis can then be assigned a type according to the
smallest set of cells that fully encompass it. Figure 5(e)
shows 3 example types for qx = 3, qy = 6 (with two BB-
vis per type). There are a total of

∑qx,qy
i=1,j=1 ij = qxqy(qx+

1)(qy + 1)/4 possible types. For each, we compute the
percentage of the ∼54k occlusions assigned to it and
produce a heat map using the corresponding occlusion
masks. The top 7 of 126 types for qx = 3, qy = 6 are
shown in Figure 5(f). Together, these 7 types account for
nearly 97% of all occlusions in the dataset. As can be
seen, pedestrians are almost always occluded from either
below or the side; more complex occlusions are rare. We
repeated the same analysis with a finer partitioning of
qx = 4, qy = 8 (not shown). Of the resulting 360 possible
types the top 14 accounted for nearly 95% of occlusions.
The knowledge that very few occlusion patterns are
common should prove useful in detector design.

2.2.3 Position Statistics
Viewpoint and ground plane geometry (Figure 4(c))
constrain pedestrians to appear only in certain regions
of the image. We compute the expected center position
and plot the resulting heat map, log-normalized, in
Figure 6(a). As can be seen pedestrians are typically
located in a narrow band running horizontally across
the center of the image (y-coordinate varies somewhat
with distance/height). Note that the same constraints are
not valid when photographing a scene from arbitrary
viewpoints, e.g. in the INRIA dataset.

In the collected data, many objects, not just pedes-
trians, tend to be concentrated in this same region. In
Figure 6(b) we show a heat map obtained by using BBs
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Fig. 6. Expected center location of pedestrian BBs for (a)
ground truth and (b) HOG detections. The heat maps are log-
normalized, meaning pedestrian location is even more concen-
trated than immediately apparent.

generated by the HOG [7] pedestrian detector with a
low threshold. About half of the detections, including
both true and false positives, occur in the same band
as the ground truth. Thus incorporating this constraint
could considerably speed up detection but it would only
moderately reduce false positives.

2.3 Training and Testing Data

We split the dataset into training/testing sets and specify
a precise evaluation methodology, allowing different
research groups to compare detectors directly. We urge
authors to adhere to one of four training/testing scenar-
ios described below.

The data was captured over 11 sessions, each filmed in
one of five city neighborhoods as described. We divide
the data roughly in half, setting aside 6 sessions for
training (S0-S5) and 5 sessions for testing (S6-S10). For
detailed statistics about the amount of data see bottom
row of Table 1. Images from all sessions (S0-S10) have
been publicly available, as have been annotations for
the training sessions (S0-S5). At this time we are also
releasing annotations for the testing sessions (S6-S10).

Detectors can be trained using either the Caltech train-
ing data (S0-S5) or any ‘external’ data, and tested on
either the Caltech training data (S0-S5) or testing data
(S6-S10). This results in four evaluation scenarios:
• Scenario ext0: Train on any external data, test on S0-S5.
• Scenario ext1: Train on any external data, test on S6-S10.
• Scenario cal0: Perform 6-fold cross validation using S0-S5.

In each phase use 5 sessions for training and the 6th for
testing, then merge and report results over S0-S5.

• Scenario cal1: Train using S0-S5, test on S6-S10.

Scenarios ext0/ext1 allow for evaluation of existing,
pre-trained pedestrian detectors, while cal0/cal1 involve
training using the Caltech training data (S0-S5). The
results reported here use the ext0/ext1 scenarios thus
allowing for a broad survey of existing pre-trained
pedestrian detectors. Authors are encouraged to re-train
their systems on our large training set and evaluate
under scenarios cal0/cal1. Authors should use ext0/cal0
during detector development, and only after finalizing
all parameters evaluate under scenarios ext1/cal1.
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MIT [16] photo 924 – – – – – 128 128 128 3 2000
USC-A [17] photo – – – 313 – 205 70 98 133 3 2005
USC-B [17] surv. – – – 271 – 54 63 90 126 3 2005
USC-C [18] photo – – – 232 – 100 74 108 145 3 2007
CVC [19] mobile 1000 6175† – – – – 46 83 164 3 3 2007
TUD-det [20] mobile 400 – 400 311 – 250 133 218 278 3 3 2008
Daimler-CB [21] mobile 2.4k 15k† – 1.6k 10k† – 36 36 36 3 2006
NICTA [22] mobile 18.7k 5.2k – 6.9k 50k† – 72 72 72 3 3 2008
INRIA [7] photo 1208 1218 614 566 453 288 139 279 456 3 2005
ETH [4] mobile 2388 – 499 12k – 1804 50 90 189 3 3 3 3 2007
TUD-Brussels [5] mobile 1776 218 1092 1498 – 508 40 66 112 3 3 3 2009
Daimler-DB [6] mobile 15.6k 6.7k – 56.5k – 21.8k 21 47 84 3 3 3 2009
Caltech [3] mobile 192k 61k 67k 155k 56k 65k 27 48 97 3 3 3 3 3 3 2009

TABLE 1
Comparison of Pedestrian Detection Datasets (see §2.4 for details)

2.4 Comparison of Pedestrian Datasets

Existing datasets may be grouped into two types: (1)
‘person’ datasets containing people in unconstrained
pose in a wide range of domains and (2) ‘pedestrian’
datasets containing upright, possibly moving people.
The most widely used ‘person’ datasets include subsets
of the MIT LabelMe data [23] and the PASCAL VOC
datasets [14]. In this work we focus on pedestrian detec-
tion, which is more relevant to automotive safety.

Table 1 provides an overview of existing pedestrian
datasets. The datasets are organized into three groups.
The first includes older or more limited datasets. The
second includes more comprehensive datasets including
the INRIA [7], ETH [4] and TUD-Brussels [5] pedestrian
datasets and the Daimler detection benchmark (Daimler-
DB) [6]. The final row contains information about the
Caltech Pedestrian Dataset. Details follow below.

Imaging setup: Pedestrians can be labeled in pho-
tographs [7], [16], surveillance video [17], [24], and
images taken from a mobile recording setup, such as
a robot or vehicle [4], [5], [6]. Datasets gathered from
photographs suffer from selection bias, as photographs are
often manually selected, while surveillance videos have
restricted backgrounds and thus rarely serve as a basis
for detection datasets. Datasets collected by continuously
filming from a mobile recording setup, such as the
Caltech Pedestrian Dataset, largely eliminate selection
bias (unless some scenes are staged by actors, as in [6])
while having moderately diverse scenes.

Dataset size: The amount and type of data in each
dataset is given in the next six columns. The columns are:
number of pedestrian windows (not counting reflections,
shifts, etc.), number of images with no pedestrians (a †

indicates cropped negative windows only), and number
of uncropped images containing at least one pedestrian.
The Caltech Pedestrian Dataset is two orders of magni-
tude larger than most existing datasets.

Dataset type: Older datasets, including the MIT [16],
CVC [19] and NICTA [22] pedestrian datasets and the
Daimler classification benchmark (Daimler-CB) [21] tend
to contain cropped pedestrian windows only. These are
known as ‘classification’ datasets as their primary use is
to train and test binary classification algorithms. In con-
trast, datasets that contain pedestrians in their original
context are known as ‘detection’ datasets and allow for
the design and testing of full-image detection systems.
The Caltech dataset along with all the datasets in the
second set (INRIA, ETH, TUD-Brussels and Daimler-DB)
can serve as ‘detection’ datasets.

Pedestrian scale: Table 1 additionally lists the 10th

percentile, median and 90th percentile pedestrian pixel
heights for each dataset. While the INRIA dataset has
fairly high resolution pedestrians, most datasets gath-
ered from mobile platforms have median heights that
range from 50-100 pixels. This emphasizes the impor-
tance of detection of low resolution pedestrians, espe-
cially for applications on mobile platforms.

Dataset properties: The final columns summarize ad-
ditional dataset features including the availability of
color images, video data, temporal correspondence be-
tween BBs and occlusion labels, and whether ‘per-image’
evaluation and unbiased selection criteria were used.

As mentioned, in our performance evaluation we ad-
ditionally use the INRIA [7], ETH [4], TUD-Brussels
[5] and Daimler-DB [6] datasets. The INRIA dataset
helped drive recent advances in pedestrian detection
and remains one of the most widely used despite its
limitations. Much like the Caltech dataset, the ETH,
TUD-Brussels and Daimler-DB datasets are all captured
in urban settings using a camera mounted to a vehicle
(or stroller in the case of ETH). While being annotated
in less detail than the Caltech dataset (see Table 1), each
can serve as ‘detection’ dataset and is thus suitable for
use in our evaluation.
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We conclude by summarizing the most important and
novel aspects of the Caltech Pedestrian Dataset. The
dataset includes O(105) pedestrian BBs labeled in O(105)
frames and remains the largest such dataset to date. It
contains color video sequences and includes pedestrians
with a large range of scales and more scene variability
than typical pedestrian datasets. Finally, it is the only
dataset with detailed occlusion labels and one of the few
to provide temporal correspondence between BBs.

3 EVALUATION METHODOLOGY
Proper evaluation methodology is a crucial and surpris-
ingly tricky topic. In general, there is no single ‘correct’
evaluation protocol. Instead, we have aimed to make our
evaluation protocol quantify and rank detector perfor-
mance in a realistic, unbiased and informative manner.

To allow for exact comparisons, we have posted the
evaluation code, ground truth annotations and detection
results for all detectors on all datasets on the project
website. Use of the exact same evaluation code (as
opposed to a re-implementation) ensures consistent and
reproducible comparisons. Additionally, given all the
detector outputs, practitioners can define novel perfor-
mance metrics with which to re-evaluate the detectors.
This flexibility is important because while we make
every effort to define realistic and informative protocols,
performance evaluation is ultimately task dependent.

Overall, the evaluation protocol has changed substan-
tially since our initial version described in [3], resulting
in a more accurate and informative evaluation of the
state of the art. We begin with an overview of full image
evaluation in §3.1. Next, we discuss evaluation using
subsets of the ground truth and detections in §3.2 and
§3.3, respectively. In §3.4 we propose and motivate stan-
dardizing BB aspect ratio. Finally, in §3.5, we examine
the alternative per-window evaluation methodology.

3.1 Full Image Evaluation
We perform single frame evaluation using a modified
version of the scheme laid out in the PASCAL object de-
tection challenges [14]. A detection system needs to take
an image and return a BB and a score or confidence for
each detection. The system should perform multiscale
detection and any necessary non-maximal suppression
(NMS) for merging nearby detections. Evaluation is per-
formed on the final output: the list of detected BBs.

A detected BB (BBdt) and a ground truth BB (BBgt)
form a potential match if they overlap sufficiently. Specif-
ically, we employ the PASCAL measure, which states
that their area of overlap must exceed 50%:

ao
.
=
area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (1)

The evaluation is insensitive to the exact threshold as
long as it is below about .6, see Figure 7. For larger
values performance degrades rapidly as improved local-
ization accuracy is necessary; thus, to focus on detection
accuracy, we use the standard threshold of .5 throughout.
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Fig. 7. Log-average miss rates for 50 pixel or taller pedestrians
as a function of the threshold on overlap area (see Eqn. (1)).
Decreasing the threshold below .5 has little affect on reported
performance. However, increasing it over ∼.6 results in rapidly
increasing log-average miss rates as improved localization ac-
curacy is necessary.

Each BBdt and BBgt may be matched at most once.
We resolve any assignment ambiguity by performing the
matching greedily. Detections with highest confidence
are matched first; if a detected BB matches multiple
ground truth BBs, the match with highest overlap is used
(ties are broken arbitrarily). In rare cases this assignment
may be suboptimal, e.g. in crowded scenes [25], but in
practice the effect is minor. Unmatched BBdt count as
false positives and unmatched BBgt as false negatives.

To compare detectors we plot miss rate against false
positives per image (using log-log plots) by varying the
threshold on detection confidence (e.g. see Figure 11 and
Figure 13). This is preferred to precision recall curves for
certain tasks, e.g. automotive applications, as typically
there is an upper limit on the acceptable false positives
per image (FPPI) rate independent of pedestrian density.

We use the log-average miss rate to summarize detector
performance, computed by averaging miss rate at nine
FPPI rates evenly spaced in log-space in the range 10−2

to 100 (for curves that end before reaching a given FPPI
rate, the minimum miss rate achieved is used). Concep-
tually, the log-average miss rate is similar to the average
precision [26] reported for the PASCAL challenge [14] in
that it represents the entire curve by a single reference
value. As curves are somewhat linear in this range (e.g.,
see Figure 13), the log-average miss rate is similar to
the performance at 10−1 FPPI but in general gives a
more stable and informative assessment of performance.
A similar performance measure was used in [27].

We conclude by listing additional details. Some de-
tectors output BBs with padding around the pedestrian
(e.g. HOG outputs 128 × 64 BBs around 96 pixel tall
people), such padding is cropped (see also §3.4). Meth-
ods usually detect pedestrians at some minimum size, to
coax smaller detections we upscale the input images. For
ground truth, the full BB is always used for matching,
not the visible BB, even for partially occluded pedestri-
ans. Finally, all reported results on the Caltech dataset
are computed using every 30th frame (starting with the
30th frame) due to the high computational demands of
some of the detectors evaluated (see Figure 15).
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3.2 Filtering Ground Truth

Often we wish to exclude portions of a dataset dur-
ing evaluation. This serves two purposes: (1) excluding
ambiguous regions, e.g. crowds annotated as ‘People’
where the locations of individuals is unknown, and (2)
evaluating performance on various subsets of a dataset,
e.g. on pedestrians in a given scale range. However, we
cannot simply discard a subset of ground truth labels as
this would cause over-reporting of false positives.

Instead, to exclude portions of a dataset, we introduce
the notion of ignore regions. Ground truth BBs selected to
be ignored, denoted using BBig , need not be matched,
however, matches are not considered mistakes either.
E.g., to evaluate performance on unoccluded pedestri-
ans, we set all occluded pedestrian BBs to ignore. Evalu-
ation is purposely lenient: multiple detections can match
a single BBig , moreover, a detection may match any
subregion of a BBig . This is useful when the number or
location of pedestrians within a single BBig is unknown
as in the case of groups labeled as ‘People’.

In the proposed criterion, a BBdt can match any
subregion of a BBig . The subregion that maximizes area
of overlap (Eqn. (1)) with BBdt is BBdt ∩BBig , and the
resulting maximum area of overlap is:

ao
.
=
area(BBdt ∩BBig)

area(BBdt)
(2)

Matching proceeds as before, except BBdt matched to
BBig do not count as true positives, and unmatched
BBig do not count as false negatives. Matches to BBgt

are preferred, meaning a BBdt can only match a BBig if
it does not match any BBgt, and multiple matches to a
single BBig are allowed.

As discussed, setting a BBgt to ignore is not the same
as discarding it; in the latter case detections in the ignore
regions would count as false positives. Four types of BBs
are always set to ignore: any BB under 20 pixels high or
truncated by image boundaries, containing a ‘Person?’
(ambiguous cases), or containing ‘People’. Detections
within these regions do not affect performance.

3.3 Filtering Detections

In order to evaluate on only a subset of the dataset,
we must filter detector responses outside the considered
evaluation range (in addition to filtering ground truth
labels). For example, when evaluating performance in a
fixed scale range, detections far outside the scale range
under consideration should not influence the evaluation.

The filtering strategy used in our previous work [3]
was too stringent and resulted in under-reporting of
detector performance (this was also independently ob-
served by Walk et al. [28]). Here we consider three
possible filtering strategies: strict filtering (used in our
previous work), post filtering, and expanded filtering that
we believe most accurately reflects true performance. In
all cases matches to BBgt outside the selected evaluation
range neither count as true or false positives.
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Fig. 8. Comparison of detection filtering strategies used for
evaluating performance in a fixed range of scales. Left: Strict fil-
tering, used in our previous work [3], undercounts true positives
thus under-reporting results. Right: Post filtering undercounts
false positives thus over-reporting results. Middle: Expanded
filtering as a function of r. Expanded filtering with r = 1.25
offers a good compromise between strict and post filtering for
measuring both true and false positives accurately.

Strict filtering: All detections outside the selected
range are removed prior to matching. If a BBgt inside
the range was matched only by a BBdt outside the
range, then after strict filtering it would become a false
negative. Thus, performance is under-reported.

Post filtering: Detections outside the selected evalua-
tion range are allowed to match BBgt inside the range.
After matching, any unmatched BBdt outside the range
is removed and does not count as a false positive. Thus,
performance is over-reported.

Expanded filtering: Similar to strict filtering, except
all detections outside an expanded evaluation range are
removed prior to evaluation. E.g., when evaluating in a
scale range from S0 to S1 pixels, all detections outside a
range S0/r to S1r are removed. This can result in slightly
more false positives than post filtering but also fewer
missed detections than strict filtering.

Figure 8 shows the log-average miss rate on 50 pixel
and taller pedestrians under the three filtering strategies
(see §4 for detector details) and for various choices of
r (for expanded filtering). Expanded filtering offers a
good compromise1 between strict filtering (which under-
reports performance) and post filtering (which over-
reports performance). Moreover, detector ranking is ro-
bust to the exact value of r. Thus, throughout this work,
we use expanded filtering (with r = 1.25).

1. Additionally, strict and post filtering are flawed as they can be
easily exploited (either purposefully or inadvertently). Under post
filtering, generating large numbers of detections just outside the eval-
uation range can increase detection rate. Under strict filtering, running
a detector in the exact evaluation range ensures all detections fall
within that range which can also artificially increase detection rate.
To demonstrate the latter exploit, in Figure 8 we plot performance of
CHNFTRS50, which is CHNFTRS [29] applied to detect pedestrians over
50 pixels. Its performance is identical under each strategy; however,
its relative performance is significantly inflated under strict filtering.
Expanded filtering cannot be exploited in either manner.
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Fig. 9. Standardizing aspect ratios. Shown are profile views
of two pedestrians. The original annotations are displayed in
green (best viewed in color); these were used to crop fixed size
windows centered on each pedestrian. Observe that while BB
height changes gradually, BB width oscillates significantly as it
depends on the positions of the limbs. To remove any effect pose
may have on the evaluation of detection, during benchmarking
width is standardized to be a fixed fraction of the height (see
§3.4). The resulting BBs are shown in yellow.

3.4 Standardizing Aspect Ratios
Significant variability in both ground truth and detector
BB width can have an undesirable effect on evaluation.
We discuss the sources of this variability and propose
to standardize aspect ratio of both the ground truth
and detected BBs to a fixed value. Doing so removes
an extraneous and arbitrary choice from detector design
and facilitates performance comparisons.

The height of annotated pedestrians is an accurate
reflection of their scale while the width also depends on
pose. Shown in Figure 9 are consecutive, independently
annotated frames from the Daimler detection benchmark
[6]. Observe that while BB height changes gradually, the
width oscillates substantially. BB height depends on a
person’s actual height and distance from the camera, but
the width additionally depends on the positions of the
limbs, especially in profile views. Moreover, the typical
width of annotated BBs tends to vary across datasets.
For example, although the log-mean aspect ratio (see
§2.2.1) in the Caltech and Daimler datasets is .41 and
.38, respectively, in the INRIA dataset [7] it is just .33
(possibly due to the predominance of stationary people).

Various detectors likewise return different width BBs.
The aspect ratio of detections ranges from a narrow
.34 for PLS to a wide .5 for MULTIFTR, while LATSVM
attempts to estimate the width (see §4 for detector refer-
ences). For older detectors that output uncropped BBs,
we must choose the target width ourselves. In general,
a detector’s aspect ratio depends on the dataset used
during development and is often chosen after training.

To summarize, the width of both ground truth and
detected BBs is more variable and arbitrary than the
height. To remove any effects this may have on perfor-
mance evaluation, we propose to standardize all BBs to
an aspect ratio of .41 (the log-mean aspect ratio in the
Caltech dataset). We keep BB height and center fixed
while adjusting the width (see Figure 9). Note that the

ETH [4] and TUD-Brussels [5] evaluation protocols also
suggested standardizing the aspect ratio, although to an
arbitrarily chosen constant of .5. In general the exact
constant has only a minor effect on reported perfor-
mance; however, it is important that detector and ground
truth aspect ratios match. E.g. standardizing the aspect
ratios had a large positive effect on detectors that return
narrow BBs (including PLS and LATSVM-V2). All results
reported in this paper use the standardized aspect ratios.

3.5 Per-Window Versus Full Image Evaluation

An alternative methodology for evaluating detectors
based on binary classifiers is to measure their per-window
(PW) performance on cropped positive and negative
image windows, thus isolating classifier performance
from the overall detection system. PW evaluation is
commonly used to compare classifiers (as opposed to
detectors) or to evaluate systems that perform automatic
region of interest (ROI) generation [30]. Note that not all
detectors are based on classifiers (e.g. [31], [32]), such
detectors cannot be evaluated using PW metrics.

A common assumption is that better PW performance
leads to better detection performance. In practice we find
that PW and full image performance are only weakly
correlated, see Figure 10. The PW results are reproduced
from their original publications2 (except the VJ curve,
which is reproduced from [7]); the full image results
were obtained by evaluating on the same pedestrians
but within their original image context. While PW and
full image performance are somewhat correlated, the
ranking of competing methods is substantially different.

The are a number of reasons for this discrepancy.
Choices made in converting a binary classifier to a de-
tector, including choices for spatial and scale stride and
non-maximal suppression (NMS), influence full image
performance. Moreover, the windows tested during PW
evaluation are typically not the same as the windows
tested during full image detection, see Figure 10(c).

Full image metrics provide a natural measure of error
of an overall detection system, and in this work we use
full image metrics throughout. While the PW methodol-
ogy is useful for isolating evaluation of binary classifiers
(the classification task), ultimately the goal of pedestrian
detection is to output the location of all pedestrians in
an image (the detection task), and for this task full image
metrics are appropriate. We thus advocate using full
image metrics for evaluation of pedestrian detection as
is standard for general object detection [14].

2. PW evaluation must be performed with care: cropped positive
and negative windows obtained by different sampling procedures
may contain window boundary effects that classifiers can exploit
as discriminative features, leading to overfitting. We observed this
for the SHAPELET [33] and HIKSVM [34] detectors, see also www.cs.
sfu.ca/∼mori/research/papers/sabzmeydani shapelet cvpr07.html and http:
//www.cs.berkeley.edu/∼smaji/projects/ped-detector/. The original (ORIG)
and corrected PW results are shown in Figure 10(a), in both cases the
overfitting was discovered only after full image evaluation.

www.cs.sfu.ca/~mori/research/papers/sabzmeydani_shapelet_cvpr07.html
www.cs.sfu.ca/~mori/research/papers/sabzmeydani_shapelet_cvpr07.html
http://www.cs.berkeley.edu/~smaji/projects/ped-detector/
http://www.cs.berkeley.edu/~smaji/projects/ped-detector/
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Fig. 10. Per-window versus full image evaluation on the INRIA pedestrian dataset (see §4 for detector details and §5.2 for complete
results). Legends are ordered by performance. (a) PW results reproduced from their original publications. (b) Full image results
obtained by evaluating on the same pedestrians but within their original image context. While PW and full image performance are
somewhat correlated, the ranking of competing methods is substantially different. (c) Illustration of six cases not tested during PW
evaluation that can give rise to false positives (top) or false negatives (bottom) in full image evaluation. False positives can arise
from detections on body parts or at incorrect scales or positions, while false negatives can arise from slight misalignments between
the tested windows and true pedestrian locations or from NMS.

4 DETECTION ALGORITHMS

We focus on computer vision algorithms for detecting
pedestrians in individual monocular images, which we
refer to simply as ‘pedestrian detectors’. We begin with
an overview of pedestrian detectors in §4.1, examining
the ideas introduced in detection in the last decade. In
§4.2 we enumerate and discuss in detail the 16 represen-
tative state-of-the-art detectors used in our evaluation.

4.1 Survey of the State of the Art

We review pedestrian detectors with a focus on slid-
ing window approaches. These appear most promising
for low to medium resolution settings, under which
segmentation [35] or keypoint [36], [37] based methods
often fail. We list abbreviations of detectors used in our
evaluation in brackets [ALG]. For an overview of how
detectors are incorporated into full automotive systems
that utilize stereo, scene geometry, tracking, or other
imaging modalities (e.g. [30], [38], [39], [40], [41]), we
refer readers to [2], [42], [43]. In this work we focus on
the detectors themselves.

Papageorgiou et al. [16] proposed one of the first
sliding window detectors, applying support vector ma-
chines (SVM) to an over-complete dictionary of multi-
scale Haar wavelets. Viola and Jones [VJ] [44] built
upon these ideas, introducing integral images for fast
feature computation and a cascade structure for efficient
detection, and utilizing AdaBoost for automatic feature
selection. These ideas continue to serve as a foundation
for modern detectors.

Large gains came with the adoption of gradient-based
features. Inspired by SIFT [45], Dalal and Triggs [HOG]
[7] popularized histogram of oriented gradient (HOG)
features for detection by showing substantial gains over
intensity based features. Zhu et al. [46] sped up HOG
features by using integral histograms [47]. In earlier

work, Shashua et al. [48] proposed a similar representa-
tion for characterizing spatially localized parts for mod-
eling pedestrians. Since their introduction, the number
of variants of HOG features has proliferated greatly with
nearly all modern detectors utilizing them in some form.

Shape features are also a frequent cue for detection.
Gavrila and Philomin [49], [50] employed the Hausdorff
distance transform and a template hierarchy to rapidly
match image edges to a set of shape templates. Wu
and Nevatia [17] utilized a large pool of short line and
curve segments, called ‘edgelet’ features, to represent
shape locally. Boosting was used to learn head, torso, leg
and full body detectors; this approach was extended in
[18] to handle multiple viewpoints. Similarly, ‘shapelets’
[33] are shape descriptors discriminatively learned from
gradients in local patches; boosting was used to combine
multiple shapelets into an overall detector [SHAPELET].
Liu et al. [51] proposed ‘granularity-tunable’ features
that allow for representations with levels of uncertainty
ranging from edgelet to HOG type features; an extension
to the spatio-temporal domain was developed in [52].

Motion is another important cue for human per-
ception; nevertheless, successfully incorporating motion
features into detectors has proven challenging given a
moving camera. Given a static camera, Viola et al. [53]
proposed computing Haar-like features on difference
images, resulting in large performance gains. For non-
static imaging setups, however, camera motion must be
factored out. Dalal et al. [54] modeled motion statistics
based on an optical flow field’s internal differences,
thereby compensating for uniform image motion locally.
While the features were successful on a per-window
basis [54], for full image detection the benefit appeared
minimal [55]. This was resolved by [5], who showed that
certain modifications were necessary to make the motion
features effective for detection.

While no single feature has been shown to outperform
HOG, additional features can provide complementary
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information. Wojek and Schiele [MULTIFTR] [56] showed
how a combination of Haar-like features, shapelets
[33], shape context [57] and HOG features outperforms
any individual feature. Walk et al. [28] extended this
framework by additionally combining local color self-
similarity [MULTIFTR+CSS] and the motion features dis-
cussed above [MULTIFTR+MOTION]. Likewise, Wu and
Nevatia [58] automatically combined HOG, edgelet and
covariance features. Wang et al. [59] combined a texture
descriptor based on local binary patterns (LBP) [60] with
HOG [HOGLBP], additionally, a linear SVM classifier
was modified to perform basic occlusion reasoning. In
addition to HOG and LBP, [61] used local ternary pat-
terns (variants of LBP). Color information and implicit
segmentation were added in [62], with a performance
improvement over pure HOG.

Dollár et al. [29] proposed an extension of [VJ] where
Haar-like feature are computed over multiple channels
of visual data [CHNFTRS], including LUV color channels,
grayscale, gradient magnitude and gradient magnitude
quantized by orientation (implicitly computing gradient
histograms), providing a simple and uniform framework
for integrating multiple feature types. In the ‘Fastest
Pedestrian Detector in the West’ [FPDW] [63], this ap-
proach was extended to fast multiscale detection after
it was demonstrated how feature computed at a single
scale can be used to approximate feature at nearby scales.

Considerable effort has also been devoted to improv-
ing the learning framework. Tuzel et al. [64] utilized co-
variance matrices computed locally over various features
as object descriptors. Since covariance matrices do not
lie on a vector space, the boosting framework was mod-
ified to work on Riemannian manifolds, with improved
performance. Maji et al. [34] proposed an approximation
to the histogram intersection kernel for use with SVMs
[HIKSVM], allowing for substantial speed-ups and thus
enabling a non-linear SVM to be used in sliding-window
detection. Babenko et al. [65] proposed an approach for
simultaneously separating data into coherent groups and
training separate classifiers for each; [5] showed that
both [34] and [65] gave modest gains over linear SVMs
and AdaBoost for pedestrian detection, especially when
used in combination [66].

A number of groups have attempted to efficiently
utilize very large feature spaces. ‘Feature mining’ was
proposed by [67] to explore vast (possibly infinite) fea-
ture spaces using various strategies including steepest
descent search prior to training a boosted classifier
[FTRMINE]. These ideas were developed further by [68],
who introduced a scheme for synthesizing and combin-
ing a rich family of part based features in an SVM frame-
work [FEATSYNTH]. Schwartz et al. [69] represented
pedestrians by edges, texture and color and applied
partial least squares to project the features down to a
lower dimensional space prior to SVM training [PLS].

To cope with articulation, the notion of parts and
pose have been investigated by several authors. Mo-
han et al. [73] successfully extended [16] with a two

stage approach: first head, arm and leg detectors were
trained in a fully supervised manner, next the detectors’
output was combined to fit a rough geometric model.
Such fully supervised two stage approaches have been
revisited over time [17], [74], [75]. Likewise, Bourdev and
Malik [76] proposed to learn an exhaustive dictionary
of ‘poselets’: parts clustered jointly in appearance and
pose. Supervised pose estimation has been used in a
similar manner. Lin and Davis [70] used a part-template
tree to model a pedestrian’s shape locally for the head,
upper body and legs, and extracted HOG appearance de-
scriptors along the shape’s outline [POSEINV]. Enzweiler
and Gavrila [77] labeled pedestrians as belonging to
one of four canonical orientations and jointly perform
classification and orientation estimation. Joint body pose
estimation and person classification can also be formu-
lated as a structured learning problem [78].

Notable early approaches for unsupervised part learn-
ing, including the constellation model [79], [80] and
the sparse representation approach of [81], relied on
keypoints. Leibe et al. [36] adapted the implicit shape
model, also based on keypoints, for detecting pedes-
trians. However, as few interest points are detected at
lower resolutions, unsupervised part based approaches
that do not rely on keypoints have been proposed. Mul-
tiple instance learning (MIL) has been employed in order
to automatically determine the position of parts without
part-level supervision [82], [83]. And, in one of the
most successful approaches for general object detection
to date, Felzenszwalb et al. [71], [72] proposed a dis-
criminative part based approach that models unknown
part positions as latent variables in an SVM framework
[LATSVM]. As part models seem to be most successful
at higher resolutions, Park et al. [84] extended this to
a multi-resolution model that automatically switches to
parts only at sufficiently high resolutions.

4.2 Evaluated Detectors
We chose 16 representative state-of-the-art pedestrian
detectors for this evaluation (see §4.1 and Table 2). Our
goal was to choose a diverse set of detectors that were
both representative of various lines of research and most
promising in terms of originally reported performance.
While we could not be exhaustive due to unavailability
of many detectors and practical time and space con-
strains, we do believe that the selected detectors give
an accurate portrait of the state of the art.

In nearly all cases we obtained pre-trained detectors
directly from the authors as our goal was to have an
unbiased evaluation of existing approaches. Any major
differences from the original publications are discussed
below. We thank the authors for either publishing their
code online or making it available upon request.

While research in pedestrian detection is quite diverse,
the approaches with the highest reported performance
share many elements. These detectors typically follow a
sliding window paradigm which entails feature extrac-
tion, binary classification, and dense multiscale scanning
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VJ [44] 3 AdaBoost MS 96 ∼14 .447 95% INRIA ’04
SHAPELET [33] 3 AdaBoost 3 MS 96 ∼14 .051 91% INRIA ’07
POSEINV [70] 3 AdaBoost MS 96 ∼18 .474 86% INRIA 3 ’08
LATSVM-V1 [71] 3 latent SVM 3 PM 80 10 .392 80% PASCAL 3 3 ’08
FTRMINE [67] 3 3 3 3 AdaBoost 3 PM 100 4 .080 74% INRIA 3 ’07
HIKSVM [34] 3 HIK SVM MS 96 8 .185 73% INRIA 3 ’08
HOG [7] 3 linear SVM MS 96 ∼14 .239 68% INRIA 3 ’05
MULTIFTR [56] 3 3 AdaBoost MS 96 ∼14 .072 68% INRIA 3 3 ’08
HOGLBP [59] 3 3 linear SVM MS 96 14 .062 68% INRIA 3 3 ’09
LATSVM-V2 [72] 3 latent SVM 3 PM 96 10 .629 63% INRIA 3 3 ’09
PLS [69] 3 3 3 PLS+QDA 3 PM∗ 96 ∼10 .018 62% INRIA 3 3 ’09
MULTIFTR+CSS [28] 3 3 linear SVM MS 96 ∼14 .027 61% TUD-MP 3 3 ’10
FEATSYNTH [68] 3 3 linear SVM 3 3 – 96 – – 60% INRIA 3 3 ’10
FPDW [63] 3 3 3 3 AdaBoost PM∗ 100 10 6.492 57% INRIA 3 3 ’10
CHNFTRS [29] 3 3 3 3 AdaBoost PM∗ 100 10 1.183 56% INRIA 3 3 ’09
MULTIFTR+MOTION [28] 3 3 3 linear SVM MS 96 ∼14 .020 51% TUD-MP 3 3 ’10

TABLE 2
Comparison of Evaluated Pedestrian Detectors (see §4.2 for details)

of detection windows followed by non-maximum sup-
pression (NMS). Below we discuss each component of
the evaluated detectors, including the features, learning
framework, and detection details, and conclude with
implementation notes; for additional details we refer
readers to the original publications. Table 2, ordered
by descending log-average miss rate on clearly visible
pedestrians in the Caltech dataset (see §5 for details),
gives an overview of each detector.

Features: The first columns in Table 2 indicate the
feature types used by each detector (specified by the
general category of image content extracted and not
the particular instantiation). Nearly all modern detectors
employ some form of gradient histograms [7]. In addi-
tion, detectors can utilize gradients directly, as well as
grayscale (e.g. Haar wavelets [44]), color, texture (includ-
ing LBP [60] and co-occurrence [85]), self-similarity [86]
and motion [54] features. The best performing detectors
tend to use a combination of cues.

Learning: The second set of columns provides details
about the learning paradigm used by each detector.
Support vector machines (SVMs) [16] and boosting [44]
are the most popular choices due to their theoretical
guarantees, extensibility, and good performance. Boosted
classifiers and linear SVMs are particularly well suited
due to their speed; non-linear kernels are less common,
the exception being the fast histogram intersection kernel
[34]. Boosting automatically performs feature selection,
alternatively some detectors (indicated with a mark in
the ‘feature learning’ column) learn a smaller or inter-
mediate set of features prior to or jointly with classifier
training. Finally a few detectors including LATSVM and
FEATSYNTH are part based.

Detection Details: The next columns describe the
detection scheme. Two dominant non-maximum sup-
pression (NMS) approaches have emerged: mean shift

(MS) mode estimation [55] and pairwise max (PM) sup-
pression [71] which discards the less confident of every
pair of detections that overlap sufficiently according
to Eqn. (1). PM requires only a single parameter; in
addition, a variant has been proposed (PM∗) that allows
a detection to match any subregion of another detec-
tion, resulting in improved performance (see Eqn. (2)
and addendum to [29]). FEATSYNTH only tests win-
dows returned by FTRMINE and does not require NMS.
Pedestrian model height is typically around 96-100 pix-
els (the size of pre-cropped pedestrians in the INRIA
dataset), with an additional 28-32 pixels of padding.
For multiscale detection, usually around 10-14 scales per
octave are scanned (with corresponding scale strides of
1.07-1.05); a fast multiscale scheme is proposed in [63].
Runtimes (for detecting over 100 pixel pedestrians in
640x480 images) and log-average miss rates (on clearly
visible pedestrians) are discussed in §5.

Implementation Notes: The final columns of Table 2
list additional details. Most of the evaluated detectors
were trained on the INRIA dataset [7]; two were trained
on TUD motion pairs (TUD-MP) (the training set for
TUD-Brussels [5]). LATSVM-V1 was trained on Pascal
[14]; LATSVM-V2 used INRIA and a later version of
the latent SVM framework [72]. In nearly all cases
we used code obtained directly from the authors, the
only exceptions being VJ and SHAPELET which were
reimplemented in [56]. In a few cases the evaluated
code differed from the published version: SHAPELET and
HIKSVM have been corrected so they no longer overfit
to boundary effects; we evaluate a variant of POSEINV
based on boosting (which in our tests outperformed the
much slower kernel SVM version); PLS switched to PM∗

NMS; and finally, the posted code for HOGLBP does
not include occlusion reasoning (the improvement from
occlusion reasoning was slight [59]).
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Fig. 11. Evaluation results under six different conditions on the Caltech Pedestrian Dataset. (a) Overall performance on all
annotated pedestrians is unsatisfactory. (b) Performance on unoccluded pedestrians over 80 pixels tall is substantially better, (c) but
degrades for 30-80 pixel pedestrians. (d) Likewise performance on unoccluded pedestrians over 50 pixels tall is better than overall
performance, (e) but degrades in the presence of partial occlusion. (f) This motivates us to evaluate performance on pedestrians at
least 50 pixels tall under no or partial occlusion; we refer to this as the reasonable evaluation setting and use it throughout.

5 PERFORMANCE EVALUATION

We performed an extensive evaluation of the sixteen
pedestrian detectors enumerated in Table 2 under vari-
ous scenarios and for multiple datasets. First, in §5.1 we
evaluate performance under different conditions using
the Caltech Dataset. Next we report performance on
six additional datasets in §5.2 and analyze statistical
significance in §5.3. Finally in §5.4 we report runtimes.

We chose to evaluate pre-trained detectors, obtained
directly from their authors. This is an important method-
ological point: we assume that authors know best how to
tune their algorithms, attempting to train the detectors
ourselves would have opened the difficult subject of
parameter tuning, making our study unwieldy. More-
over, few authors share training code, thus, insisting
on re-training would have severely limited our ability
to conduct a broad evaluation. Fortunately, most of the
detectors were trained on the same dataset (see Table 2),
making them directly comparable. Additionally, testing
these pre-trained detectors on multiple other datasets
allows us to study cross-dataset generalization, a topic
of crucial real-world importance.

5.1 Performance on the Caltech Dataset
We first analyze performance under six conditions on the
testing data in the Caltech Pedestrian Dataset. Figure 11

shows performance for the overall dataset, on near and
medium scales, under no and partial occlusion, and on
clearly visible pedestrians. We plot miss rate versus false
positives per image (lower curves indicate better per-
formance) and use log-average miss rate as a common
reference value for summarizing performance. Legend
entries display and are ordered by log-average miss rate
from worst to best. We discuss the plots in detail below.

Overall: Figure 11(a) plots performance on the entire
test set. MULTIFTR+MOTION slightly outperforms the
other detectors, with CHNFTRS a close second. However,
absolute performance is poor, with a log-average miss
rate of over 80%. To understand where the detectors fail,
we examine performance under various conditions.

Scale: Results for near and medium scale unoccluded
pedestrians, corresponding to heights of at least 80 pixels
and 30-80 pixels, respectively (see §2.2.1), are shown
in Figures 11(b) and 11(c). For the near scale, MUL-
TIFTR+MOTION performs best with a log-average miss
rate of only 22%; numerous other detectors achieve still
reasonable log-average miss rates around 30-40%. On the
medium scale, which contains over 68% of ground truth
pedestrians (see Figure 4(a)), performance degrades dra-
matically. CHNFTRS, FPDW and FEATSYNTH achieve
the best relative performance but absolute performance
is quite poor with 77-78% log-average miss rate. More-
over, the top three performing detectors on near scale
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Fig. 12. Performance as a function of scale. All detec-
tors improve rapidly with increasing scale, especially MULTI-
FTR+MOTION, HOGLBP and LATSVM-V2 which utilize motion,
texture and parts, respectively. At small scales state-of-the-art
performance has considerable room for improvement.

pedestrians degrade most. We can see this trend clearly
by plotting log-average miss rate as a function of scale.
Figure 12 shows performance at five scales between 32
and 128 pixels (see also §3.2 and §3.3). Performance im-
proves for all methods with increasing scale, but most for
MULTIFTR+MOTION, HOGLBP and LATSVM-V2. These
utilize motion, texture and parts, respectively, for which
high resolutions appear to be particularly important.

Occlusion: The impact of occlusion on detecting 50
pixel or taller pedestrians is shown in Figures 11(d)
and 11(e). As discussed in §2.2.2, we classify pedestrians
as unoccluded, partially occluded (1-35% occluded) and
heavily occluded (35-80% occluded). Performance drops
significantly even under partial occlusion, leading to a
log-average miss rate of 73% for CHNFTRS and MULTI-
FTR+MOTION. Surprisingly, performance of part based
detectors degrades as severely as for holistic detectors.

Reasonable: Performance for medium scale or par-
tially occluded pedestrians is poor while for far scales or
under heavy occlusion it is abysmal (see Figure 16). This
motivates us to evaluate performance on pedestrians
over 50 pixels tall under no or partial occlusion (these
are clearly visible without much context). We refer to this
as the reasonable evaluation setting. Results are shown in
Figure 11(f), MULTIFTR+MOTION, CHNFTRS and FPDW
perform best with log-average miss rates of 51-57%.
We believe this evaluation is more representative than
overall performance on all pedestrians and we use it for
reporting results on all additional datasets in §5.2 and
for the statistical significance analysis in §5.3.

Localization: Recall that the evaluation is insensitive
to the exact overlap threshold used for matching so long
as it is below ∼.6 (see §3.1 and Figure 7). This implies
that nearly all detections that overlap the ground truth
overlap it by at least half. However, as the threshold
is increased further and higher localization accuracy is
required, performance of all detectors degrades rapidly.
Detector ranking is mostly maintained except MULTIFTR
and PLS degrade more; this implies that all but these two
detectors have roughly the same localization accuracy.

5.2 Evaluation on Multiple Datasets
To increase the scope of our analysis, we benchmarked
the detectors on six additional pedestrian detection
datasets including INRIA [7], TUD-Brussels [5], ETH
[4] Daimler-DB [6], Caltech-Training, and Caltech-Japan.
These datasets are discussed in §2.4 and Table 1; we
also review their most salient aspects below. Evaluating
across multiple datasets allows us to draw conclusion
both about the detectors and the datasets. Here we focus
on the datasets, we return to assessing detector per-
formance using multiple datasets in §5.3. Performance
results for every dataset are shown in Figure 13.

We begin with a brief review of the six datasets.
INRIA contains images of high resolution pedestrians
collected mostly from holiday photos (we use only the
288 test images that contain pedestrians, note that a few
have incomplete labels). The remaining datasets were
recorded with a moving camera in urban environments
and all contain color except Daimler-DB. ETH has higher
density and larger scale pedestrians than the remaining
datasets (we use the refined annotations published in
[5]). Caltech-Training refers to the training portion of
the Caltech Pedestrian Dataset. Caltech-Japan refers to a
dataset we gathered in Japan that is essentially identical
in size and scope to the Caltech dataset (unfortunately
it cannot be released publicly for legal reasons). Ta-
ble 1 provides an overview and further details on each
dataset’s properties and statistics (see also Figure 1).

We benchmark performance using the reasonable eval-
uation setting (50 pixel or taller under partial or no
occlusion), standardizing aspect ratios as described in
§3.4. For Daimler-DB and INRIA, which contain only
grayscale and static images, respectively, we run only
detectors that do not require color and motion infor-
mation. Also, FTRMINE and FTRSYNTH results are not
always available, otherwise we evaluated every detector
on every dataset. We make all datasets, along with
annotations and detector outputs for each, available in a
single standardized format on our project webpage.

Of all datasets, performance is best on INRIA, which
contains high resolution pedestrians, with LATSVM-
V2, CHNFTRS and FPDW achieving log-average miss
rates of 20-22% (see Figure 13(a)). Performance is also
fairly high on Daimler-DB (13(b)) with 29% log-average
miss rate attained by MULTIFTR+MOTION, possibly due
to the good image quality resulting from use of a
monochrome camera. ETH (13(c)), TUD-Brussels (13(d)),
Caltech-Training (13(e)), and Caltech-Testing (11(f)) are
more challenging, with log-average miss rates between
51-55%, and Caltech-Japan (13(f)) is even more difficult
due to lower image quality. Overall, detector ranking
is reasonably consistent across datasets, suggesting that
evaluation is not overly dependent on the dataset used.

5.3 Statistical Significance
We aim to rank detector performance utilizing multiple
datasets and assess whether the differences between
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(b) Daimler-DB [6]
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(c) ETH [4]
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Fig. 13. Results on six datasets under the reasonable evaluation setting. In general, detector ranking is fairly stable across
datasets. Best results are achieved on INRIA (a), which contains high-resolution pedestrians, followed by Daimler-DB (b), likely
due to the good image quality. Overall performance for ETH (c), TUD-Brussels (d), Caltech-Train (e) and Caltech-Test (Figure 11(f))
are similar. Performance on Caltech-Japan (f) is slightly worse; likely due to more challenging imaging conditions. The fairly high
consistency of detector ranking across multiple datasets implies that evaluation is not overly dependent on the dataset used.

detectors are statistically significant. Two issues make
such an analysis challenging: (1) dataset difficulty varies
and (2) relative detector performance may change across
datasets. The plots in Figure 13 clearly demonstrate both
challenges. To address this, Demšar et al. [87] introduced
a series of powerful statistical tests that operate on an
m dataset by n algorithm performance matrix (e.g., a
matrix of log-average miss rates). The key insight is
to convert absolute performance on each dataset into
algorithm rank, thus removing the effects of varying
dataset difficulty. We first describe the analysis and then
present results for pedestrian detectors.

We analyze statistical significance using the non-
parametric Friedman test with a post-hoc analysis, this
approach was also used by Everingham et al. [14] for
the PASCAL VOC challenge. Contrary to ANOVA, the
Friedman test does not assume a distribution on per-
formance, but rather uses algorithm ranking. Demšar
et al. [87] found this non-parametric approach to be more
robust. A further in-depth study by Garcı́a and Herrera
[88] concludes that the Nemenyi post-hoc test which was
used by [87] (and also in the PASCAL challenge [14])
is too conservative for n × n comparisons such as in
a benchmark. They recommend use of more powerful
post-hoc tests such as the Shaffer test that include more
sophisticated logic reasoning. For our analysis we use
the non-parametric Friedman test along with the Shaffer

post-hoc test (code is available from [88]).
To obtain a sufficient number of performance samples

we evaluate the pre-trained detectors separately on each
of the 11 sets in the Caltech dataset (see §2.3), 13 sets
of Caltech-Japan, 3 sequences in ETH, and 1 sequence
in TUD-Brussels. We omit Daimler-DB and INRIA on
which not all detectors can be tested and any detector
not tested on every dataset (see §5.2). We rank detectors
on each data fold based on their log-average miss rate
(tested under the reasonable evaluation setting). This
procedure yields a total of 28 rankings for 14 detectors.

Results are shown in Figure 14. First, we plot the
number of times each detector achieved each rank in
Figure 14(a). Detectors are ordered by improving mean
rank (displayed in brackets). The best overall performing
detector is MULTIFTR+MOTION, which ranked first on
17 of the 28 data folds and had a mean rank of 2.4.
CHNFTRS and FPDW came in second and third with a
mean rank of 3.3 and 3.8, respectively. VJ has the worst
overall performance with a mean rank of 13.5, while
HOG remains somewhat competitive with a mean rank
of 8.2. Among the top performing detectors, however,
variance is fairly high, with nearly every detector from
MULTIFTR onward ranking first on at least one data fold.

Figure 14(b) shows the results of the significance test
for a confidence level of α = 0.05. The x-axis shows
mean rank for each detector, blue bars link detectors
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Fig. 14. Summary of detector performance across multiple datasets and the statistical significance of the results. (a) Visualization
of the number of times each detector achieved each rank. Detectors are ordered by improving mean rank (displayed in brackets);
observe the high variance among the top performing detectors. (b) Critical difference diagram [87]: the x-axis shows mean rank,
blue bars link detectors for which there is insufficient evidence to declare them statistically significantly different (due to the relatively
low number of performance samples and fairly high variance).

for which there is insufficient evidence to declare them
statistically significantly different. For example, MULTI-
FTR+MOTION, CHNFTRS and FPDW are all significantly
better than HOG (since they are not linked). Observe,
however, that the differences between the top six detec-
tor are not statistically significant, indeed, each detector
tends to be linked to numerous others. This result does
not change much if we relax the confidence to α = 0.1.
A similar trend was observed in Everingham et al.’s [14]
analysis on the PASCAL challenge. Unfortunately, the
statistical analysis requires a large number of samples,
and while the 28 data folds provide a considerably more
thorough analysis of pedestrian detectors than previ-
ously attempted, given their inherent variability, even
more data would be necessary. We emphasize, however,
that simply because we have insufficient evidence to
declare the detectors statistically significantly different
does not imply that their performance is equal.

5.4 Runtime Analysis
In many applications of pedestrian detection, including
automotive safety, surveillance, robotics, and human
machine interfaces, fast detection rates are of the essence.
Although throughout we have focused on accuracy; we
conclude by jointly considering both accuracy and speed.

We measure runtime of each detector using images
from the Caltech dataset (averaging runtime over mul-
tiple frames). To compensate for detectors running on
different hardware, all runtimes are normalized to the
rate of a single modern machine. We emphasize that we
measure the speed of binaries provided by the authors
and that faster implementations are likely possible.

In Figure 15 we plot log-average miss rate versus
runtime for each detector on 640× 480 images. Legends
are ordered by detection speed measured in frames per
second (fps). Detection speed for pedestrians over 100
pixels ranges from ∼.02 fps to ∼6.5 fps achieved by
FPDW, a sped up version of CHNFTRS. Detecting 50
pixel pedestrians typically requires image upsampling;
the slowest detectors require around five minutes per
frame. FPDW remains the fastest detector operating at

∼2.7 fps. Overall, there does not seem to be a strong
correlation between runtime and accuracy. While the
slowest detector happens to also be the most accurate
(MUTLIFTR+MOTION), on pedestrians over 50 pixels the
two fastest detectors, CHNFTRS and FPDW, are also the
second and third most accurate, respectively.

While the frame rates may seem low, it is important
to mention that all tested detectors can be employed as
part of a full system (cf. [2]). Such systems may employ
ground plane constraints and perform region-of-interest
selection (e.g. from stereo disparity or motion), reduc-
ing runtime drastically. Moreover, numerous approaches
have been proposed for speeding up detection, including
speeding up the detector itself [29], [44], [46], through
use of approximations [63], [89] or by using special
purpose hardware such as GPUs [90] (for a review of
fast detection see [63]). Nevertheless, the above runtime
analysis gives a sense of the speed of current detectors.

6 DISCUSSION
This study was carried out to assess the state of the art in
pedestrian detection. Automatically detecting pedestri-
ans from moving vehicles could have considerable eco-
nomic impact and the potential to substantially reduce
pedestrian injuries and fatalities. We make three main
contributions: a new dataset, an improved evaluation
methodology and an analysis of the state of the art.

First, we put together an unprecedented object de-
tection dataset. The dataset is large, representative and
relevant. It was collected with an imaging geometry and
in multiple neighborhoods that match likely conditions
for urban vehicle navigation. Second, we propose an
evaluation methodology that allows us to carry out prob-
ing and informative comparisons between competing
approaches to pedestrian detection in a realistic and
unbiased manner. Third, we compare performance of
sixteen pre-trained state-of-the-art detectors across six
datasets. Performance is assessed as a function of scale,
degree of occlusion, localization accuracy and computa-
tional cost; moreover we gauge the statistical significance
of the ranking of detectors across multiple datasets.
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Fig. 15. Log-average miss rate versus the runtime of each detector on 640 × 480 images from the Caltech Pedestrian Dataset.
Run times of all detectors are normalized to the rate of a single modern machine, hence all times are directly comparable. (Note
that the VJ implementation used did not utilize scale invariance and hence its slow speed). While the slowest detector happens to
also be the most accurate (MUTLIFTR+MOTION), for pedestrians over 50 pixels the two fastest detectors, CHNFTRS and FPDW,
are also the second and third most accurate, respectively.

All results of this study, and the tools for reproducing
them, are posted on the project website3. This includes
the Caltech Pedestrian Dataset, the video annotation tool
(see Figure 3), and all evaluation code. We have also
posted all additional datasets used in this study (INRIA,
TUD-Brussels, ETH, and Daimler-DB), along with their
annotations and detector outputs on each, in a standard-
ized format. The goal is to allow all researchers to easily
and accurately assess state-of-the-art performance.

Our experiments allow us to make a number of ob-
servations, and point to important directions for further
research. We discuss them in the following sections.

6.1 Statistics of The Caltech Pedestrian Dataset
The Caltech Pedestrian Dataset is thoroughly annotated
(including occlusion labels, temporal correspondences,
and ‘ignore’ regions) and contains pedestrians at a wide
range of scales. It thus allows us to analyze the statistics
of a number of important phenomena:

Scale: Pedestrian pixel size is highly variable. Most
pedestrians, however, are observed at heights of 30 to
80 pixels. This scale range also happens to be the most
important for automotive settings given current sensor
technology and typical imaging geometry (see Figure 4).

Occlusion: Occlusion is very frequent (see Figures 5(b)
and 5(c)). Nevertheless, out of many possible occlusion
patterns, few are commonly observed (see Figure 5(f)).
The head is typically visible while the lower portions of
a pedestrian are increasingly likely to be occluded.

Location: The distribution of pedestrian centers in
images is highly concentrated along the middle band
(see Figure 6(a)). However, while incorporating this con-
straint would speed detection it would only moderately
reduce false alarms under these settings (see Figure 6(b)).

Experiments across multiple datasets show reasonably
consistent detector rankings (see Figures 13 and 14),
suggesting that evaluation is not overly dependent on
the dataset used. Overall, however, the Caltech Pedes-
trians Dataset proves to be the most challenging. We
thus expect that it will remain useful for a fairly long

3. www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
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Fig. 16. Evaluation on far scales and for heavily occluded
pedestrians. In both cases detection performance is abysmal
and currently outside the capabilities of the state of the art.

time before showing signs of saturation. Furthermore, its
large size and thorough annotation enables researchers
to measure performance under very low false alarm
rates, small scales, and varying levels of occlusion.

6.2 Overall Performance
There is considerable room for improvement in pedes-
trian detection. The plots in Figure 11 show that:

(1) Performance is far from perfect even under the
most favorable conditions. At the near scale, i.e. with
pedestrians at least 80 pixels tall, 20-30% of all pedestri-
ans are missed under the fairly mild goal of at most one
false alarm every ten images (see Figure 11(b)).

(2) Performance degrades catastrophically for smaller
pedestrians (see Figures 11(c) and 12). While pedestrians
30-80 pixels tall are most numerous and most relevant in
automotive settings, around 80% are missed by the best
detectors (at 1 false alarm per 10 images).

(3) Performance degrades similarly under partial oc-
clusion (under 35% occluded), see Figure 11(e).

(4) Performance is abysmal at far scales (under 30 pix-
els) and under heavy occlusion (over 35% occluded), see
Figure 16. Under these conditions nearly all pedestrians
are missed even at high false positive rates.

The gap between current and desired performance is
large and unlikely to be reached without major leaps in
our understanding. One should note that single frame
performance is a lower bound for the performance of

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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a full system and that tracking, contextual information
and the use of additional sensors can help reduce false
alarms and improve detection rates (see [2]).

6.3 State of the Art Detectors
While research in pedestrian detection is quite diverse,
the approaches with the best performance have many
elements in common (see Table 2). These detectors typ-
ically follow a sliding window paradigm which en-
tails feature extraction, binary classification, and dense
multiscale scanning of detection windows followed by
non-maximum suppression (NMS). Nearly all modern
detectors employ some form of gradient histograms; in
addition, the best performing detectors tend to use a
combination of cues. Support vector machines and boost-
ing are used almost exclusively although variants show
promise. For multiscale detection 10-14 scales per octave
are commonly tested, and for NMS, mean shift (MS)
mode estimation and pairwise max (PM) suppression
appear most successful. Overall, there is a high degree
of convergence for the various stages of detection.

Which is the best overall detector? Figure 15 summa-
rizes both detection accuracy and computational cost;
surprisingly, there does not seem to be a hard trade-off
between these two quantities. Overall, FPDW has the
most appealing characteristics: it is at least one order of
magnitude faster than its competitors and has amongst
the best detection rates, particularly on medium scale
pedestrians. If computational cost is not a consideration,
then MULTIFTR+MOTION is the best choice. Note, how-
ever, that re-training on the larger Caltech Pedestrian
Dataset may change the relative ranking of the detectors.

The state of the art in pedestrian detection is clearly
advancing. Considerable progress has been made from
earlier approaches (e.g. VJ) to the most recent ones (see
Table 2). Thus, given the fast pace of technical progress
in the field and the considerable room for improvement,
we expect to see new detectors top the charts every year.

6.4 Research directions
Our benchmark indicates need for research in 7 areas:

(1) Small scales. Better performance is needed in the
30-80 pixel range, while most research has been focused
on pedestrians over 100 pixels. Reasonable human per-
formance at medium scales indicates that detection in
this range is achievable without resorting to expensive
high resolution cameras that would delay the introduc-
tion of machine vision systems to automotive settings.

(2) Occlusion. Performance degrades rapidly under
even mild occlusion, including for part based detectors.
The Caltech Pedestrian Dataset is the first to include
occlusion labels (and a study of occlusion statistics), we
hope this motivates researchers to improve this.

(3) Motion features. The detector with highest accu-
racy (MULTIFTR+MOTION) is the only one to utilize
motion features, but the optical flow based features ap-
pear to help primarily at large scales. At low resolutions

motion is very informative for human perception, thus
effective motion features for this setting are needed.

(4) Temporal integration. Although full systems often
utilize tracking (e.g. see [2], [6], [42]), a comparative
study of approaches for integrating detector outputs
over time has not been carried out. Note that full
tracking may be unnecessary and methods that integrate
detector outputs over a few frames may suffice [41].

(5) Context. The ground plane assumption can reduce
errors somewhat, however, at low resolutions more so-
phisticated approaches for utilizing context are needed.

(6) Novel features. The best detectors use multiple
feature types in combination with gradient histograms
(see Table 2). We expect additional gains from continued
research on improving feature extraction.

(7) Data. Most detectors were trained on INRIA [7].
Training using the much larger Caltech dataset should
boost performance, although learning becomes more
challenging due to the broad range of scale and occlusion
levels. Studies are needed to see the effect of quantity
and type of training data versus performance.
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