
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

A General Framework for Tracking Multiple
People from a Moving Camera

Wongun Choi, Caroline Pantofaru, Silvio Savarese

Abstract—In this paper, we present a general framework for tracking multiple, possibly interacting, people from a mobile vision platform.
In order to determine all of the trajectories robustly and in a 3D coordinate system, we estimate both the camera’s ego-motion and the
people’s paths within a single coherent framework. The tracking problem is framed as finding the MAP solution of a posterior probability,
and is solved using the Reversible Jump Markov Chain Monte Carlo Particle Filtering method. We evaluate our system on challenging
datasets taken from moving cameras, including an outdoor street scene video dataset, as well as an indoor RGB-D dataset collected
in an office. Experimental evidence shows that the proposed method can robustly estimate a camera’s motion from dynamic scenes
and stably track people who are moving independently or interacting.

Index Terms—multi-target tracking, person detection, people tracking, RJ-MCMC Particle Filtering
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1 INTRODUCTION

UNderstanding how people move through the world
is a key problem in computer vision. There is

currently a wealth of video data of people available
from the Internet, from indoor mobile robot platforms,
and from car-mounted sensors, to name a few sources.
Accurately detecting and tracking people in video can
facilitate action understanding for better video retrieval.
Tracking in real time from a mobile robot can form
the basis for human-robot interaction and more efficient
robot performance in human environments. Detecting
and tracking pedestrians from a car can help people
drive safely, and it will keep people safe in the presence
of autonomous cars. In this paper, we tackle the problem
of detecting and tracking multiple people as seen from
a moving camera. Our goal is to design an algorithm
that can be adapted for the wide array of applications
in which person tracking is needed.

In practice, unfortunately, person tracking is extremely
difficult. Examples of the data we wish to tackle are
displayed in Fig. 1. The first challenge evident in these
images is that people’s appearances vary widely, and
people change their appearance in different environ-
ments, which complicates person detection. Despite ex-
cellent advances in detection [11], [15], it is still far from
trivial to detect people in a variety of poses, wearing a
variety of clothing, and in cluttered environments full of
occlusions. A tight field-of-view that truncates people,
as well as high contrast illumination, are additional
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difficulties often encountered in indoor environments.
To improve the odds of finding people, our system
combines multiple different detection cues, and allows
additional cues to be added or removed as needed.

Another challenge is the complexity of the motion
patterns of multiple people in the same scene. Tracking
a single person is sufficiently difficult as they move
willfully and unpredictably. Tracking multiple people,
however, is complicated by their interactions; assuming
independence between targets’ motions is insufficient.
As in Fig. 1, people stay out of each other’s personal
space and never occupy exactly the same space. On the
other hand, people may choose to move together as a
group for awhile. To model these interactions, we pro-
pose placing constraints between the targets’ motions,
partially removing the independence assumption.

In the scenarios we wish to address, the camera is
moving as well. Estimating camera motion and recon-
structing a scene is a well-studied problem when the
scene is stationary [21], however the scenes described
herein contain multiple large dynamic elements. Back-
ground subtraction is also likely to fail in these scenes.
To tackle this issue, our tracker is capable of separating
stationary and dynamic features in the scene, allowing it
to estimate the camera motion and separate it from the
motion of the targets.

Given that the mobile platform on which the camera
is mounted needs to react to people’s positions online,
for example to plan to drive around them, our tracking
method is capable of near real-time performance at 5-10
frames per second.

To address the issues discussed above, we propose
a principled method for tracking multiple people and
estimating a camera’s motion simultaneously. Our con-
tributions are as follows. First, we propose a novel model
which can naturally explain the process of video genera-
tion from a single moving camera. Second, we propose a
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Fig. 1: Typical examples of outdoor and indoor tracking scenarios. Correspondences between video frames are difficult to
compute due to camera motion and multiple dynamic subjects. People are difficult to detect due to occlusions and limited
field of view. Indoor environments are especially challenging as people tend to adopt various types of poses (standing, leaning,
sitting, etc). We aim at providing a general framework for tracking multiple people in a wide variety of difficult situations.

motion model that can capture the interactions between
targets. Third, we introduce a principled method for
fusing multiple person detection methods to build a
more robust and adaptable tracker. Finally, our system
is flexible enough to operate on video data alone, and
to integrate depth data when it is available. This unified
tracking framework is made efficient through the use
of Reversible Jump - Markov Chain Monte Carlo (RJ-
MCMC) particle filtering.

We demonstrate our method using the challenging
ETH tracking dataset from [12] which contains video
data taken from onboard a car driving through a city,
as seen in the left two images in Fig. 1. In addition, we
contribute a dataset of color and depth image (RGB-D)
data taken from onboard a robot moving in an indoor
environment, as seen in the right three images in Fig. 1.

Throughout the paper, we discuss our tracking frame-
work as it applies to the task of tracking people. How-
ever, the framework is general and could be applied to
other tracking tasks by replacing the detection compo-
nents and changing the target motion interaction model.

2 RELATED WORK

The method introduced in this paper is designed to track
multiple people in the world from a moving camera.
To solve this problem a number of challenges must be
overcome, including coping with the varying appearance
of people as they deform over time, occlusions among
people and between people and the environment, possi-
bly missing detections, and the difficulties of estimating
a moving camera’s position. In this section, we discuss
the related work designed to overcome one or more of
these challenges.
Tracking by Online Learning: To track an object whose
appearance is changing over time requires an adapt-
able object model. A number of related works seek to
address this problem through online learning, learning
the appearance model of a specific target and applying
the model to track that target [10], [5], [34], [7], [26].
For example, Comaniciu and Meer [10] used color his-
tograms created from user-initialized bounding boxes,
and tracked those models with the mean-shift algorithm.
Avidan [5] showed promising results on tracking a single
target using a boosting-based learning framework. A
common issue for these methods is tracker drift. In
addition, they all require that a target’s initial position
be provided manually.
Human Detection: One solution for improving tracker

drift and enabling automatic track initialization is the
use of person detectors. Over the last decade, algo-
rithms for detecting humans have improved a great
deal [41], [27], [11], [39], [44], [16], [15]. Modern human
detection methods are quite reliable when applied to
large pedestrians in simple scenes that include minimal
crowding, occlusion and clutter. Methods by Ferrari et
al. [16] and Felzenszwalb et al. [15] are also able to
detect humans in non-pedestrian poses with reasonable
accuracy. However, in real-world environments which
are crowded, include large amounts of occlusion and
clutter, as well as wide pose variation, none of these
methods is satisfactory. For this reason, we combine a
number of person detection cues into our system.
Tracking-by-detection: Thanks to the improvement in
human detection methods, the tracking problem can be
reformulated as a tracking-by-detection problem such as
in [44], [8], [24], [3], [43], [9]. This approach can generate
reliable tracking results if the camera is kept stationary.
Multi-target tracking problems can either be formulated
to estimate target locations online, such as in the works
of Wu and Nevatia [44] and Breitenstein et al. [8], or to
find the globally optimal association among detections
at different time stamps, such as is done by Pirsiavash
et al. [32], Zhang et al. [46] and Shitrit et al. [37] using
a linear programming framework. Methods which per-
form global optimization may produce more consistent
targets with fewer identity switches, but they require an
entire video sequence as input and so cannot be used
for real-time planning. In this paper, we instead focus
on designing an online algorithm that is applicable to
autonomous driving and robot navigation, with a focus
on higher detection accuracy. More consistent trajectories
could be obtained by applying a tracklet association
method [45] on top of our results. Also, most of the
methods which do not explicitly consider camera motion
are prone to failure when a camera moves since the
camera motion and target motions become intertwined.
Tracking with a Moving Camera: To address the chal-
lenges of tracking from a moving platform, several
approaches [43], [42], [12], [13], [9] have recently been
proposed. Wojek et al. [43], [42] proposed a probabilistic
framework to detect multiple people in a busy scene
by combining multiple detectors [43] and explicitly rea-
soning about occlusions among people [42]. However,
they did not associate detections between frames, so
no tracking was performed. In addition, they relied on
odometry readings from the car on which the camera
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Fig. 2: Given sensor inputs (i.e. images) It over time, the goals
of this work are 1) to track targets to obtain their trajectories,
{Zi

t}, in a world coordinate system, and 2) to estimate the cam-
era’s motion, Θt. Stationary geometric features from the scene,
{Gj

t}, are used to guide the camera parameter estimation.

was mounted to obtain the camera position. Our work
performs data association to track people and is capable
of estimating the camera motion. Our work is most
similar in spirit to the work by Ess et al. [12], [13], which
combines multiple detectors to estimate camera odome-
try and track multiple people at once. Unlike [12], [13],
we track targets and estimate camera motion in a unified
framework and do not require stereo information.

3 SYSTEM OVERVIEW

A pictorial overview of the problem is presented in
Fig. 2. Given a stream of sensor inputs (i.e. images) {It},
the high-level goal of our system is to determine people’s
trajectories, {Zi

t}, in a world coordinate system, while
simultaneously estimating the camera’s motion, Θt. To
stabilize the camera’s parameter estimation, a number of
features which are hypothesized to be stationary, {Gj

t},
are extracted from the scene.

A system diagram is presented in Fig. 3. The core
of the system is the RJ-MCMC particle filter tracker,
which generates proposals for subjects’ track states and
the camera state, and evaluates proposals given both
observations from the scene and a motion model.

There are three key ingredients in making such a
system perform well for person tracking. The first is the
observation model and cues that are used which must
account for the large variation in both people’s appear-
ance and scene statistics. The second is the motion model
which must account both for people’s unexpected mo-
tions as well as interactions between people. The third is
the sampling procedure for the RJ-MCMC tracker, which
must efficiently sample the space of possible trajectories
while also accounting for people’s erratic movements.

In the following sections, we will first describe the
mathematical model for our system, and then describe
each of the system components in detail.

4 MODEL REPRESENTATION

We model the tracking problem using a sequential
Bayesian framework, which seamlessly integrates both
the estimation of camera motion and multiple target
tracking. The camera parameters Θt, a set of targets’
states Zt and a set of geometric features’ states Gt

at each time frame are modeled as random variables
and the relationships among them are encoded by a
joint posterior probability. With this model, the tracking
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Fig. 3: System overview. Given an input sequence, our system
outputs trajectories for both targets and the camera’s motion in
3D world coordinates. By employing a diverse set of observa-
tion cues to generate detection hypotheses and an observation
model, our system adapts to various scenarios in a principled
manner. RJ-MCMC Particle Filtering efficiently samples the
set of possible trajectories, allowing for online use. Note that
the system is versatile enough to cope with either monocular
camera data or RGB-D sensor data.

and camera estimation problem is formulated as find-
ing the maximum-a-posteri (MAP) solution of the joint
probability. In this section, we explain our probabilistic
formulation using the notation summarized in Table 1.
Here, we keep the mathematical formulation general and
explain the details in subsequent sections.

A configuration of all the variables at time t is rep-
resented by Ωt = {Θt, Zt, Gt}. To find the most prob-
able configuration, we estimate the MAP solution of
P (Ωt|I0,...,t), which can be factored as in [4]:

P (Ωt|I0,...,t)∝P (It|Ωt)︸ ︷︷ ︸
(a)

∫
P (Ωt|Ωt−1)︸ ︷︷ ︸

(b)

P (Ωt−1|I0,...,t−1)︸ ︷︷ ︸
(c)

dΩt−1 (1)

The first term (Eq. 1(a)) represents the observation
likelihood of the model configuration at time t, Ωt,
given the sensor input at time t, It. This measures the
compatibility of a hypothetical configuration with the
sensor input. The second term (Eq. 1(b)) is the motion
model, which captures both smoothness of the trajectory
over time, as well as the target interactions. The third
term (Eq.1(c)) is the posterior probability at time t−1.

By assuming that the posterior probability at the initial
time is available, the posterior probability at an arbitrary
time t can be calculated from the posterior probabilities
from time 1 to t−1 sequentially. The best model config-
uration Ωt is then the MAP solution.

One important characteristic of this model is that it
allows the number of targets and features to vary. Tracks
can be initiated when people enter the scene, and termi-
nated automatically when people leave. The entrance or
exit of a person i either introduces or removes a variable
into the target set Zt. Similarly, a static geometric feature
j can go out of the scene when the camera moves or if
it is occluded by a dynamic element. This also enables
the model to decide which target or feature hypothesis
is actually valid as the introduction of a false detection
hypothesis will result in a lower joint probability. Despite
this changing dimensionality of Ωt, we can estimate the
posterior using Reversible Jump Markov Chain Monte
Carlo (RJ-MCMC) particle filtering [24].

5 OBSERVATION LIKELIHOOD

The observation likelihood is a measure for evaluating
which configuration Ωt best matches the input data It.
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Given a hypothesis for the configuration, Ω̂t, evaluation
is broken into two steps: 1) project each hypothesized
target and geometric feature into the input space, and
then 2) evaluate the observation likelihood given the
input data as in Eq. 2. Our input data is an image, so step
1 is equivalent to using the camera projection function fΘ
with the estimated camera parameters, Θ̂t. This method
can be generalized to other input modalities (e.g. lidar).

P (It|Ωt) =
∏
i

P (It|Zi
t ,Θt)

∏
j

P (It|Gj
t ,Θt) (2)

P (It|Zi
t ,Θt) = P (It|fΘt (Z

i
t))︸ ︷︷ ︸

target observation

, P (It|Gj
t ,Θt) = P (It|fΘt (G

j
t ))︸ ︷︷ ︸

feature observation

(3)

5.1 Camera model
We consider two different types of camera projection
functions: a simplified camera projection function [20],
[9] and a general pinhole camera projection function [19].

Simplified camera model: The simplified camera
model [20] assumes that all objects of interest rest on the
ground plane. Given the image location of the horizon
and the camera height, the model estimates objects’ 3D
locations from the top and bottom of their bounding
boxes in the image (see [20] for details).

The camera Θ is parameterized with the following
variables: focal length f , image center uc, horizon line
vh, yaw angle φ, velocity μ, camera height hΘ and 3D
location (xΘ, zΘ). For parameters Θ and object location
Z, the projection function fΘ is defined as:

Z0 =

[
R(φ) 0
0 1

]
Z+

[
xΘ

zΘ
0

]
, X = fΘ(Z0)=

⎡
⎣ fxZ

zZ
+uc

fhΘ
zZ

+vh
fhZ
zZ

⎤
⎦ (4)

where Z0 represents the location of a target in the
current camera coordinates, and X = (x, y, h) is the
corresponding bounding box in the image plane with a
fixed aspect ratio. The projection function for geometric
features is defined similarly (and is identical to the
projected location for a target’s feet.)

Pinhole camera model: If additional 3D input is avail-
able (i.e. a depth image), we employ a pinhole camera
model to obtain a more accurate camera projection.
Following the general pinhole camera model, the camera
parameterization includes the focal length f , the 3D loca-
tion (x, y, z) and the orientation angles (roll, pitch, yaw).
See [19] for details.

Θt camera parameters at time t
Zi
t a target’s state at time t (location and velocity in 3D).

Gj
t a geometric feature’s state at time t (location in 3D).

Zt = {Z0
t , Z

1
t , ..., Z

N
t }, the set of all targets’ states at time t

Gt = {G0
t , G

1
t , ..., G

N
t }, the set of all geometric features’ states

at time t
Ωt = {Θt, Zt, Gt}, the set of all random variables at time t
I0...t all sensor inputs upto time t
fΘ the camera projection function parameterized by Θ

TABLE 1: Notation definitions

5.2 Target Observation Likelihood

Given the projection of a target’s hypothesized location
into the image, the observation likelihood measures both
the validity of the target, as well as the accuracy of
the location. The localization is modeled directly via the
observation likelihood P (It|fΘt

(Zi
t)).

It is more difficult for the validity measure to adjust
to the possibility that the target does not actually exist
at all. The measure we would like to use is the ratio of
the likelihoods P (It|fΘt

(Zi
t))/P (It|fΘt

(∅)), which allows
the dimensionality of the target states variable Zi

t to
vary. However, since the likelihood of the empty set is
ambiguous, we instead model the ratio by taking a soft
max g(◦) of the hypothesis likelihood, as in Eq. 6. The
soft max makes the measure robust to sporadic noise.

In order to accommodate the wide array of data inputs
and tracking scenarios we wish to address, our system
combines a number of different detectors to evaluate the
observation likelihood. This is one of the key ingredients
in our approach. Each single detector has its strengths
and weaknesses. For example a face detector is extremely
reliable when a frontal face is presented, but uninfor-
mative if a person shows his back to the camera. We
propose to combine the ensemble of detectors by using a
weighted combination of detection responses as in Eqs. 5
and 6. Our experimental analysis shows that this helps
make our system more robust and reliable (Sec.8). For
simplicity, we adopt the log likelihood lj instead of the
likelihood Pj for each detector j with weight wj .

P
(
It|fΘt (Z

i
t)
)
∝exp

(∑
j

wj lj
(
It|fΘt (Z

i
t)
))

(5)

P
(
It|fΘt (Z

i
t)
)

P (It|fΘt (∅))
=exp

(∑
j

g
(
wj lj(It|fΘt (Z

i
t))

))
(6)

We combine seven detectors to generate the observation
likelihood: 1) a pedestrian detector, 2) an upper body
detector, 3) a target-specific detector based on appear-
ance model, 4) a detector based on upper-body shape
from depth, 5) a face detector, 6) a skin detector, and 7)
a motion detector. The model is flexible enough to allow
the addition of other observation modules as necessary
for other applications. A description of each observation
measurement follows.

Pedestrian and Upper Body Detectors
The first two observation cues are based on the distribu-
tion of gradients in the image, encoded by the Histogram
of Oriented Gradient detector (HOG) [11]. We incorpo-
rate two HOG detection models, an upper body detector
and a full body detector as trained in [11] and [16],
respectively. Using both models allows us to cope with
lower body occlusions, different pose configurations, as
well as different resolutions of people in images.

To obtain a detection response, the HOG detector
performs a dot product between the model parameter
w and the HOG feature h, and thresholds the value
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Bounding box height

Fig. 4: Left: HOG [11] positive detections. Right: the corre-
sponding confidence maps for each candidate window size
(measured by the bounding box heights). Each target projected
into the image plane corresponds to one (x, y, scale) position
in the corresponding confidence map.

(above zero). Our previous work [9] used a Gaussian
model centered on positive detections to obtain the
observation model. However, this is a brittle approach in
the case of missed detections or false positives. Instead,
in this work both the positive detections and confidence
values are used to model the observation likelihood from
the HOG detector, as inspired by [8] (see Fig.4). The
positive detector outputs and confidence value terms in
the observation likelihood are as follows:

lDet+ (It|fΘt (Z
i
t)) =

{
N(dit; fΘt (Z

i
t),Σd) if dit exists

0 otherwise
(7)

lDetc (It|fΘt (Z
i
t)) = w · h(fΘt (Z

i
t)) (8)

where N(◦;μ,Σ) is a multivariate normal distribution
with mean μ and covariance Σ, dit is the positive detector
output corresponding to Zi

t , h(◦) represents the HOG
feature from the region ◦ and w is the linear detector
model parameter vector. This detector can be easily
replaced by a more sophisticated approach as demon-
strated in our experiments (we use the Deformable Parts
Model [15] for the experiments on the ETH dataset).

Face Detector
The ability to detect frontal faces [40] has proven to be
useful for tracking. In our system, we employ the Viola-
Jones face detector [40] as implemented in OpenCV [28],
[1]. This method detects faces reliably given a face size
of greater than 24 pixels and minimal blur. The face
detector likelihood is calculated as the maximum overlap
ratio between all the face detection outputs Xk

t and the
projection of target state Zi

t into the image:

lFace = max
k

OR(Xk
t , Tf (fΘt(Z

i
t))) (9)

where Tf is the face portion of the image projection
and OR(·, ·) is the overlap ratio (intersection over union)
between two rectangles.

Skin Color Detector
The next cue used is skin color. If a person exists in a
location Zi

t , then pixels corresponding to the face region
are likely to be observed even if the face is observed
from the side view (face profile). To detect pixels with
skin color appearance, we threshold each pixel in HSV
color space and apply a median filter on the skin image
ISkin, an image of binary pixels that indicate skin region.
Although simple, we have found this approach to be

tZ i

l       = τ  - dshape s
Stemp S( f (Z ))p t

i(     ,     )
Fig. 5: The shape vector is computed from the top half of the
depth image bounding box. A binary vector of the person’s
head and shoulder area is compared to a template using the
Hamming distance.

sufficient. A more sophisticated approach (such as [22])
could be adopted to learn a statistical model for skin.
The observation likelihood is obtained by computing
the percentage of skin pixels lying in the predicted face
region of a hypothesis:

lSkin =
1

|Tf (fΘt(Z
i
t))|

∑
(x,y)∈Tf (fΘt

(Zi
t
))

ISkin(x, y) (10)

where | · | represents the area of a bounding box and
ISkin is the filtered binary skin image.

Depth-based Shape Detector
Observations can also be extracted from the depth image.
Each pixel in a depth image specifies the distance of the
pixel from the camera in the world coordinate system.
In a depth image, the head-and-shoulders outline of
a person is clearly distinguishable as shown in Fig.5.
This can be converted into the observation likelihood
lShape by taking the Hamming distance between a bi-
nary template of the head-and-shoulder region, with a
thresholded version of the depth image projection region
of Zi

t , as in Fig.5. Then the likelihood term becomes:
lShape(It|Zi

t) = τs − d(Stemp, S(fΘt(Z
i
t); It)) (11)

where τs is a threshold, Stemp is the template,
S(fΘt

(Zi
t); It) is the shape vector of Zi

t , and d(·, ·) is the
distance between template and shape vector of Zi

t .

Motion Detector
The presence of motion in a scene is a strong indicator of
the presence of a person, especially indoors. Given depth
information, motion can be efficiently identified by using
a change detector in 3D. In our implementation, we use
the octree-based change detection algorithm between the
point clouds in consecutive frames, as described in [23].
A binary motion image is obtained by projecting the
moving points into the image plane and thresholding.
The likelihood is then computed as the ratio of moving
pixels lying in the body region of a hypothesis.

lMotion =
1

|fΘt(Z
i
t)|

∑
(x,y)∈fΘt

(Zi
t
)

IMotion(x, y) (12)

where IMotion is the binary motion image.

Target Specific Appearance-based tracker
A detector often fails to detect the target even when
it is present (false negatives). Appearance-based track-
ing [10], [5], [7] can be used to help link consecu-
tive detections. By limiting the use of appearance-based
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tracking to a small number of consecutive frames, issues
due to tracker drift can be minimized. We employ a
color-based tracking algorithm [10] to provide target-
specific tracking information at each time frame. Denote
the output for the tracker for target Zi at time t as Y i

t .
Then the color-tracker observation likelihood term is:

lTr(It|fΘt(Z
i
t)) = N(Y i

t ; fΘt(Z
i
t),Σtr) (13)

Note that for many of these cues, such as face detection,
skin color detection and motion detection, a positive
observation increases the likelihood that a person is
present, but the lack of observation does not decrease
the likelihood that a person is present.

Geometric Feature Observation Likelihood
In addition to detecting and localizing targets, we also
want to compute the camera’s location and orientation
in the world. As in previous tracking work (i.e. the KLT
tracker [38]), this is accomplished by detecting stationary
features in the world which we call geometric features.

Observing geometric features can be interpreted as a
generative process in which features in the world are
projected onto the image plane and then detected by an
interest point detector. The detection process is noisy,
so the observation likelihood is modeled as a normal
distribution centered on the projection of the feature,
fΘt

(Gj
t ). Since some of the hypothesized features may

become occluded between frames, or may in fact be non-
stationary features, we introduce a uniform background
model for invalid features.

Let the interest point corresponding to a geometric
feature Gj

t be τ it . Then the likelihood can be written as:

P (It|fΘt(G
j
t)) =

{
N(τ i

t ; fΘt(G
j
t),ΣG) if Gj

t is valid
KB if Gj

t is invalid
(14)

Through the combination of the Gaussian component
for valid features and the uniform component for in-
valid features, the inference process rejects outliers and
estimates camera motion more robustly.

6 MOTION PRIOR

We now discuss the motion prior term P (Ωt|Ωt−1) in
Eq. 1. The motion model encodes smooth transitions
between configurations through time via three compo-
nents: 1) a camera motion prior, 2) a target motion prior
and 3) a geometric feature motion prior, as follows:

P (Ωt|Ωt−1) = P (Θt|Θt−1)︸ ︷︷ ︸
camera

P (Zt|Zt−1)︸ ︷︷ ︸
targets

P (Gt|Gt−1)︸ ︷︷ ︸
geom.features

(15)

These three motion priors are discussed in detail below.

6.1 Camera Motion Prior
The motion of a camera over a short period of time can
be assumed to be smooth both in position and rotation,
and so can be modeled using a linear dynamic model
with constant velocity.

For scenarios in which the simplified camera model
is used, a constant perturbation model is employed for

the horizon, camera height, velocity, and yaw angle, i.e.
φt+1 = φt + ε (where ε is an error term that accounts for
uncertainty.) The location update is:

xt+1 = xt + vtcos(φt) + ε, zt+1 = zt + vtsin(φt) + ε (16)

The constant perturbation model is used with the
pinhole camera model for all location-related camera
parameters (x, y, z, roll, pitch, yaw). The internal camera
parameters (focal length, skewness, optical center, etc.)
are assumed to be provided for both parameterizations.
6.2 Target Motion Prior
The motion model for the moving targets includes two
factors: the existence of a target at time t, Pe, and the
smoothness of its motion, Pm. The former encodes the
probability of the person’s presence at adjacent time
stamps; a person is more likely to exist at time stamp t
if they existed at time stamp t− 1, and vice versa. Then
full target motion model is:

P (Zt|Zt−1) = PEx(Zt|Zt−1)PMotion(Zt|Zt−1) (17)

In this work, we consider two possible ways to model
the targets’ motions: i) independent motion and ii) in-
teractions between people affect their motion. The inde-
pendence assumption has been traditionally used to sim-
plify model inference. However, recent studies [36], [31],
[24] including our own [9] suggest that modeling the
interaction between targets enhances tracking accuracy
significantly. We now describe the two terms in Eq.17.

Existence Prior (PEx(Zt|Zt−1))
The existence prior is modeled by two binomial prob-
abilities, the first of which is parameterized by the
probability of a target staying in the scene from one
time to another (pts). The second is parameterized by the
probability of a new target entering the scene (pte).

PEx(Zt|Zt−1)=
∏
i

PEx(Z
i
t |Zi

t−1) (18)

PEx(Z
i
t |Zi

t−1)=

⎧⎪⎨
⎪⎩

pts if i exists at t− 1 and t

1−pts if i exists at t− 1 but not t
pte if i exists at t but not t− 1

1−pte if i does not exist at either time

(19)

Independent Targets (PMotion(Zt|Zt−1))
The motion prior based on independent targets can be
expressed as:

PMotion(Zt|Zt−1) =
∏
i

PMotion(Z
i
t |Zi

t−1) (20)

The motion prior for a particular target,
PMotion(Z

i
t |Zi

t−1), can be modeled by a constant
velocity model, giving the update rule:

Zi
t = Zi

t−1 + Żi
t−1dt, Żi

t = Żi
t−1 + εZ (21)

where εZ is a process noise for individual target’s motion
that is drawn from a normal distribution.

Interacting Targets
In real world crowded scenes, targets rarely move in-
dependently. Often, targets stay out of each other’s
personal space and they never occupy the same space. At
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Fig. 6: Left: the interactions between people are modeled by
pairwise potentials, linking their positions and velocities in
the motion model. Middle and Right: the potential func-
tions for repulsion and group interaction, respectively, over
different distances (x-axis) and velocities (y-axis) in the jet
color map. Function gradients are shown as red arrows. The
repulsion model pushes people apart, while the group motion
enforces similar velocity. The potentials were generated with
cr = 2, sg = 3, tg = 1, cg = 10.

other times, some targets may choose to move together
as a group for awhile. One of the contributions of our
work is to introduce such interactions into the motion
model through a repulsion model and a group model.

We model target interactions by using an MRF as in
Fig.6. In particular, interactions are captured by pairwise
potentials between the current targets’ states. Since two
targets cannot both repel and form a group at the same
time, a hidden mode variable βi1,i2

t selects between the
interaction modes. The model then becomes:

P (Zt|Zt−1) =
∏
i1<i2

ψ(Zi1
t , Zi2

t ;βi1,i2
t )

∏
i1<i2

P (βi1,i2
t |βi1,i2

t−1 )

N∏
i1=1

P (Zi1
t |Zi1

t−1) (22)

where ψ(Zi1
t , Zi1

t ;βi1,i2
t ) is the pairwise potential.

Mode variable: The mode variable selects the interaction
type for a given pair of targets. The transition probability
P (βi1,i2

t |βi1,i2
t−1 ) is modeled as pβ if βi1,i2

t = βi1,i2
t−1 or 1−pβ

otherwise. The mode variable selects the interaction type
such that:

ψ(Zi1
t , Zi2

t ;βi1,i2
t ) =

{
ψg(Z

i1
t , Zi2

t ) if βi1,i2
t = 1

ψr(Z
i1
t , Zi2

t ) otherwise
(23)

Repulsion: The repulsion potential pushes apart targets
that are too close together. Let ri1,i2 be the distance be-
tween two targets in 3D, and let cr control the repulsion
force. Then the repulsion potential is:

ψr(Z
i1
t , Zi2

t ) = e
− 1

crri1,i2 (24)

The repulsion between two targets is higher as they get
close to each other, and approaches 0 when they are far
apart. Two targets will push each other away unless they
have a group relationship and βij

t = 1.
Group Motion: Targets can also interact as a group, re-
maining at the same small distance from each other and
moving in the same direction, Żi1

t ≈ Żi2
t . By modeling

the proximity between targets using a sigmoid function
of their distance, we obtain:

ψg(Z
i1
t , Zi2

t ) =
1

1 + esg(ri1,i2−tg)
e−cg‖Żi1

t −Żi2
t ‖ (25)

where cg controls the velocity similarity, sg controls the
sigmoid slope, and tg controls the distance.

The proposed interaction model improves localization
when the reliability of the detection results is affected by

noise. For example, detectors have trouble distinguishing
between two people in close proximity whose bounding
boxes overlap. In this case, the repulsion model will keep
the hypotheses separate. On the other hand, the group
interaction model provides constraints on the location of
neighboring targets if at least one of the targets is confi-
dently detected. Our model can be naturally extended
to incorporate other interaction types, such as people
approaching for a handshake.

6.3 Geometric Feature Motion Prior
The geometric features’ motion prior captures whether
the features are valid and whether their positions are
consistent with those in previous times. To estimate the
camera motion robustly, the inference must separate the
stationary background features from dynamic ones. Let
PV al be the validity prior and PCons be the consistency
prior. Then:

P (Gt|Gt−1) = PV al(Gt|Gt−1)PCons(Gt|Gt−1) (26)

Similar to the target existence prior, the validity prior
is modeled by two binomial probabilities which are
parameterized by the probability of staying in the scene,
pgs , and the probability of entering the scene, pge . This
encodes the intuition that a valid (stationary) geometric
feature will likely remain valid in the next time stamp.
The validity prior becomes:

PV al(Gt|Gt−1)=
∏
j

PV al(G
j
t |Gj

t−1) (27)

PV al(G
j
t |Gj

t−1)=

⎧⎪⎨
⎪⎩

pgs if j is valid at t− 1 and t

1−pgs if j is valid at t− 1 but not t
pge if j is valid at t but not t− 1

1−pge if j is not valid at t and t− 1

(28)

Since the features are defined as stationary 3D
world points, a single feature’s consistency prior
PCons(Gt|Gt−1) can be modeled by an indicator function
I to enforce the stationary assumption:

PCons(Gt|Gt−1) =
∏
j

I(Gj
t = Gj

t−1) (29)

Overall, the target and geometric features motion pri-
ors ensure that all of the configuration variables change
smoothly, but can also appear, disappear and interact.
This makes our model both robust and flexible.

7 TRACKING WITH RJ-MCMC
We have thus far discussed how to evaluate proposed
tracking states through the observation likelihood and
the motion model, terms (a) and (b) of Eq. 1, and the
left half of the system diagram in Fig. 3. We now need
to explore the space of these hypotheses to find the
MAP solution to the posterior distribution P (Ωt|I1,...,t).
Unfortunately, the structure of the posterior is extremely
complex because: i) both targets and geometric features
may change their cardinality in time which, in turn,
changes the dimensionality of Ωt, ii) Ωt has high di-
mensionality and iii) the interaction model couples states
together. As a result, traditional methods for obtaining
MAP solutions are difficult to apply.
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To efficiently explore the configuration space and ob-
tain the MAP solution, we use the Reversible Jump
Markov Chain Monte Carlo Particle filtering method (RJ-
MCMC) introduced by Khan et al. [24] (see the right
half of the diagram in Fig. 3). The RJ-MCMC algorithm
enables the addition and removal of targets via random
jump proposal moves between dimensions . The well-
known “sample impoverishment” problem is avoided by
re-sampling via MCMC sampling at each time frame,
thus reducing the correlation among samples [30]. Un-
like Khan et al., however, our goal is to estimate the
camera motion and identify target interaction as well as
track multiple moving targets, so we need to explore
the combined configuration state space. To this end, an
important contribution of this work is the introduction
of additional jump proposal moves to the RJ-MCMC
algorithm.

7.1 RJ-MCMC sampling
As in Eq. 1, the goal of tracking is to find the state that
maximizes the posterior configuration:

Ω̂t = argmax
Ωt

P (Ωt|I1,...,t) (30)

We apply RJ-MCMC to obtain the posterior
P (Ωt|I1,...,t). At each timestep, we approximate the
posterior by a number of samples:

P (Ωt|I1,...,t) ≈ {Ω(r)
t }Nr=1 (31)

where N is the number samples and Ω
(r)
t is the rth

sample. These samples can be obtained by performing
RJ-MCMC sampling on the posteriors from 1 to t. Given
the set of samples at time t−1, the posterior distribution
at t can be approximated as:

P (Ωt|I1,...,t) ∝ P (It|Ωt)
∑
r

P (Ωt|Ω(r)
t−1) (32)

In this section, we explain the details of our pro-
posal distribution and sampling. Section 7.3 explains the
acceptance ratio for the Metropolis-Hastings algorithm.
In the remainder of this section, we assume that a
weak detection hypothesis Xt and the correspondences
between targets and detections are available to guide
the sampling. The detections are necessary to help ini-
tiate targets and bias sampling. Notice our algorithm is
capable of accommodating missing detections and false
positives as well.

7.2 Proposal Moves
As explained in Sec. 4, the configuration variable is
composed of three components, Ωt = {Zt, Gt,Θt}. Sam-
pling from the whole configuration variable’s space
results in very slow convergence to the steady state
distribution due to high dimensionality. Thus, instead,
we randomly choose one variable to sample at a time.
More specifically, one of targets, geometric features or
camera parameters is randomly chosen and its state is
randomly perturbed to propose a new sample. Following
the Metropolis-Hasting rule, the proposed sample is

accepted or rejected to construct the Markov Chain,
{Ω(0)

t ,Ω
(1)
t , ...Ω

(N)
t }.

Let the proposal distribution be Q(Ω′t,Ωt). Also, let QZ

be the target proposal that is perturbed with probability
qz , QG be the geometric feature proposal that is per-
turbed with probability qg and QΘ the camera proposal
which is perturbed with probability qΘ. Then:

Q(Ω′t,Ωt)=qZQZ(Ω′t,Ωt) + qGQG(Ω′t,Ωt) + qΘQΘ(Ω′t,Ωt) (33)

For example, assume that the geometric proposal is
randomly chosen. Then, upon perturbation, the new
configuration will be Ω

(r+1)
t = {Z(r)

t , G
(r+1)
t ,Θ

(r)
t }. Only

a single geometric feature’s state will be changed in
G

(r+1)
t , and the remaining terms will remain unchanged.

Target Proposal QZ

The target proposal QZ generates a new sample Z
(r+1)
t

from the current sample Z
(r)
t . The information contained

in Z
(r)
t includes the status of each target’s presence

and state, which has variable dimensionality depending
on the number of targets present. Thus, the proposal
distribution must allow efficient exploration of a space
with varying dimensionality. This efficient exploration
is accomplished through the use of jump moves.

We define a set of six reversible jump moves: Stay,
Leave, Add, Delete, Update and Interaction Flip. Each move
is designed to act as a reversible counterpart of another
move in the set (this guarantees that the Markov Chain
satisfies the detailed balance condition). For example Stay
and Leave counteract each other. During exploration, one
of the six moves is chosen randomly with probabilities
of qS , qL, qA, qD, qU , and qI , respectively. Below, we
describe each jump type.

Stay: Let S
(r)
t be the set of targets that existed in

Zt−1 but are not in sample Z
(r)
t . The stay move

inserts one of these targets, i, into sample Z
(r+1)
t .

The specific target to insert is chosen with uniform
probability. Unlike [24] (which samples from only
the previous posterior P (Zi

t |Zi
t−1)), we sample the

new target location from a mixture distribution of
P (Zi

t |Xi
t) and P (Zi

t |Zi
t−1), where Xi

t is a corresponding
detection. This makes the sampling process more robust
to accommodate moving targets. If no detection is
available for target i, the new proposal is sampled from
the previous posterior distribution. The proposal is
then:

QS(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|S(r)
t
|
Qi(Z

i(r+1)
t ) if i in S

(r)
t

0 otherwise
(34)

where Qi(Z
i(r+1)
t ) is equal to P (Zi

t |Zi
t−1)

when there is no corresponding detection, and
1
2 [P (Zi

t |Zi
t−1) + P (Zi

t |Xi
t)], otherwise.

Leave: If a target Stays in sample Z
(r)
t , the Leave

move proposes to remove the target from the new
sample Z

(r+1)
t . This is the reverse of Stay. Let L

(r)
t

be the set of targets that exist in Z
(r)
t and existed in

Zt−1. From this set, a target i is selected with uniform
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probability and removed. The proposal is then:

QL(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|L(r)
t
|

if i in L
(r)
t

0 otherwise
(35)

Add: This proposal initiates a new target from the new
detections, Xnew

t , which do not correspond to any exist-
ing targets. Let A(r)

t = Xnew
t \Z(r)

t be the new detections
that are not in the current target set. From this set, one
target i is randomly selected with a uniform probability.
The new location of target i, Zi(r)

t , is proposed from the
distribution P (Z

i(r)
t |Xi

t). The corresponding proposal
distribution can be written as

QA(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|A(r)
t
|
P (Z

i(r)
t |Xi

t) if i in A
(r)
t

0 otherwise
(36)

Delete: Delete is the reverse jump move of Add.
Among new detections in the previous sample, D(r)

t =

Xnew
t ∩ Z

(r)
t , one target i is randomly drawn with uni-

form probability and removed.

QD(Z
(r+1)
t ;Z

(r)
t ) =

{
1

|D(r)
t
|

if i in D
(r)
t

0 otherwise
(37)

Update: Update proposes a new location for a target.
From the targets in sample Z

(r)
t , a target i is randomly

selected and a new location is proposed from the dis-
tribution Q(Z

i(r+1)
t ;Z

i(r)
t ) ∼ N (Z

i(r)
t ,ΣU ). Note that one

Update move can be “reversed” by another Update move.
The proposal can be expressed as

K
(r)
t = L

(r)
t ∪D

(r)
t

QU (Z
(r+1)
t ;Z

(r)
t ) =

{
1

|K(r)
t
|
Q(Z

i(r+1)
t ;Z

i(r)
t ) if i in K

(r)
t

0 otherwise
(38)

note that K
(r)
t is the set of target indices that exist in

the current target set Z(r)
t .

Interaction Flip: The final target proposal considers
pairs of targets and their interactions. Interaction Flip
proposes an alternative interaction mode for a selected
pair of targets, βi1,i2

t . Among all possible pairs of targets
in a sample Z

(r)
t , a pair of targets (i1, i2) is randomly

selected and the mode of interaction is flipped between
repulsion and group interaction, or vice versa, with
probabily pf .

QI(Z
(r+1)
t ;Z

(r)
t )

=

{
2Q(β

i1,i2,(r+1)
t

;β
i1,i2,(r)
t

)

|K(r)
t
|(|K(r)

t
|−1)

if i1, i2 in K
(r)
t , i1 �= i2

0 otherwise
(39)

Geometric Feature Proposal QG
Similarly to the target states in Zt, the geometric
features’ states stored in Gt also need to be updated.
Gt is also a high dimensional vector with a variable
dimensionality. Thus, we use the same scheme as that
used for targets to update it. To update the geometric
feature states, we use the proposal moves: Stay, Leave
and Update. As for the target proposals, one of the
proposals is randomly chosen with probability of qS ,
qL and qU , respectively. Note that since the validity of

features can only be defined by comparing their location
in different time frames, we do not use the Add and
Delete moves in feature proposals. That is, in order to
verify whether a feature is stationary or not, we assume
we observe it for at least two adjacent frames. All the
newly introduced features are automatically added
into the feature set in the time frame, and the validity
of features is examined by comparing the observed
position and the predicted position using Stay and Leave
moves in the subsequent frames.

Stay: Similarly to the Stay move for target proposals,
the Stay move proposes to keep feature j that was in
Gt−1 but is not in G

(r)
t . With a slight abuse of notation,

let S(r)
t be the set of features which are in Gt−1 but not

in G
(r)
t and let one of these be chosen with uniform

probability. The location of the feature is drawn from
Pc(G

j(r+1)
t |Gj

t−1), which gives:

QS(G
(r+1)
t ;G

(r)
t ) =

{
1

|S(r)
t
|
Pc(G

j(r+1)
t |Gj

t−1) if j in S
(r)
t

0 otherwise
(40)

Leave: The Leave move for geometric features follows the
same structure as the Leave move for target proposals.
Let L(r)

t be the set of features that exist in both G
(r)
t and

Gt−1.

QL(G
(r+1)
t ;G

(r)
t ) =

{
1

|L(r)
t
|

if i in L
(r)
t

0 otherwise
(41)

Update: Similarly to the target Update proposal, we
randomly select a geometric feature and propose a new
location for the feature by adding gaussian noise. Since
geometric features are defined to be static, it is not
necessary to explore different locations for an existing
feature. The motion consistency prior for the features
is defined to be an indicator function. As a result, any
new state G

j(r+1)
t that is different from Gj

t−1 will have 0
probability and, thus, perturbations are only applied to
newly added features, Nt = G

(r)
t \Gt−1.

QG(G
(r+1)
t ;G

(r)
t ) =

{
1

|N(r)
t
|
Q(G

j(r+1)
t ;G

j(r)
t ) if j in Nt

0 otherwise
(42)

Similarly to the update proposal for targets,
Q(G

j(r+1)
t ;G

j(r)
t ) is modeled by a normal distribution

N (G
j(r+1)
t ;G

j(r)
t ,ΣG) parameterized by ΣG.

Camera Proposal QΘ

The final component we need to sample is the camera
state. Since there is only one camera, we can model
the camera state proposal QΘ(Θ

(r+1)
t ; Θ

(r)
t ) by a simple

normal distribution N (Θ
(r+1)
t ; Θ

(r)
t ,ΣΘ).

7.3 Acceptance Ratio
Following the Metropolis Hastings algorithm, we com-
pute the acceptance ratio of the new sample Ω

(r+1)
t by

the product of the three ratios:

a =
P (It|Ω(r+1)

t )

P (It|Ω(r)
t )

P (Ω
(r+1)
t |I1,2,...t−1)

P (Ω
(r)
t |I1,2,...t−1)

Q(Ωr
t ; Ω

r+1
t )

Q(Ωr+1
t ; Ωr

t )
(43)
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Fig. 7: FPPI vs miss-rate curves for the sequences Left: ETH-
Linthescher, Seq2 and Right: ETH-Bahnhof, Seq3. The papers with
* reports only one recall and fppi and require all the images in
a batch as an input.

The first term expresses the ratio between the image
likelihoods; the second term is the ratio between ap-
proximated predictions; the last term encodes the ratio
between proposal distributions. Since we change the
state of only one target’s presence or location at a time,
most of the factors can be cancelled out in the above
computation. This characteristic makes the algorithm
efficient and capable of processing videos in real-time.

8 EXPERIMENTAL EVALUATION

We demonstrate our proposed algorithm using two dif-
ferent types of data inputs and three datasets. The first
dataset is a part of the ETH dataset [12] that includes
the sequences ETH-Linthescher and ETH-Bahnhof (seq02
and seq03 in [12]). This data consists of video sequences
recorded with a moving camera in densely populated
urban streets with pedestrians. The videos have a frame
rate of ∼14Hz and a resolution of 640×480 pixels.

The second and third datasets are collected using a
Kinect RGB-D camera [29], [33] and consist of video
sequences associated with depth maps (RGB-D). Both of
the datasets contain longer video segments and tracks
than previous datasets, making data association and
camera motion estimation more difficult. The first RGB-
D dataset (we call it the Kinect office dataset) is acquired
using a static Kinect mounted approximately 2 meters
high (and tilted down) in an office. This set contains 17
videos, typically 2 to 3 minutes long. People in these
scenes take on different poses (e.g. sitting on a chair,
standing up), are observed from different view points
(front, side, 3/4 rotation) and are subject to various de-
grees of occlusions, inter-occlusions and self-occlusions.
The second RGB-D dataset (we call it the Kinect mobile
dataset) is collected from a Kinect mounted on a mobile
platform (a PR2 robot). The robot was driven (tele-
operated) around an office building, while sequences of
people performing daily activities in offices, corridors,
hallways and cafeteria were acquired. The sequences
include various configurations where the camera and
targets are moving at the same time, the targets are lo-
cated at different distances from the camera, the number
of targets in the scene are changing over time, and targets
are subject to occlusions, illumination condition varies in
time, etc. This dataset includes 18 video sequences.

In both Kinect datasets, humans are hand-annotated
with bounding boxes around upper bodies in each im-
age. Targets’ 3D locations are inferred from the bounding
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Fig. 8: The camera trajectories (long dark-blue lines) estimated
from the sequences ETH-Linthescher (left) and ETH-Bahnhof
(right). Targets’ trajectories (short multi-color lines) are also
shown for illustration purposes.

boxes and depth images (where available). The annota-
tion is provided on four images every second. In addi-
tion, ground truth odometry information of the camera’s
location in 3D space is also provided for evaluation
purposes. In the Kinect mobile dataset, the odometry is
obtained via the robot localization using the ROS sys-
tem [2], which utilizes multiple sensor inputs as well as
a known building map.

8.1 Implementation Details
The overall system flow is as follows. Given a sensor
input at each time frame, a set of weak detection hy-
potheses Xt of human targets in the scene are gener-
ated using the observation cues. The correspondences
between the predicted locations of targets, Ẑt, and the
weak hypotheses are identified using the Hungarian
algorithm [25]. Geometric features (a maximum of 40)
are detected using the SURF detector [6] and tracked
using the KLT tracker [38]. For the RGB-D data, we
include depth information.

The feature trajectories, sensor inputs, detection hy-
potheses and previous time posterior distribution are
passed to the RJ-MCMC algorithm to estimate the pos-
terior at time t. We draw 5000 samples from which the
initial 1000 samples are discarded (burn in) and only
every 100th sample is kept for the posterior distribution
to avoid high correlation among samples (thinning). The
MAP approximation of the new camera and targets’
states is given by the mean of the posterior samples,
{Ω(r)

t }Nr=1. In order to improve the computational effi-
ciency, we remove the trajectories that generate fewer
than 10% of the samples. 1

To account for the different sensor modalities in each
of the test sets, the experiments below were run with
two different system setups.
ETH datasets: In each ETH sequence, only 2D informa-
tion is used, therefore we employ the simplified version
of the camera projection function (see Section5.1). In ad-
dition, the people are often quite small, so we cannot use
depth, faces, skin detection or 3D-based motion for this
data. Instead, we use the Deformable Parts Model (DPM)
detector [15] and color-based meanshift tracker [10] as
the observation cues. The detection cues correspond to

1. In practice, a post-processing smoothing step might be added to
avoid having “jittery” samples in the posterior distribution. Including
this step in the evaluation, however, can hide the performance issues of
the underlying tracker, so for transparency we have presented results
without smoothing.
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Fig. 9: Qualitative examples of tracking and camera estimation on the ETH datasets, ETH-Linthescher and ETH-Bahnhof. Each
set of tracking examples is shown in two rows: the target trajectory and detection overlaid on the image (top) and a top-down
projection onto the ground plane (bottom). Each target’s trajectory is shown in a distinct color. In the top-down view, the V-
shaped line indicates the camera’s field of view, and the tail behind the V is the camera center’s location over time. Notice the
long target paths which indicate stable tracking.

DPM detections with confidence greater than 0.5. Note
that as shown in [13], depth may help to further improve
the detection rate. All of the system parameters are held
constant for all of the sequences.
Kinect datasets: All the observation cues described in
Section 5 are used in these experiments. We incorporate
the upper and full body HOG detectors as trained by
[16] and [11], and as implemented in OpenCV [1] to run
on the GPU. Although the DPM detector [15] is more
accurate, the speed of the GPU-based HOG detector
is required. A 640x480 pixel image can be processed
in 100∼200 milliseconds. We also use the face detector
implemented in OpenCV. Skin pixels are identified by
thresholding HSV values between (2, 60, 40) and (15,
200, 200). Finally, the octree-based motion detector is
discretized to 3cm. The weak detection hypotheses Xt

consist of the HOG detections (upper and full-body), face
detections, as well as 3D point clusters [35].

8.2 Evaluation on the ETH dataset
We first study the single-frame detection accuracy on
the video sequences ETH-Linthescher and ETH-Bahnhof
(Fig.7) and compare it to the baseline methods: the
DPM detector [15], the method by Wojek et al. [42]
and the system by Ess et al. [13]. As a metric, we
compute single-frame detection accuracy via the overlap
ratios between the ground truth bounding boxes and
the tracked bounding boxes. True and false positives are
identified among such detections following the PASCAL
challenge protocol [14]. The confidence of each target is
measured as the number of valid samples. Note that we
use the extended annotation from [42] for the evaluation
of ETH-Linthescher but we use the annotation in [13] for
the evaluation of ETH-Bahnhof. The extended annotation

decreases the minimum person-size from 60 pixels to 48
pixels. As in [42], [13], we discard detections and anno-
tations that are smaller than 60 pixels in the evaluation.

To show the adaptability of our system, we show
experiments using two different DPM models as learned
from the the INRIA [11] and the VOC09 [14] datasets.
The results in Figure 7(left) show that our method
(Ours+INRIA and Ours+VOC curves) improves detec-
tion accuracy over the two DPM baselines (DPM IN-
RIA and DPM VOC), and obtains better or comparable
results than the system in [13]. Note that, as observed
by Ess [13], tracking algorithms often produce inferior
detection results to their baseline detector since the
tracker requires multiple frames to initiate tracking and
also holds on to targets a few frames after they disappear
(shown as thin bounding boxes in Figure 9). Neverthe-
less, our system produces better detections than the base-
line detector. Wojek et al. [42] produce better detections
than our system, however, they do not perform tracking,
nor do they estimate the camera’s trajectory. Also, Xing
et al. [45] reported slightly better accuracy than ours, but
the algorithm require all the images are given in a batch.
We observe that our method (OURS+INRIA) performs
slightly worse than the DPM baseline (DPM INRIA) as
shown in Figure 7(right). We believe that this is due
to the projection error that is introduced by the lens
(barrel) distortion in the ETH-Bahnhof which contains
un-rectified images as stated by the authors 2. Such
projection error prevents the algorithm from estimating
targets 3D states accurately, thus producing an overall
inferior detection accuracy.

2. Please see http://www.vision.ee.ethz.ch/∼aess/dataset/ for de-
tails. Notice that the ETH-Linthescher appears to be rectified.
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(a) (b) (c)
Fig. 10: Top row: results on the Kinect office dataset. Bottom row:
results on the Kinect mobile dataset. (a) Baseline comparison
versus the Deformable Parts Model (DPM) [15], [16]. Our
system outperforms both the full- and the upper-body DPMs.
(b) System analysis where contributions of each observation
cue are visualized with different plots. The ‘Full’ observation
includes all components. The other curves show the results
obtained by removing specific components (such as the face
detector). Notice that the depth mask is the most important
cue, followed by the HOG detectors. The other components’
contributions are situation-dependent and on average they
appear less important. (c) Log Average Miss Rate (LAMR) over
different distance thresholds. Detections were considered true
positives if they were within 30cm in height and the distance
threshold in depth from the ground truth. Results are shown
for all the data, and also broken down for two distance ranges:
near (detections larger than 60 pixels in height) and far (smaller
than 60 pixels).

We also show the results of camera estimation in Fig-
ure 8 (long dark-blue lines). The (x, z) plane is defined
along the camera coordinate system in the first frame of
each video sequence, and the third dimension is time.
Although no ground truth is available for the camera,
we can qualitatively see that in the ETH-Linthescher
sequence, the camera makes a left turn around the 150th

frame, which matches what we observe in the video
sequence. Afterwards the camera moves approximately
straight ahead until the end of the video. The camera mo-
tion in the ETH-Bahnhof sequence is correctly estimated
as going roughly straight through the crowd.

8.3 Evaluation on the Kinect datasets

Next we demonstrate our method using the two Kinect
datasets. As before, we begin by examining the detection
accuracy. We compare our system against the DPM
full body and upper body detectors as trained in [16].
Figure 10(a) shows the FPPI vs miss-rate curves for
the three approaches. In the legend, we also provide
the log-average miss rate (LAMR) proposed by [42]. As
in [42], the LAMR is computed by drawing equally
spaced samples in log space of the FPPI. We incorporate
two evaluation protocols to determine a true positive.
The first is based on the bounding box overlap protocol
from PASCAL [14]. The second is based on a 3D distance
threshold for localization.

Our algorithm outperforms both baseline methods
significantly; there is 13% improvement in LAMR over
both baselines on the Kinect office dataset, and 7% over
the upper body DPM detector and 20% over the full

body detector on the Kinect mobile dataset. Notice that we
achieve such improvement even though we employ the
weak HOG detector for detecting targets. As expected,
the full body detector does not work well in the indoor
scenario due to frequent occlusions, tight field of view,
and unconventional poses such as sitting.

Next, we compare the contribution of each observation
cue to our system. In this experiment, we turn off one de-
tection cue at a time and compare the resulting detection
accuracies in Figure 10(b). Turning off the depth shape
detector (the No Depth curve) is the most detrimental
to the system. Turning off both of the HOG detectors
also results in a clear decrease in performance. Turning
off the other observation cues has less obvious impact.
This can be explained by the fact that the other cues
are situation-dependent, and so their contribution is not
evident when averaging over the dataset. For example,
the face detector is a very strong and reliable cue when
there is a large frontal face in the scene. However, often
the person is far from or turned away from the camera,
making the face detector useless, or worse, creating noise
in the system. A similar argument can be made about
motion detection. The fact that our system is able to
perform well despite the variability of its individual
components is a testament to its robustness. As future
work, we would like to i) incorporate other types of
detectors, such as the DPM [15] or a Hough Voting-based
detector [27], and ii) study a principled way to learn the
model weight wj associated with each detector (Eq.5) in
order to further improve robustness of the system.

Finally, we evaluate our algorithm’s localization accu-
racy. In Figure 10(c), we show the LAMR measure over
different 3D distance thresholds. Our method is more
accurate in detecting people less than approximately 5
meters from the camera than those past 5 meters. This is
an expected effect since the Kinect provides virtually no
depth information past 5 meters, and in fact the depth
information past 3 meters is very noisy.

Overall, experiments show that our algorithm outper-
forms state-of-the-art detectors. In addition, the fusion of
multiple detection cues provides a more reliable final re-
sult and is capable of handling the variable performance
of each individual detector. Selected tracking examples
are shown in Figure 13. As shown in these results, the
proposed method can reliably detect and track people
in challenging indoor scenarios including occlusion be-
tween people, people in various poses, truncated body
parts, and clutter.
Camera Estimation: Finally, we evaluate our system’s
ability to estimate the camera parameters. We com-
pare our results against a baseline method which is
constructed as follows. Given the feature trajectories,
we compute the rotation matrix Rt−1

t and translation
vector T t−1

t of the camera between consecutive frames.
Using the depth provided by the RGB-D sensor, we can
compute Rt−1

t and T t−1
t using the orthogonal Procrustes

problem [18]. To cope with dynamic elements in the
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Fig. 11: Quantitative evaluation of camera localization. The
mean and standard deviation of the error in each camera
parameter estimation over different time spans.

scene and add robustness, we add a RANSAC [17] step
on top of the estimator.

The comparison is presented in Figure 11. Since our
method localizes the camera online, we measure the dif-
ference between parameters in consecutive time stamps.
For all pairs of time stamps ti and tj with temporal
gap tg (tj = ti + tg), we compute the transformation
that maps the camera coordinate system of ti to tj .
Such transformations are obtained for both the ground
truth and the two estimations. The error between the
transformations of ground truth and each estimation
is reported for different time intervals (tg). Figure 11
shows the mean and standard deviation of the error. The
amount of error tends to increase with the time span
due to error accumulation in the estimation. We report
the estimation accuracy for each variable: translation
(x, y, z) and rotation (roll, pitch, yaw). Each row in
Figure 12 shows the estimated parameters over time for
four different sequences. The ground truth is in red, the
baseline in green, and our system is in blue.

As demonstrated in these results, our method is capa-
ble of robustly estimating camera motion under difficult
conditions in which the baseline method fails to localize
the camera. These scenes are challenging due to 1) lack of
dominant stationary scene elements, 2) lack of a motion
model for the camera or targets. Our method is able to
cope with such challenges by 1) jointly identifying mov-
ing targets and static features in the estimation process,
2) using high level semantics (targets) as well as local
features, and 3) incorporating the camera’s motion prior.
We observe that our method can localize the camera very
accurately except for few very hard cases; e.g. the camera
was facing a featureless wall around the 1000th frame of
the 4th example in Figure 12.

9 CONCLUSION

Tracking multiple people, in different environments, per-
forming different tasks and with different relationships
will always be a challenging problem. Even humans
have a great deal of trouble performing this task; only
the best of athletes can predict how their team will move
on the field, and the ability requires years of training,
a deep knowledge of the team, and the constrained
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Fig. 12: Each row represents the 6 estimated camera param-
eters over time for selected sequences. Our method reliably
estimates the camera in most cases, but can fail if there are no
features (e.g. camera faces a featureless wall for time frames
1000 ∼ 1500 in the last sequence.)

rules of a specific sport. In this paper, we have laid the
groundwork for a general person tracking system and
applied it to two specific environments - tracking peo-
ple from a moving, ground-level camera, and tracking
people indoors from a robot platform. We argue that
the system is adaptable enough to be applied to other
scenarios due to the following characteristics.
The joint formulation of all variables: The relationship
between the camera, targets’ and geometric features’
states is combined into a novel probability model, allow-
ing them to influence and improve each other’s estimate
during inference.
The combination of multiple observation cues: By
combining multiple detection cues from different sen-
sor modalities in a principled fashion, our system is
adaptable to different sensor configurations and different
environments.
Allowing people to interact: We do not assume that
people move independently, instead we model interac-
tion with two modes: repulsion and group movement.
By automatically selecting between interaction modes,
the system adapts to different scenarios.
Automatically detecting people: Our system automat-
ically detects people, removing the need for manual
initialization. Since the detection is probabilistic, the
tracker can also recover from missed detections or false
positives via motion model and sampling.
Automatic detection of static features for camera es-
timation: Since it estimates the camera’s motion, our
system can be applied on sequences acquired from a
moving camera, even under the assumption that the
odometry of the camera is unknown or poorly specified.
The camera estimation is performed automatically using
stationary features from the environment.

As we apply this system to additional scenarios in
the future, we would like to learn what is the best
combination of observation cues for a given sensor suite
and environment from a training data. This system can
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Fig. 13: Examples of tracking results. First row: results on the Kinect office dataset. Second row: results on the Kinect mobile dataset.
Detections are shown as boxes in images, and dots projected onto the ground plane in the top-down view. Each color is a person.
Note that our system detects people in various poses, truncated by the image, and despite the severe occlusions between people
that are common in indoor environments. The last row shows examples of challenging scenes where the people appear beyond
the Kinect’s range or under extreme lighting conditions.

be used as a building block to learn and recognize high
level semantics about human activities by providing
trajectories of people.
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