
Stereo odometry based on careful feature selection
and tracking

Igor Cvišić
Department of Control and Computer Engineering
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia
Email: igor.cvisic@fer.hr

Ivan Petrović
Department of Control and Computer Engineering
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia
Email: ivan.petrovic@fer.hr

Abstract—In this paper we present a novel algorithm for fast
and robust stereo visual odometry based on feature selection
and tracking (SOFT). The reduction of drift is based on careful
selection of a subset of stable features and their tracking through
the frames. Rotation and translation between two consecutive
poses are estimated separately. The five point method is used
for rotation estimation, whereas the three point method is used
for estimating translation. Experimental results show that the
proposed algorithm has an average pose error of 1.03% with pro-
cessing speed above 10 Hz. According to publicly available KITTI
leaderboard, SOFT outperforms all other validated methods. We
also present a modified IMU-aided version of the algorithm,
fast and suitable for embedded systems. This algorithm employs
an IMU for outlier rejection and Kalman filter for rotation
refinement. Experiments show that the IMU based system runs
at 20 Hz on an ODROID U3 ARM-based embedded computer
without any hardware acceleration. Integration of all components
is described and experimental results are presented.

I. INTRODUCTION

Odometry is the process of estimating the change in robot
position relative to its surrounding. Odometry plays an es-
sential role in autonomous robot navigation. It is a dead
reckoning process, which means that the robot determines its
motion incrementaly, by integrating the current motion to the
previously determined position. As such, dead reckoning is
subject to cumulative errors. The most common sensors used
for odometry are wheel encoders. If the surrounding scene
is rich with texture, one of the most accurate sensors for
odometry is camera, and this process is commonly known as
visual odometry. A detailed overview of this topic is given in
[1].

From two views taken from a single camera, rotation and
translation up to the scale can be obtained. On the other
hand, having two views from a calibrated stereo camera, both
the rotation and translation between them can be exploited.
The basic principle of stereo odometry is motion estimation
between two successive frames, and integrating the motion
through time to obtain the current position. Methods for
estimating motion from two views can be divided into two
groups - feature based methods and direct methods. Feature
based methods use feature detectors/descriptors such as Harris,
SIFT, SURF or FAST features to detect a sparse set of salient
points from the real world and match them between the frames.
Feature based methods can be improved by tight-coupling with
IMU data. The weakest point of feature-based methods are

wrong correspondences, which can be resolved through simple
IMU integration. Direct methods operate directly on pixel
intensities. They use more information from the image then
methods with features and therefore can eventually provide
more accurate estimation. Several direct methods for monoc-
ular cameras have been recently presented [2], [3].

Odometry based on motion integration, obtained from two
consecutive frames only, is prone to drift. The most common
methods for reducing the drift are simultaneous localization
and mapping (SLAM) and bundle adjustment (BA), both
computationally more complex. From a user’s perspective, the
most important and usually the only information provided by
the odometry is the current position of the vehicle. The KITTI
[14] vision benchmark scoreboard uses translation error as the
sole parameter for ranking, and the rotation error is shown for
reference only. However, it is worth mentioning here that in
dead reckoning process such as odometry, the final position is
more sensitive to rotational errors during the integration than to
translational ones. Therefore, it is beneficial to put additional
effort to recover rotation with extra precision.

Hence, in this paper we propose an effective and robust
visual odometry algorithm based on simple feature tracking
(SOFT). Egomotion estimation is split into two parts, one for
estimating rotation, and the other for estimating translation.
This concept is experimentally proven to boost overall perfor-
mance of the algorithm. SOFT shows an average translational
error of 1.03% of the traveled distance and 0.0029 deg/m rota-
tional error on the KITTI vision benchmark dataset. According
to KITTI leaderboard, it outperforms all other validated visual
odometry methods 1.

The paper is organized as follows. After the introduction,
related work is presented in Section II. Section III presents the
core parts of proposed feature processing algorithm, followed
by Section IV in which the resulting feature coordinates are
used to estimate the ego motion. Section V describes modified
version of the algorithm more suitable for embedded systems.
Experimental results for both versions of the algorithm are
shown in Section VI and conclusions are made in Section VII.

II. RELATED WORK

Visual odometry is a special case of a more general prob-
lem called structure from motion (SfM). SfM simultaneously
recovers relative camera poses with 3D structure of viewed

1www.cvlibs.net/datasets/kitti/eval odometry.php978-1-4673-9163-4/15/$31.00 c© 2015 IEEE

object and it is commonly used in computer vision community.
The term visual odometry together with some innovative
concepts first appeared in [5]. More recently, notable improve-
ments have been made by means of feature integration [6] and
bundle adjustment [17]. Work in [8] showed that calibration
model of a real camera is inadequate to capture exact physical
property of the lens. Authors propose to alleviate the distur-
bance model by a local camera model formulated as a de-
formation field over a rectangular superpixel lattice in the two
images of stereo pair, learning the parameters from groundtruth
motion. While significant improvement in accuracy of the
camera motion is achieved, this method requires large amount
of training data and a priori known groundtruth motion, which
is not always available. Also, groundtruth acquired with GPS-
IMU combination in outdoor environment is only approximate
of the real world trajectory. When working with outdoor
datasets, one must be aware that provided groundtruth between
any two consecutive frames may contain a larger error than
the one of a visual odometry estimate. The lack of an exact
groundtruth restrains development and testing of new methods,
as it is hard to single out the moment when error in odometry
estimate rises above the mean.

One of the available libraries for visual odometry is libviso
[9]. By examining libviso performance on a KITTI dataset and
its dependance on a few key parameters, several important
conclusions can be drawn out.

• This algorithm estimates motion by minimizing image
reprojection errors. However, resulting trajectory is
much more precise when reweighting is employed, i.e.
features that are more distant from the image center
are taken into account with lower weight, implying
inaccurate image rectification. Since the image is con-
sidered rectified, there is no information upon which
an optimal reweighting function could be determined.

• Corespondances between the features in the left and
the right image of the KITTI dataset have tolerance of
few pixels on the y axis. This suggests an existence
of inter-camera calibration error.

• Outliers are rejected by random sampling consensus
(RANSAC), and the inlier threshold is set to two pix-
els. While it is feasible to determine feature position
with subpixel precision, majority of correct matches
will be rejected if the inlier threshold is less than two
pixels. Apart from revealing an inadequate calibration
model, this means that RANSAC method is ineffective
for rejecting false matches that appear close to the
correct solution.

The previous discussion gives an insight to different error
sources, where the trajectory estimation strongly relies on the
accuracy of the lens model. Hence, improving the feature local-
ization on a subpixel level or using a better quality descriptor
cannot bring significant improvements in egomotion accuracy
as long as the calibration model is not adequate. This problem
is present in any rectified image captured by a real lens, but
it would be impractical to obtain an accurate mathematical
model of each lens used for visual odometry. Therefore, in
order to obtain more accurate trajectory estimation, one should
choose an egomotion estimation method which is less sensitive
to inaccurate calibration.

III. FEATURE PROCESSING

In this section, we describe the feature processing part of the
algorithm. The results of this part are image coordinates (u, v)
of a subset of points that will be used in egomotion estimation.

A. Feature matching

The first stage of the algorithm is extraction of corner-like
features in left and right images of the current frame. For
corner detector, we utilize blob and corner masks on an input
image as described in [9]. After the corners are detected, non-
maximum suppression is employed. Correspondence between
remaining corners is determined through the sum of absolute
differences (SAD) over a sparse set of pixels in a fixed-size
window in the image derivative domain. SAD method is simple
and fast, but susceptible to outliers. At this stage, some of the
outliers are rejected by circular matching. Circular matching
implies that each feature has to be matched between left
and right images of two consecutive frames, requiring four
matches per feature. Features in time step t are tracked and
matched through sequence of frames, starting from left frame
in time step t − 1 and ending with the same frame. If the
feature is correctly matched in all frames of the aforementioned
sequence, the circle is closed and the feature in the last frame
of the sequence coincides with the feature in the first frame.
If that is not the case, circle of matches is not closed and
the feature is rejected as outlier. If the circle is successfully
closed, additional check is performed with normalized cross
correlation (NCC) on a 25×25 pixels patch around the feature
position. NCC is more reliable than sparse SAD, but it is
also significantly slower. In order to maintain an overall real-
time performance, NCC is used only for gating after fast
SAD circular matching. Remaining outliers are rejected with
RANSAC.

B. Feature selection

Using only a subset of features for egomotion estimation
significantly reduces computational time of the algorithm, thus
enabling a real-time performance. Furthermore, experiments
showed that if the subset is carefully selected, including addi-
tional feature points into the algorithm only deteriorates overall
performance. Precise estimation of the egomotion requires that
both far and near features are used in calculation of egomotion,
and that features are uniformly distributed over the image
[10]. These conditions are fulfilled by means of bucketing.
The image is divided into 50× 50 pixels sized rectangles, i.e.
buckets. In every bucket some limited number of features are
retained, and the others are discarded. The selection of features
that will be retained inside the bucket is described as follows.

1) Features are separated into four distinct classes (cor-
ner max, corner min, blob max and blob min).

2) Features inside each class are sorted by strength, i.e.
by pixel value in image created by filtering the input
image with blob and corner masks.

3) The strongest feature from each class is pushed into
the final list.

4) Step 3) is repeated until all features are pushed into
the final list

5) First n features from the final list are selected for
motion estimation.

Straightforward sorting of all features together inside the
bucket can result in first n features from the sorted list
all belonging to the same class, which could cause bias in
remaining stages of the algorithm.

C. Feature tracking

Each feature is represented by the following properties:

• unique identifier (ID),

• age,

• refined current position in the image,

• feature strength,

• belonging class,

• initial descriptor.

Upon a feature match, the position of the feature in the current
frame is refined on a subpixel level with respect to the feature
position in the previous frame, while its age is increased by
one. Refined position is stored and used in the next iteration.
As long as the feature is alive, the same initial descriptor is
used for feature position refinement. Using the same descriptor
reduces drift and serves as a measure of dissimilarity between
the current appearance of the feature and the initial one.
Intense change in perspective relative to the first appearance
of the feature will result in unsuccessful refinement and the
death of the particular track. Experiments showed this method
provides better results than the one employing the current
descriptor at each iteration. This way the descriptor is allowed
to gradually change through time, which extends feature life.
However, such descriptor is prone to drift and therefore feature
quickly loses coincidence with initial real-world point being
tracked. Features that are tracked for longer period of time
are considered to be more reliable, with lower probability of
being an outlier, therefore one should always chose the older
feature for the next iteration. Also, some features with strong
image appearances can appear even lacking the correspondence
in the real world, e.g. intersection of horizontal line in the
foreground with the vertical line in the background [11].
Therefore, the comparison function for feature selection from
particular bucket is modified as follows:

select(x, y) =

{
stronger(x, y), if age(x) = age(y)

older(x, y), if age(x) �= age(y).

Drift is reduced through the mechanism of propagating refined
position. Therefore, matches are established between current
and previous occurrence only, since the information about
displacement relative to the first occurrence is preserved in
the refined feature position. In order to retain as much tracks
as possible and to further decrease the number of outliers,
two pass matching is implemented. Firstly, only one feature
from each bucket is used and initial rotation and translation
is estimated. Secondly, the pass is executed with greater
number of features per bucket, and the matching is constrained
with initially estimated rotation and translation. Constrained
matching provides set of features with less outliers which leads
to more accurate estimation.

IV. EGOMOTION ESTIMATION

Egomotion estimation is split into two parts. Firstly, the
rotation is estimated using a direct method, and secondly,
the resulting rotation is used for estimating translation by
employing minimization of reprojection errors in the image
plane.

A. Rotation estimation

Rotation is estimated with the five point method typically used
in monocular cases [12]. Therefore, only left camera is used
for rotation estimation. Since the camera is calibrated, epipolar
constraint between two views can be expressed with

q′TEq = 0, (1)

where the matrix E = [t]xR is the essential matrix, while q
and q′ are corresponding homogeneous image coordinates of
the two views. Matrix E is 3x3 matrix, but since the scale is
unobservable, eight unknowns have to be solved. Upon five
correspondences, five equations can be constructed. By using
the following properties of the essential matrix,

det(E) = 0 (2)

and
2EETE − tr(EET)E = 0, (3)

additional constraints are imposed to the system of five equa-
tions, and solution of such system lays in one of the roots
of the tenth degree polynomial [12]. Five point method is
used in conjunction with RANSAC. A number of random
five point subsets are taken from the total set of points, and
essential matrix is calculated for each subset. Finally, the
essential matrix that has the largest set of inliers among all
the points is selected as the final solution. In our experiments,
refining the final solution with more than five points, i.e.
inliers that are very close to the best five point solution,
only increases the average odometry error, hence we do not
discuss this possibility of refinement any further. In some
rare situations, configurations of inliers appeared such that the
method converged to a local minimum, resulting with rotation
shifted for a few degrees off the original five point result. It
is stated in [12] that this method may not always converge
to the global minimum, hence we have employed the five
point configuration only. The five point method offers superior
performance in rotation estimation when processing realistic
images with outliers. This stems from several reasons:

• It has a closed-form solution and does not depend on
an initial guess like the optimization methods.

• Its solution stems from minimum set of points, prob-
ability that one of them is an outlier is small.

• As monocular methods, it uses pairs of features
instead of quads of features. Since feature pair is
determined by one correspondence, and feature quad
requires four correct correspondences, pairs are cor-
rectly matched with higher probability.

• Monocular method is not affected by imperfect cali-
bration between the left and the right camera.

Based on the feature tracking, the rotation between current
frame in time t and frame from t − 2, denoted qtt−2

, can be

calculated. Since the previous rotation qt−1

t−2
from t−2 to t−1

is known, the current rotation can alternatively be calculated
as

qt
′

t−1
= (qt−1

t−2
)−1qtt−2

, (4)

where qt
′

t−1
denotes rotation from t − 1 to t obtained with

qtt−2
and qt−1

t−2
. Based on the two different measurements of

the current rotation, namely qt
′

t−1
and qtt−1

, the final rotation,
denoted Qt

t−1, is calculated through spherical linear interpo-
lation (Slerp) [13].

Qt
t−1

= qtt−1
((qtt−1

)−1qt
′

t−1
)0.5 (5)

SOFT algorithm employs Slerp for rotation estimation. Fig.
1 shows the rotation error for eight point, five point and the
SOFT algorithms evaluated on KITTI dataset. This experiment
was performed employing eleven different trajectories. The
results represent mean rotational error values gained for each
trajectory following the same calculation approach as is given
in [14].

B. Translation estimation
In order to estimate the translation in metric scale, a stereo
method has to be employed. Having determined all the corre-
spondences between the features, two 3D point clouds can be
reconstructed - one for the previous, and one for the current
view. However, the motion estimation obtained by minimizing
image reprojection error is more accurate than the one obtained
by minimizing euclidian error in 3D space [5]. This is due
to the fact that feature position uncertainties are not taken
into account during minimization. In Euclidian space error
covariances are highly anisotropic, whereas in the image space
errors are more uniformly distributed between dimensions [6].
Therefore, 3D point cloud is triangulated from the previous

view, and then reprojected onto image plane of the current view
through[

u
v
1

]
= π(X ;R, t) =

[
f 0 cu
0 f cv
0 0 0

]
[R|t]

⎡
⎢⎣
X
Y
Z
1

⎤
⎥⎦ , (6)

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

dataset

ro
ta

tio
n

er
ro

r [
de

g/
m

]

8 point
5 point
SOFT

Fig. 1. Relative rotation error in the training dataset

where [u v 1]T are homogeneous image coordinates, π is re-
projection function, f is the focal length, [cu cv]T is the image
principal point, [R|t] are rotation and translation between two
views, and [X Y Z 1] are homogeneous coordinates of the 3D
point in the world. Translation is then calculated by iteratively
minimizing

n∑
i=1

∥∥xl
i − πl(X ;R, t)

∥∥2 + ‖xr
i − πr(X ;R, t)‖

2 (7)

with respect to translation only. Fig. 2 shows comparison
between methods with and without enabled feature tracking,
and the final SOFT algorithm.

V. IMU FUSION

Since five point algorithm is computationally complex and only
used to improve rotational accuracy, we explore the possibility
of increasing the rotation accuracy by using rotation estimation
already available from the 3-point scheme fused with IMU
measurements. Rotation is tracked in a Kalman filter, with the
state vector given by

S = [q b]
T
, (8)

where q is quaternion representing rotation from the body
frame to the world frame, and b is gyroscope bias. Gyroscope
measurement is modeled by

ωm = ω + b+ n, (9)

where ω is true angular velocity, b is bias and n is measurement
noise. Quaternion is propagated through zeroth order quater-
nion integrator [15]

qt = qt−1(I4x4 +
Δt

2
Ω(ω)) (10)

where

Ω(ω) =

⎡
⎢⎣

0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

⎤
⎥⎦ . (11)

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

dataset

tra
ns

la
tio

n
er

ro
r [

%
]

no tracking
tracking
SOFT

Fig. 2. Relative translation error in the training dataset

Bias is modeled as a random walk process. It changes
slowly through the time, and if it is correctly estimated,
rotation between two successive frames can be determined
accurately. The prediction step is performed every time a new
IMU reading is obtained, while the update step executes every
time a new image is captured. Rotation resulting from visual
odometry is used as a measurement for filter update, so the
filter state is measured directly.

In this approach, rotation accuracy is increased with em-
ployment of the Kalman filter. Rotation from the gyroscopes is
used for outlier rejection. After the inliers are determined, the
three point method (P3P) combined with RANSAC, is used
for calculating both rotation and translation. Then, rotation
is delivered to the Kalman filter as a new measurement, and
after updating the filter, it is replaced with the filtered rotation.
Overview of the method is shown in Fig. 3. Hardware is
implemented with two PointGrey USB 2.0 Firefly MV cameras
and Invensense MPU-6050 IMU mounted on a custom rig (Fig.
4). IMU operates at 500 Hz, while its clock divided by 25 is
used as a signal for triggering cameras at 20 Hz synchronous
to IMU readings (Fig. 5). This low-cost stereo-IMU system
proved to be efficient enough to obtain satisfactory results
in the experiments we conducted. The IMU based concept
provides significant improvement over the base method, which
is especially manifested in urban environments. During the
forward driving, distant features are visible and can be tracked
for a longer period of time. The rotation has no drift and the
gyroscope bias is well estimated. Interestingly, while taking
a sharp turn at the crossroad, a scene has suddenly changed,
hence no features survived the turn and therefore the drift in
the pure image based estimation has arisen. However, rotation
estimation in the Kalman filter is driven by gyroscopes and
is not affected by occasional measurement errors emerged
from sharp turns. Also, while processing two consecutive
image pairs, relative rotation between them is a priori known.
Therefore, this rotation is used in the matching phase to
predict new feature positions in the image. This prediction
significantly reduces number of outliers and also narrows the

Kalman filter

+

P3POutlier rejection
InliersFeature

matching

R

t
Features

Gyroscope

reading
ΔR prediction

ω bias

Δt

�

ΔR correction

-

Fig. 3. Overview of the IMU fusion algorithm

Fig. 4. Stereo camera with IMU

Firefly MV
MCU Trigger 20 Hz

PC

Serial port
115200 baud

USB 2.0

MPU-6050
Clock + I2C 500 Hz

Fig. 5. Hardware synchronization

TABLE I. KITTI LEADERBOARD

Method Transl. Rotation Runtime Environment
SOFT [this] 1.03 % 0.0029 [deg/m] 0.1 s 2 cores @ 2.5 Ghz
cv4xv1-sc [16] 1.09 % 0.0029 [deg/m] 0.145 s GPU @ 3.5 Ghz
MFI [6] 1.30 % 0.0030 [deg/m] 0.1 s 1 core @ 2.2 Ghz

TLBBA [17] 1.36 % 0.0038 [deg/m] 0.1 s 1 Core @2.8 GHz
2FO-CC [8] 1.37 % 0.0035 [deg/m] 0.1 s 1 core @ 3.0 Ghz

search space, which results in speeding up the performance.

VI. EXPERIMENTAL RESULTS

SOFT is evaluated on the KITTI benchmark, which provides
very thorough analysis of rotational and translational error in
urban, rural and highway scenarios. The proposed algorithm
shows an average translational error of 1.03% of the traveled
distance and 0.0029 deg/m rotational error, outperforming
all other validated methods. Table I shows current top five
stereo odometry scores from KITTI leaderboard. Two of the
estimated paths are shown in Fig. 6 and Fig. 7. More detailed
results can be found on KITTI leaderboard. These real world
scenarios appears to be very demanding, since the best methods
from synthetic datasets perform below average when moved to
the real world, which is our primary goal. Complete solution is
implemented in C++ and optimized for real-time performance.
Code is executed in two separate threads. Optimization by
threading is chosen due to suitability for embedded systems.
While GPU or SSE optimizations are still limited to certain
types of computers, wide range of CPUs have multiple cores.
The IMU based version of the system is implemented and
tested on ODROID U3 quad-core ARM based embedded
computer.

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
No tracking

SOFT
Sequence Start

Fig. 6. Reconstructed path of the KITTI00 dataset

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
No tracking

SOFT
Sequence Start

Fig. 7. Reconstructed path of the KITTI05 dataset

TABLE II. PROCESSING TIME

Method Image processing Rotation Translation Total
5 point 35 ms 60 ms 5 ms 100 ms
IMU 35 ms 0 5 ms 40 ms

Unfortunately, the KITTI benchmark, along with several
other related benchmarks, does not contain IMU data. There-
fore, the IMU based solution is tested on a self-made dataset.
However, associated groundtruth could not be acquired, and
the only measure of error is the distance from the groundtruth
endpoint, which is the same as the starting point. Fig. 8
shows estimated path overlayed over the satellite map of the
city block. The red line corresponds to estimation provided
without the utilization of an IMU unit (error 2.47%), while
the blue line corresponds to the estimated path obtained by
the IMU-based solution (error 1.39%). The groundtruth would
match the closest corresponding road path, but as such is
not specifically marked in the figure. Table II shows the
approximate processing times for proposed algorithms. The
five point based algorithm is executed on two cores of an Intel
i7 on 2.2 GHz and the time corresponds to the KITTI dataset
with images of the size 1248x376 pixels, while the IMU based
algorithm is performed on ODROID-U3 on images of the size
752x480 pixels.

Fig. 8. Path estimated from self recorded dataset

VII. CONCLUSION

In this paper, we have presented a novel algorithm for stereo
visual odometry that reduces the drift based on careful selec-
tion and tracking of stable features that we have dubbed SOFT.
The rotation is estimated with the five point method, while the
translation is obtained with the three point method. The pro-
posed approach is proven to be the best performing algorithm
using the challenging KITTI vision benchmark dataset. In the
future we intend to test different feature detectors/descriptors
in conjunction with proposed algorithm. Also, we intend to
investigate the efficiency of particular methods in urban, rural
and highway scenarios.

ACKNOWLEDGMENT
This work has been partly supported by the European Regional
Development Fund under the project Advanced technologies in
power plants and rail vehicles.

REFERENCES
[1] D. Scaramuzza, and F. Fraundorfer, ”Visual odometry [tutorial],”

Robotics & Automation Magazine, 18(4):8092, 2011.
[2] J. Engel, J. Sturm, and D. Cremers, ”Semi-Dense Visual Odometry for

a Monocular Camera,” in IEEE International Conference on Computer
Vision (ICCV), 2013.

[3] C. Forster, M. Pizzoli, and D. Scaramuzza, ”Fast Semi-direct Monocular
Visual Odometry,” in IEEE International Conference on Robotics and
Automation, 2014.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ”Vision meets Robotics:
The KITTI Dataset,” in International Journal of Robotics Research
(IJRR), 2013.

[5] D. Nistér, O. Naroditsky, and J. Bergen, ”Visual odometry,” in Proc. Int.
Conf. Computer Vision and Pattern Recognition, 2004, pp. 652-659.

[6] H. Badino, A. Yamamoto, and T. Kanade, ”Visual Odometry by Multi-
frame Feature Integration,” International Workshop on Computer Vision
for Autonomous Driving @ ICCV, December, 2013.

[7] W. Lu, Z. Xiang, and J. Liu, High-performance visual odometry with
two-stage local binocular ba and gpu, in Intelligent Vehicles Symposium,
2013, pp. 11071112.

[8] I.Krešo, and S.Šegvić, ”Improving the Egomotion Estimation by Cor-
recting the Calibration Bias,” VISAPP, 2015.

[9] A. Geiger, J. Ziegler, and C. Stiller, ”Stereoscan: Dense 3d reconstruction
in real-time,” in IEEE Intelligent Vehicles Symposium, 2011, pp. 963–
968.

[10] B. Kitt, A. Geiger, H. Lategahn, ”Visual odometry based on stereo
image sequences with RANSAC-based outlier rejection scheme,” in
Intelligent Vehicles Symposium, 2010, pp. 486-492.

[11] J. Shi and C. Tomasi, ”Good Features to Track,” 1994 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’94), 1994, pp. 593–
600.

[12] D. Nistér, ”An Efficient Solution to the Five-Point Relative Pose Prob-
lem,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
2004, pp. 756–777.

[13] E. B. Dam, M, Koch, and Martin Lillholm, ”Quaternions, interpolation
and animation,” Technical Report DIKU-TR-98/5, 1998.

[14] A. Geiger, P. Lenz, and R. Urtasun, ”Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[15] N. Trawny, and S. I. Roumeliotis, ”Indirect Kalman Filter for 3D
Attitude Estimation,” Technical Report Number 2005-002, 2005.

[16] M. Persson, T. Piccini, R.Mester and M. Felsberg, ”Robust Stereo Visual
Odometry from Monocular Techniques,” in IEEE Intelligent Vehicles
Symposium, 2015.

[17] W. Lu, Z. Xiang and J. Liu, ”High-performance visual odometry with
two stage local binocular BA and GPU,” in IEEE Intelligent Vehicles
Symposium (IV), 2013, pp. 1107–1112.

