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Abstract— In this paper, we present an iterative two-stage
scheme for precise and robust frame-to-frame feature-based
ego-motion estimation using stereo cameras. We analyze the
characteristics of the optical flows and reprojection errors that
are independently induced by each of the decoupled six degrees
of freedom motion. As we will show, the different characteristics
of these induced optical flows lead to a reprojection error
that depends on the coordinates of the features. When using a
proper normalization of the reprojection error, this coordinate-
dependency can be almost completely removed for decoupled
motions. Furthermore, we present a way to use these results
for automotive application where rotation and forward motion
are coupled. This is done by compensating for the flow that
is induced by the rotation, which decouples the translation
flow from the overall flow. The resulting method generalizes
the ROCC approach [4], where a robust outlier criterion was
introduced and proved to increase robustness and quality for
large forward translation motions. Therewith the proposed
method generalizes ROCC to almost all possible automotive
motions. The performance of the method is evaluated on Kitti
benchmark and currently2 reaches the best translation error
of all camera-based methods.

I. INTRODUCTION

For autonomous driving, robust and precise self-
localization of vehicles is one of the main challenges. Hence,
great effort is put into the improvement of visual odometry
methods to obtain additional localization measurements for
automotive applications, as can be seen in numerous publi-
cations e.g. in the odometry section of Kitti benchmark [7].
Visual odometry approaches estimate the ego-motion of a
vehicle. This ego-motion consists of a rotation component
R and a translation component T, whereas each induces a
specific optical flow pattern. Comparing the best performing
visual odometry methods, one similarity turns out: Rotation
and translation of the ego-motion are calculated in two
separate processes, as in [4], [5]. This is intuitive, since there
are fundamental differences between rotation and translation
estimation, which are exploited by this separation: The
reconstruction of the translation is dependent on a depth
estimate and therefore sensitive to multiple error sources:
Ambiguous correspondences in the stereo matching can lead
to wrong disparities, respectively depths. Furthermore, the
resolution of the reconstructed depth of each feature reduces
quadratically with disparity. Additionally, the optical flow
from translation decreases proportionally to the feature’s
inverse depth (see Sec.IV-A). By contrast, the flow from
rotation is not dependent on depth and is therefore not
susceptible to these effects. This means, that ideal features
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Fig. 1. In each image, the measured optical flow (yellow) and estimated
flow according to an error-prone motion hypothesis (magenta, top of
dashed white lines) of a right-turn are shown. The reprojection error
(top) is visualized by the red and green bars. Our proposed decoupled
normalized reprojection error is shown in the lower image. The errors of
ideal measurements are marked green and the left feature with erroneous
optical flow is marked red. As one can see, the reprojection error judges
the real outlier with a low error and some of the inliers with a high value.
By contrast, our proposed decoupled normalized reprojection error (bottom)
shows an almost constant error for all features due to the error-prone motion
hypothesis and a further increased value for the erroneous correspondence.

for rotation estimation are not necessarily good choices when
estimating translation. In [4], [5] this is taken care of by
setting up a dedicated process for each of these estimations.
This enables these methods to achieve mean rotation errors
of 0.002 to 0.003 ◦/m without reoptimizing the structure
(bundle adjustment). Splitting the overall motion estimate
into independent processes for the estimation of rotation and
translation obviously is a helpful first step.
In contrast to handling rotation and translation estimation
independently, we propose to use the rotation estimate within
the translation estimate to improve outlier detection by
decoupling the optical flow components, which are induced
by the rotation and translation parts of the ego-motion.
Before discussing the details of the proposed method, Fig.1
shows the result of the improved outlier detection for a
turning maneuver. In the upper image, the reprojection errors
of three ideal measurements are plotted as green bars and



Fig. 2. Comparison between high-speed scenario (left column) and low-speed turning maneuver (right column). The top line shows the rotation-only
flow (green). The translation-only flow is shown in the bottom line (yellow). The high-speed motion shows only minor or no rotation, whereas the turning
maneuver shows vast rotation-induced flow components. By decoupling the rotation and translation motion induced flows, also turning maneuvers can
be transformed into a pure translation, quasi-high-speed scenario. This decoupling transformation allows the application of an almost coordinate-invariant
outlier detection scheme, which we show in this paper.

that of a falsified correspondence as a red bar, for an
erroneous translation estimate and ideal rotation estimate.
The inliers are judged with high reprojection errors whereas
the outlier receives a small error. The reason for this is that
the reprojection error is dependent on the image coordinates
of the features and thus is not a proper criterion to differ
between errors that stem from wrong correspondences and
error-prone motion hypotheses, as will be derived in Sec.IV.
By contrast, our proposed approach in the bottom of Fig.1,
which is presented in Sec.V, identifies the outlier with a high
error and sets an almost constant offset for the inliers. As
mentioned, the idea here is to not estimate rotation and trans-
lation in isolated processes: First, we estimate the rotation
only. Next, we use this estimated rotation to transform the
measured correspondences into a pure translation scenario.
This transformation is described in Sec.IV-C and visualized
in Fig.2: The high-speed scenario in the left column shows
no rotation flow component (green), but forward translation
flow (yellow). By contrast, the low-speed scenario in the
right column shows vast rotation components (green). After
compensating for these in the overall flow, the resulting
translation flow (yellow) shows the characteristics of the
high-speed flow. This decoupled translation flow allows
the application of an almost feature-coordinate independent
outlier criterion, leading to a much more precise outlier
detection.
Before going into detail, we present the relevant literature
in Sec.II. After defining our notation and the basic pipeline
in Sec.III, we investigate outlier measures for independent
and joint ego-motion flows in Sec.IV. Our proposed outlier
criterion, which decouples translation flow from rotation
flow, making use of the results in Sec.IV, is explained in
Sec.V. The evaluation of the resulting outlier scheme is done
via simulation in Sec.IV and with real data in Sec.VI.

II. RELATED WORK

One possibility to divide and characterize outlier detection
methods for visual odometry are the different motion models,
that are assumed to describe the vehicle’s pose changes.
The first category uses a full six degree of freedom approach,
which is the most general way to find a motion hypothesis.
In [1], [9], this is done by minimizing the reprojection
error in a RANSAC framework. Here in each iteration,
a full motion hypothesis is created, based on a minimum
number of random samples from the correspondences. This
hypothesis is considered as reference motion and gets valued
by the reprojection error of the remaining features. This is
iteratively repeated until a termination criterion is met. The
best hypothesis is then used to finally divide all features into
inliers and outliers and the resulting hypothesis is calculated
based on these features.
The second category of visual odometry methods uses
a restrictive motion model and performs outlier rejection
within this subspace. An example for this restrictive motion
assumption can be found in [14], where the vehicle’s motion
is limited to forward translation, pitch and yaw. In [11], an
even more restrictive model is used. Here, a locally planar
and circular vehicle motion is assumed. This allows to apply
Ackermann’s steering principle and therewith to describe
the motion with one rotation parameter plus the unknown
scale. Through this restrictive motion hypothesis the number
of necessary correspondences is reduced to just one, which
leads to a very fast outlier removal and motion estimation
scheme. To summarize, if the vehicle’s motion is covered
by the assumed model, these approaches are very effective
and lead to fast and accurate results. However, if the vehicle’s
motion does not fit to the assumed model the outlier rejection
stage looses good correspondences, causing the estimate to
describe a false motion within the assumed subspace.
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Our proposed method retains the advantages of a full motion
estimate, while preserving the advantages of a restrictive
motion model. For this, we separate the estimation of rotation
and translation into two dedicated processes, which are
coupled by a transformation. This transformation compen-
sates for the rotation within the measurement and therefore
allows to apply a restrictive motion model that assumes pure
translation without reducing the degrees of freedom, which
are taken into account. Fig.3 illustrates the concept briefly.

Full Motion Sub MotionTransformation

Full Motion Model Method

Restrictive Motion Model Method

Fig. 3. Using a transformation, allows the application of a restrictive motion
method while estimating the full six degrees of freedom motion.

III. DEFINITION OF THE OVERALL PROBLEM

The backbone of our motion estimation is the classical
least squares estimator for pose change (R̂t , T̂t)

(R̂t , T̂t) = argminR,T
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Now, we are faced with the main problem of visual odom-
etry: Given the set of all extracted features, we need to
find suitable features (inliers) and reject all other features
(outliers) from the set. The standard measure to judge the
features when given a motion hypothesis, is the reprojection
error from Eq.(2). In the following, we analyze it with
respect to each degree of freedom motion independently and
compare it to a coupled motion afterwards.

IV. CHARACTERISTICS OF INDEPENDENTLY AND
JOINTLY INDUCED MOTION COMPONENTS

We start with the pixel coordinate of a feature, being
induced by a generic motion with pitch α , yaw β , roll γ

and translations to the side tx, downwards ty, and forwards
tz. Justified by the data from Kitti benchmark and reasonable
camera frame rates of at least 10 fps, we assume limited
pitch, yaw and roll of α,β ,γ < 5◦π

180◦ per frame and therefore
approximate the trigonometric functions with their first order

3Focal length f and principle point o = [ox,oy] are assumed to be known.

Taylor series at operating point 0, leading to rotation matrix
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n+r33)+tz

+ox

f λn(r21 x̂t
n+r22 ŷt
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From this starting point, we now derive the reprojection error
for independent motions and compare it to the normalized
error which was presented for forward-only motion in [4].

A. Optical Flow from Independent Rotations

For pitch motion with angle α and an erroneous estimated
pitch α̃ of α̃ = Eα , Eq.(5) with α2Eŷt

n � 1 and α ŷt
n � 1

leads to an approximated reprojection error ε t
n of
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which is dependent on the pixel coordinates of the feature.
The same dependency occurs at the approximated error-free
absolute value of the optical flow ‖xt−1

n −xt
n‖2 from the pitch

motion, with α ŷt
n� 1, using Eq.(3):
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When dividing the reprojection error by the optical flow, the
resulting normalized reprojection error (NRE) ν t

n becomes
independent of the feature coordinate and is characterized
by the error of the motion hypothesis |E−1| only:

ν
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In a similar way, reprojection error and optical flow mea-
surement for an erroneous motion with yaw β and esti-
mate β̃ = Eβ can be used to eliminate the reprojection
error’s dependency on the feature coordinates, with β x̂t
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Also for roll motion with incorrect estimation γ̃ with γ̃ = Eγ

the reprojection error ε t
n is biased by the feature’s position,

which can be eliminated by normalizing with the optical flow
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B. Optical Flow from Independent Translations

The reprojection error and optical flow measurement for
pure forward motion at hypothesis t̃z with t̃z = Etz can be
calculated as
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Here the reprojection error is depending on the feature
coordinate and the feature depth. With λn � Etz, this ap-
proximately reduces to |E−1| when normalizing:

ν
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The dependency on the depth can also be eliminated by pro-
ceeding analogously with the reprojection error and optical
flow for sideways motion with hypothesis t̃x = Etx,
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For upward motion t̃y = Ety, as well the dependencies
disappear for the normalized reprojection error
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These results are visualized in Fig.4. Here, only ideal mea-
surements are considered. Each line shows a one degree
of freedom motion. The first three lines show rotations
with pitch, yaw and roll of 3 ◦. The last three lines show
translations with tx, ty and tz of 1 m. Each feature is evaluated
with reprojection error and normalized reprojection error for
a non-ideal motion hypothesis with an error of 10 % leading
to an error of 0.3 ◦ respectively 0.1 m.
For this setup, the reprojection error is heavily depending on
the position of each feature for all motions. By contrast,
the normalization of the NRE compensates for the flow
characteristics of each motion and judges error-free corre-
spondences with almost the same value for the performed
isolated motions. This value is the relative motion hypothesis
error |E − 1| = 0.1. Minor deviations at pitch, yaw and
forward translation come from the approximations, which
were made in Sec.IV-A and IV-B. This is a highly relevant
result, when decoupled motions can actively be performed,
like at calibration. This prerequisite is usually not met in
automotive localization, because the motion of the car is
induced by the driver and restricted by the dynamics of the
vehicles. How these results can still be applied in automotive
context, is the scope of the next section.
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Fig. 4. Reprojection error (RE, left column) and normalized reprojection
error (NRE, right column) for ideally measured flow vectors and motion
hypothesis error of 10 %. In the first line, a pitch motion of 3 ◦ is shown.
Here the reprojection error shows an almost constant error for all features.
The normalized reprojection error also shows only minor variations due
to the approximations from Sec.IV-A. In the second and third line, a yaw
and a roll motion of 3 ◦ is compared. The reprojection error shows a heavy
dependency on the feature position. By contrast, the normalized reprojection
error shows an almost position-independent result for yaw and roll, with
small deviations caused by the approximations, made in Sec.IV-A. The same
pertains for the translation with 1 m along all three axes. Here, only the
NRE for forward motion shows slight deviations, which come from the
approximations, made in Sec.IV-A and are less than 0.0154. In all cases,
the NRE is approximately the relative motion hypothesis error |E−1|= 0.1.

C. Optical Flow from Combined Motions

While independent motions allow a coordinate and depth
independent feature judging scheme by normalizing the
reprojection error with the optical flow, coupling the individ-
ual motions induces the dependencies again: An exemplary
vehicle motion which shows this dependency is presented
in Fig.5. Granting realistic conditions, we use a real-world
feature distribution. The vehicle’s virtual pose change at a
framerate of 10 Hz consists of a turning motion of 50 ◦/s with
simultaneous pitch of 10 ◦/s and roll of 5 ◦/s at a speed of
50 km/h. Here, we assume an error-free rotation estimate and
error-prone translation estimate with |E−1|= 0.05. An ideal



outlier-detection scheme would lead to a constant offset,
when regarding ideal measurements, as the hypothesis is the
same for all features. By contrast, the reprojection error and
the normalized reprojection error are highly dependent on
the feature-position. This leads to errors between 0 and 5
pixels for the reprojection error and between 0 and 0.2 for
the normalized reprojection error. This high variance masks
the simulated depth errors of 5 % in the measurement for the
features, which are marked by the red vertical lines.
This problem is solved by the decoupled normalized re-
projection error (DNRE),
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Here, the flow from the vehicle’s rotation is compensated by
the estimated rotation with R̂t . Therefore ||xt−1

n −π
(
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n
)
||2

is the pure translation flow. With this, translation induced
optical flow is decoupled from rotation induced flow. For an
ideal estimate of the rotation Rt = R̂t , the reprojection error
represents the error from translation only. This normalization
transforms the measurement into the scenario of forward-
only motion, which was described in Sec.IV-B. By doing
so, the dependency on the feature coordinate is eliminated
and outliers can be identified. The resulting errors of the
decoupled normalized reprojection error are visualized in
Fig.5, where an almost constant offset due to the motion
hypothesis error of |E − 1| = 0.05 affects every feature. A
higher value indicates the evaluation correspondence errors,
which here come from the added depth error of 5%.

V. FLOW DECOUPLING OUTLIER REMOVAL AND POSE
REFINEMENT SCHEME (ROTROCC)

After having derived the criterion for improved outlier
detection in Eq.(24), we now go through our full method in
detail. Before estimating a motion hypothesis and identifying
outliers, an initial set consisting of a reasonable number of
suitable features is required. A suitable feature combines un-
ambiguous temporal as well as stereoscopic correspondence
measurements and is vital for reliable optical flow and depth
estimates. This initial feature set is detected as follows in the
next section.

A. Framework Outline

Our initial feature set for every stereo-frame-pair is created
as follows, applying only standard functions of the OpenCV
library [3]: We start with the feature-selection using the Shi
and Tomasi method [13]. For each feature the disparity at
time t − 1 is calculated using sum-of-absolute-differences-
based block matching. For optical flow initialization, we
triangulate each feature’s position in 3D space at time t−1
and reproject the features to the current frame at time t
using a modified constant turn rate and velocity model based
on the last estimated pose change (which is a variant of
motion model predicted tracking by matching proposed in
[10]). After that, the optical flow for the left and right image
between time t− 1 and t is refined with the Lucas-Kanade
method [2]. The final feature set F t

0 = {xt−1
n ,xt

n,λ
t
n}
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Fig. 5. Simulated comparison between reprojection error (RE, top),
normalized reprojection error as proposed in [4] (NRE, middle) and de-
coupled normalized reprojection error (bottom, DNRE). Using a real-data
feature distribution, the vehicle performs a turning motion of 50 ◦/s with
simultaneous pitch of 10 ◦/s and roll of 5 ◦/s at a speed of 50 km/h. Features
100, 200, 300, 400 and 500 (marked with red lines) have an depth error
of 5 %, while the other features are measured ideally. Reprojection error as
well as the normalized reprojection error lead to heavily varying values due
to the error that is induced by a 5 % deviation of the translation estimate.
By contrast, the decoupled normalized reprojection error shows an almost
constant offset of |E−1|= 5% for all features and additionally an increased
value for the erroneous depth estimates.

a starting number Nt
0 for initialization is reached via a left-

right consistency check at time t for all remaining optical
flow estimates (which is a variant of circular matching
proposed in [8]).

B. Flow Decoupling Motion Estimation

The motion estimation is performed in two dedicated parts,
which are coupled by a transformation of the measurement.
First, the best feature set for rotation estimation F t,R

i is
searched for in the iterative rotation optimization, using a
classical reprojection error based outlier rejection criterion.
Superscript R is used to denote the affiliation to the rotation
estimation process.
In the subsequent transformation, we rotate the points in
camera coordinates and pixel coordinates by the recon-
structed rotation. The distance between the rotated pixel
coordinates and the measured feature position at time t− 1
within the image is the new measurement flow for the result-
ing translation-dedicated estimation part, where superscript
T denotes the affiliation to this sub-process. The emerging
scheme can be formulated as:

1) Iteratively optimize rotation at time t and iteration i
until the feature set does not change F t,R

i = F t,R
i−1 or

the maximum number of iterations is reached i = imax.
For the first iteration, the feature set F t,R

0 is set to the
full set F t

0 and the motion estimate is initialized with
last frame’s results R̂t,R

i = R̂t−1 and T̂t,R
i to T̂t−1.
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a) Estimate motion of iteration i with current inlier
set F t,R

i−1:

(R̂t,R
i , T̂t,R

i ) = argminR,T

Nt,R
i

∑
n=1

(
ε

t
n
)2

,∀ f t
n ∈F t,R

i−1

(25)

b) Remove outliers by evaluating the standard re-
projection error:

f t
n

{
∈F t,R

i , if ε t
n(R̂

t,R
i , T̂t,R

i )< ε
R,thresh
i ,

/∈F t,R
i , else ,

(26)
with ε

R,thresh
i being the maximum between the bth

highest reprojection error and a predefined fixed
termination limit εR,thresh.

2) Transform measurements to compensate for rotation.
This is done by rotating the 3D points, which is the
same as keeping a fixed Rt for the optimization:

Xt,T
n = λ

t
nxt,T

n = λ
t
nR̂t,R

i xt
n. (27)

and calculating the rotation-compensated optical flow
once for each feature:

||xt−1
n −π

(
R̂t,R

i xt
n

)
||2 (28)

3) Iteratively optimize translation at time t and iteration
j until the feature set does not change F t,T

j =F t,T
j−1 or

the maximum number of iterations is reached j = jmax.
Before the first iteration, F t,T

0 is set to the full set
F t

0 and the translation is initialized with last frame’s
results T̂t,T

1 = T̂t−1. At this point, the transformed
measurements contain translation only.

a) Estimate motion of iteration j with current inlier
set F t,T

j−1:

T̂t,T
j = argminT

Nt,T
j

∑
n=1

(
ε

t
n
)2

,∀ f t
n ∈F t,T

j−1 (29)

b) Remove outliers by evaluating the decoupled
normalized reprojection error:

f t
n

∈F t,T
j , if

εt
n(T̂

t,T
j )

||xt−1
n −π

(
R̂t,R

i xt
n

)
||2

< ε
T,thresh
j ,

/∈F t,T
j , else .

(30)
With ε

T,thresh
j being the maximum between the

bth highest normalized reprojection error and a
predefined fixed termination limit εT,thresh that
describes the expected final error |E−1|.

After completing this scheme, the final motion is put together
from the rotation estimate R̂t,R

i based on feature set F t,R
j−1

and the translation estimate T̂t,T
j from feature set F t,T

j−1:(
R̂t , T̂t

)
=
(

R̂t,R
i , T̂t,T

j

)
. If the vehicle is driving at very low

speeds, phases two and three are skipped to avoid numerical
inaccuracies due to the small optical flows. In this case,
the final motion estimate is set to the result of phase one(
R̂t , T̂t

)
=
(

R̂t,R
i , T̂t,R

i

)
.

VI. EVALUATION

We base the evaluation of RotROCC on three major parts,
using Kitti benchmark: First, we compare the results to
implementations that are based on the reprojection error only.
Secondly, we compare our results to top ranked state-of-the-
art methods and finally we investigate the proposed method
with regard to the performance of ROCC [4].
To give a first impression of the reconstruction quality, we
evaluate test track 01. Here, we compare our results to two
published approaches that base on the reprojection error in a
similar way as we do in phase one of our scheme, presented
in Sec.V-B: The authors of [15] suggested to classify outliers
with reference to the mean reprojection error at iteration p:

f t
i

{
∈F t

p, if ε t
i (R̂t

p, T̂t
p)−µp < 1.5σp ,

/∈F t
p, else ,

(31)

with mean error µp = ∑
Np
i ε t

i
(
R̂t

p, T̂t
p
)
/Np and squared stan-

dard deviation σ2
p = ∑

Np
i

(
ε t

i
(
R̂t

p, T̂t
p
)
−µp

)2
/(Np−1) and

a number of total iterations. The authors of [1] refer each
feature’s error to the standard deviation at iteration p:

f t
i

{
∈F t

p, if ε t
i (R̂t

p, T̂t
p)< 32µp ,

/∈F t
p, else .

(32)

The comparison to our method is shown in Fig.6. Here,
the estimate of the forward translation tz shows massive
breakdowns when applying the methods from [1] (Mean-
based) and [15] (Std-based). By contrast, RotROCC achieves
a much more robust and precise estimation.
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Fig. 6. Comparison of the methods in [1] (Mean-based), [15] (Std-based),
and RotROCC in the freeway-scenario of track 01.

Giving a more general insight into RotROCC’s results with
regard to state of the art methods, we now compare it to the
approach of rejecting features based on the reprojection error
only, embedded in our framework. This means that we skip
the process after the first phase. For this, we reconstructed the
trajectories of tracks 00 to 10 with our new method and also
with a simplified version that solely bases on the reprojection
error. With a mean overall translation error of 0.70 %, our
new method clearly outperforms the one-phase approach
with a translation error of 0.80 %. Also when comparing
low and middle speed scenarios only, our new method shows
better results with 0.66 % against this approach with 0.72 %.
In the benchmark, our approach currently ranks second place,
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as can be seen in Fig.7. First place is SOFT [5], which is
based on the tracking of features over time and achieves
an overall translation error of 0,88 %. Third place is Svo2,
which seems to be an extension of [6], relying on local
bundle adjustment, and reaches an error of 0.94 %. These
two methods work beyond a one time step temporal horizon
to obtain their outstanding results. With an error of 0.88 %,
RotROCC is the top ranked frame-to-frame method in the
benchmark and the second ranked of all vision methods.
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Fig. 7. Comparison of the top ranked methods. Though working on a
frame-to-frame base only, RotROCC is competitive with the top ranked
methods of Kitti benchmark. Integrating a time-horizon of more than one
frame, the algorithms of first and third place achieve even better results
at low and middle speeds. Despite using a less complex approach that is
only based on frame-to-frame calculation, we come to a good result at these
speeds and outperform all methods at speeds above 60 km/h.

For a better understanding of the results, Fig.8 shows the
improvement of RotROCC, compared to ROCC. Despite
introducing constant threshold within the robust estimation
phases for rotation and translation and the elimination of
backup schemes compared to ROCC, we were able to im-
prove the reconstruction quality. At almost any speed, huge
improvements are realized with this less restrictive approach.
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Fig. 8. Visualization of the relative improvement of the proposed RotROCC
compared to ROCC. The new method shows an improved capability of
estimating the vehicle’s translation motion for a wide speed range.

RotROCC’s robust and precise reconstruction of the vehicle’s
motion shows, that the decoupled normalized reprojection
error (DNRE) is a more appropriate measure to evaluate
correspondences for outlier detection than the commonly
applied reprojection error.

VII. CONCLUSION AND FUTURE WORK

As we showed, the reconstruction quality can be improved
by decoupling the optical flows of rotation and translation
and exploiting the resulting characteristics of the flow for
outlier detection. We realized this concept by first esti-
mating the rotation, using this estimate to compensate for
the vehicle’s rotation and afterwards using the normalized
reprojection error to detect outliers in the measurement. The
compensation allows to relax the restriction of rotation-free
scenarios and to still apply an almost coordinate-independent
error measure. By eliminating this restriction, the structure
and parameters of our method could be notably simplified,
which leads to an easier integrability into other implementa-
tions. Next, we would like to investigate more accurate but
fast and sparse optical flow algorithms [16], [17], the gain
of an additional local bundle adjustment as applied in [10]
and the integration of additional environmental information
as gained from the method which is described in [12].
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