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Large Displacement Optical Flow:
Descriptor Matching in Variational

Motion Estimation
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Abstract—Optical flow estimation is classically marked by the requirement of dense sampling in time. While coarse-to-fine warping
schemes have somehow relaxed this constraint, there is an inherent dependency between the scale of structures and the velocity that
can be estimated. This particularly renders the estimation of detailed human motion problematic, as small body parts can move very
fast. In this paper, we present a way to approach this problem by integrating rich descriptors into the variational optical flow setting.
This way we can estimate a dense optical flow field with almost the same high accuracy as known from variational optical flow, while
reaching out to new domains of motion analysis where the requirement of dense sampling in time is no longer satisfied.
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1 INTRODUCTION

MOTION in the form of optical flow is one of the

most dominant bottom-up cues in the visual system of

humans and other visual species. It is of great importance for

grouping and visual learning, the perception of structure, and

for self-localization.

The predominant way to estimate dense optical flow in

today’s computer vision literature is by variational methods

as introduced in the seminal work by Horn and Schunck [18],

where a local, gradient-based matching of pixel gray values is

combined with a global smoothness assumption. Although the

original Horn and Schunck model reveals many limitations

in practice, many of them have been tackled by subsequent

modifications and extensions of the original model. Motion

discontinuities and occlusions can be estimated by employing

non-quadratic penalizers in the smoothness term and the data

term, respectively [14], [7], [26]. Violations of the constant

brightness assumption can be considered by using photometric

invariant constraints, such as constancy of the gradient [11],

higher order derivatives [28], or color models with photometric

invariant channels [27], [37]. Finally, when not linearizing

the constancy constraints, the model can deal with large

displacements [1]. Proper numerical implementation of such

non-linearized models in combination with a continuation

method leads to coarse-to-fine warping schemes [26], [11],

which have been used much earlier in local techniques, e.g.,

in the Lucas-Kanade approach [25].

When we say that the model of the mentioned approaches

can deal with large displacements, we do not say that the
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final solution obtained by these methods reflects this ability

in all cases. A decisive problem of variational optical flow,

and all methods that introduce global smoothness, is the

approximative, local optimization. In the variational setting,

the result is biased towards the initialization, which is usually

the zero motion field: from all local minima, the approach

selects the one with the smallest motion.

The common coarse-to-fine warping scheme relaxes this

problem as initial estimates are computed at coarser resolution

levels. The motion of larger structures is used as an initial

guess for the overall image motion, which is then successively

refined by taking into account the evidence of smaller struc-

tures. While warping schemes work well in all cases where

the small structures move more or less the same way as larger

scale structures, the approach is doomed to fail as soon as

the relative motion of a small scale structure is larger than

its own scale, as shown in Fig. 1. In such a case, the large

scale structures predict a motion that is substantially different

from the correct one. At the resolution level where the smaller

structures appear, local minima prevent the right correction.

In coarse-to-fine schemes, the result is no longer biased by

the zero motion field but by the motion of the large scale

structures.

Situations where the coarse-to-fine heuristic does not work

appear quite frequently in practice. Articulated motion in

general and human motion in particular are problematic. Small

body parts like hands can move extremely fast, hence violating

the requirement that the motion of the next larger scale

structure is a good indicator for the motion. Many action

recognition methods, apart from static cues, rely on optical

flow. Clearly, they cannot fully exploit the motion cue, since

the optical flow estimated with current methods is unreliable

just in situations where it is most informative: when there is

a clear, distinct motion of a certain body part.

We consider the failure of contemporary optical flow meth-
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Fig. 1. Left: The fast motion of a hand is a typical ex-
ample where conventional warping methods fail. Center
Left: Optical flow field computed with such a warping
method [11]: the hand motion is missed. Center Right:
For comparison the optical flow field with the technique
presented in this paper: the motion of the hand is esti-
mated correctly. Right: Color code for visualizing the flow
fields.

ods to reliably capture large displacements as the most limiting

factor when applying optical flow in other computer vision

tasks. The contribution of the present paper is a variational

model and a corresponding numerical scheme that can deal far

more reliably with large displacements than previous methods.

The basic idea is to support the continuation method, which

is responsible for estimating large displacements in classic

warping methods, by another technique that is well known for

its ability to estimate arbitrarily large displacements: descriptor

matching. In contrast to single pixels, rich local descriptors,

such as SIFT or HOG, are usually unique enough to allow

for global matching without additional regularity constraints.

This renders matching without limitations on the magnitude of

the displacement extremely simple and efficient, and explains

the enormous success of descriptive features in structure from

motion, image search, and object detection.

In optical flow estimation, descriptor matching has not been

a success story so far. The reasons for this are quite evident: (i)

although most descriptors can be uniquely matched between

images, some of them are confused or their counterpart in

the other image is missing due to occlusions. This causes

a certain amount of mismatches that are very disturbing for

most optical flow applications. (ii) Descriptor matching is a

discrete technique, which only allows for pixel accuracy. This

quantization effect prevents distinguishing small motions and

causes drift in tracking applications. (iii) The most successful

descriptors are all based on spatial histograms. Histograms

are not well localized, and thus the precision of the motion

estimates, especially at motion discontinuities, is lower than

with, e.g., variational techniques.

One would like to benefit both from the ability of descriptor

matching to produce a large amount of correct large dis-

placement correspondences and from the ability of variational

techniques to efficiently produce highly accurate, dense motion

fields without outliers. We achieve this by integrating the

correspondences from descriptor matching into a variational

optical flow model. As we will describe later in more detail,

descriptor matching and the continuation method used as

an optimization heuristic in warping techniques are mostly

complementary in the way how they avoid local minima in

the energy. In conjunction with a coarse-to-fine optimization,

descriptor matching can guide the solution towards large dis-

Fig. 2. Straightforward combinations of descriptor match-
ing and variational methods do not work as well as the
proposed large displacement optical flow. Left: Transpar-
ent overlay of input frames. Center Left: Initialization of
[11] with descriptor correspondences. The initialization
is already smoothed away at the coarsest resolution
and does not help to estimate the fast hand motion.
Center Right: Postsmoothing of dense HOG correspon-
dences with TV regularization. Smoothing alone cannot
remove all mismatches. Moreover, motion discontinuities
are severely dislocated. Right: Proposed large displace-
ment optical flow (LDOF).

placements of small, independently moving structures, while

the other constraints in the variational model successively

remove the mismatches and provide the accuracy known from

variational methods. Fig. 2 demonstrates that straightforward

postsmoothing of descriptor matches or simple initialization

of a variational optical flow technique with the descriptor

matching result generally does not work. In contrast, the

results we obtain with the proposed large displacement optical

flow approach prove to be very reliable on a wide variety of

video data.

2 RELATED WORK

The use of richer descriptors in optical flow estimation goes

back to Weber and Malik, who employed a multi-scale set

of filter responses, so-called jets, in a Lucas-Kanade like

setting [33]. The linearization involved in this method keeps

it from estimating large displacements. In contrast, Liu et al.

[23] have recently proposed a method that computes dense

correspondence fields between two different scenes. Clearly,

the matching of scenes induces very large displacements and

requires invariance to intra-category variations. The idea in

[23] is to compute a dense field of SIFT descriptors and

then run an approximative discrete optimization via belief

propagation from [29] on top of these descriptors. In contrast

to simple nearest neighbor matching, SIFT flow tries to

minimize an energy that also includes regularity constraints.

The model and numerical scheme we present in the present

paper differs from SIFT flow in three ways. First, as we focus

more on classic motion analysis rather than scene matching,

our model does not fully rely on histogram based features such

as SIFT. Such features are only a supplement in our approach

that allows avoiding local minima, but we still match features

such as the color and gradient of single pixels, which have

a high spatial resolution. Second, the optimization strategies

are different. While SIFT flow considers all possible matches
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at each pixel when introducing the regularity constraint, our

scheme only considers the best matches and checks their

consistency with the regularity constraint and the other image

features. This makes our optimization much more efficient.

Additionally, we need to perform a nearest neighbor search

only for a subsampled set of pixels since precise localization

is provided by the pixel color and gradient in the variational

setting. Third, we have a continuous rather than a discrete

model, which provides subpixel accuracy and does not suffer

from discretization artifacts, such as motion boundaries being

aligned with the coordinate axes.

Another related work is [4], which uses integer quadratic

programming (IQP), a graph matching strategy that combines

descriptor matching with a regularity constraint. Since even

approximations of IQP are computationally demanding, only

sparse feature sets can be efficiently matched and interpolated

by spline functions. In contrast, the goal of the present paper

is to produce a dense flow field including motion boundaries.

Finally, landmarks have been used for a long time in

classical registration problems. The important difference in

these approaches is that the landmarks are usually manually

defined and only suffer from Gaussian noise, whereas the point

correspondences in our approach are derived automatically and

can be severe outliers. Few exceptions in registration where

correspondences are automatically computed can be found

in [13], [35]. Another difference is that registration assumes

a smooth transformation without motion discontinuities and

occlusions. This allows to reduce the number of model param-

eters considerably, e.g., by using the Thin-Plate-Spline model.

Very related is also the work in [17]. Large displacement

motion is estimated based on a correlation term and integrated

into a variational model similar to the present work. Main con-

ceptual differences of this work are its focus on atmospheric

data and its strict separation of estimating a large displacement

motion field and a small displacement increment in a two-stage

process.

The presented approach can also be regarded more generally

as a combination of discrete optimization in the form of

descriptor matching and continuous optimization. Combina-

tions of both forms of optimization have been used, e.g.,

in [21], [20], where the discrete optimization does the main

work, and a continuous postprocessing step finally provides

subpixel accuracy. In contrast, the present approach couples

both optimization strategies more closely.

The present paper extends a preliminary conference version

[10], where region correspondences serve to recover large

displacements. We investigate other features to provide point

correspondences and compare their suitability in the optical

flow setting. We also modified details that lead to a better

overall performance. Moreover, we tested the method on a

much larger variety of videos.

3 VARIATIONAL MODEL

Let I1, I2 : (Ω ⊂ R
2)→ R

d be the first and the second frame

to be aligned. For a gray scale image we have d = 1 and for

color images d = 3. Moreover, x := (x, y)� denotes a point

in the image domain Ω, and w := (u, v)� is the optical flow

field, i.e., a function w : Ω → R
2. A common assumption is

that corresponding points should have the same gray value or

color. This can be expressed by the energy

Ecolor(w) =

∫
Ω

Ψ
(|I2(x+w(x))− I1(x)|2

)
dx (1)

which penalizes deviations from this assumption. Note that

in contrast to the Horn and Schunck model, there is no lin-

earization involved here, which enables the estimation of large

displacements. The robust function Ψ(s2) =
√
s2 + ε2, ε =

0.001 allows to deal with occlusions and other non-Gaussian

deviations of the matching criterion. It corresponds to a

Laplace distribution which has longer tails than the Gaussian

distribution. In other works, even longer-tailed distributions

have been advocated [6], [7]. The advantage of the Laplace

distribution is that the corresponding penalizer is still convex,

simplifying the optimization.

Due to illumination effects, matching the color or gray value

is not always reliable. Therefore, it has been suggested to

supplement the constraint in (1) by a constraint on the gradient,

which is invariant to additive brightness changes [11]:

Egrad(w) =

∫
Ω

Ψ
(|∇I2(x+w(x))−∇I1(x)|2

)
dx. (2)

Other higher order constraints have been investigated in [28]

showing that the gradient constraint works best, as it in-

troduces the required invariance properties without being as

sensitive to noise as second order constraints. An alternative

feature with similar effects can be obtained by structure-texture

decomposition [34].

Both (1) and (2) enforce the matching of only weakly

descriptive features. Just optimizing the sum of these two

energies would result in many ambiguous solutions, most of

them not being consistent with the true optical flow. This

underlines the power and importance of regularity constraints

in optical flow estimation. Regularity can be enforced, for

instance, by penalizing the total variation of the flow field:

Esmooth(w) =

∫
Ω

Ψ
(|∇u(x)|2 + |∇v(x)|2) dx. (3)

Putting all these constraints together yields the model pre-

sented in [11], [12]:

E(w) = Ecolor + γEgradient + αEsmooth. (4)

From the modelling point of view, this model is extremely

general. It can deal with all kinds of deformations, motion

discontinuities, occlusions, and arbitrarily large displacements.

The reason why optical flow estimation is not a perfectly

solved problem yet is due to the approximative optimization

of this energy model, not the model itself.

The optimization strategy in variational optical flow is all

based on local optimization in conjunction with a coarse-to-

fine method. Initial estimates are obtained by removing detail

from the input data. Such a strategy puts much emphasis

on large structures. In this paper, the idea is to supplement

a complementary approximation to the optimization scheme,

namely to remove global regularity. The color and gradient at

a point is not a descriptive feature. It becomes descriptive due
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to the global regularity constraint, but at the cost of generating

a hard optimization problem. Alternatively, we can use more

descriptive features and neglect the regularity constraint. Point

matching without a regularity constraint can be done efficiently

in a globally optimal manner by simple nearest neighbor

matching.

In the end, however, we would like to enforce a smooth flow

field. Moreover, descriptor matching has important drawbacks.

First, it is a discrete method that does not provide subpixel

accuracy. Second, the fixed spatial extent of rich descriptors

is responsible for inaccuracies at motion discontinuities and

in case of all non-translational motions. For these reasons, we

would like to combine descriptor matching with the variational

model and its coarse-to-fine optimization. To this end, we

integrate the point correspondences from descriptor matching

into the variational approach by adding another term:

Ematch(w) =

∫
δ(x)ρ(x)Ψ

(|w(x)−w1(x)|2
)
dx. (5)

In this term, w1(x) denotes the correspondence vectors ob-

tained by descriptor matching at some points x. δi(x) is 1 if

there is a descriptor available in frame 1 at point x; otherwise

it is 0. Each correspondence is weighted by its matching score

ρi(x), which will be exactly defined in section 4.1. The same

robust function Ψ as above is applied in order to allow for

wrong matches. As suggested in [10], one could also integrate

the best K matches. However, it turns out that increasing

the number of hypotheses has actually more drawbacks than

advantages as explained in detail in the appendix.

Eq. (5) assumes that the descriptors are already matched.

We can formulate this matching task as another energy term

to be minimized:

Edesc(w1) =

∫
δ(x) |f2(x+w1(x))− f1(x)|2 dx, (6)

where f1(x) and f2(x) denote the (sparse) fields of feature

vectors in frame 1 and frame 2, respectively. Plugging all terms

together, we can state the whole model as a single optimization

problem:

E(w) = Ecolor(w) + γEgradient(w) + αEsmooth(w)

+βEmatch(w,w1) + Edesc(w1),
(7)

where α, β, and γ are tuning parameters which can be

determined manually according to qualitative evidence on a

large variety of videos, or be estimated automatically from

ground truth data [32].

On the first glance, this energy looks more complex than

necessary. (a) Why adding two terms Ematch and Edesc

with the auxiliary variable w1 rather than directly adding

Edesc(w)? (b) Why still using the color and gradient features,

when there are more descriptive features involved?

Concerning (a), the auxiliary variable allows to integrate

discrete descriptor matching into a continuous approach in the

form of soft constraints; see also [31]. Without this auxiliary

variable and the coupling term Ematch, discrete matching

would not be compatible with the variational setting.

Concerning (b), rich descriptors have drawbacks when

spatial localization is concerned. Hence, point features like

color and gradient are actually preferable. In fact, the effect

of the additional terms Ematch and Edesc disappears in the

continuous limit. This is easy to see. The descriptors are only

available on a fixed spatial grid defined by the δ function.

Aside the grid points, these terms are zero. The other features

and the smoothness term on the other hand are defined in

the continuous domain with the number of point features

going to infinity. In the coarse-to-fine minimization process,

the additional terms only affect the energy at coarser levels.

The final continuous energy is unaffected. The minimization

framework will now be explained in detail.

4 MINIMIZATION

The final goal is to find a minimum equal or similar to the

global minimum of the energy in (7), which in the continuous

limit is equivalent to the energy in (4). Since this functional

is highly non-convex, we need reasonable approximation

schemes that find a good initial guess of the solution.

We rely here on a combination of two methods that produce

initial guesses: (a) descriptor matching and (b) a continuation

method in the spirit of graduated non-convexity [8]. Both

methods approximate the energy by simpler versions of the

energy which can be globally optimized, yet they are comple-

mentary in the way how they simplify the energy. Descriptor

matching neglects regularity, whereas the continuation method

neglects image details. The results from descriptor matching

can be integrated in the continuation method, thus we start

with descriptor matching and explain the continuation method

afterwards.

4.1 Descriptor matching
The descriptor matching part focuses on minimizing

Edesc(w1) independently from the rest of the energy. Decou-

pling Edesc(w1) enables global optimization of this subprob-

lem.

Proposition 1: For descriptors given on discrete grids in
frame 1 and frame 2, minimizing Edesc(w1) with respect to
w1 is a discrete optimization problem. Global optimization
can be achieved by complete search with complexity O(mn),
where m and n denote the cardinalities of the grids in frame
1 and frame 2, respectively.

Proof: Let δ(x) define a discrete grid in frame 1 and δ′(x)
another grid in frame 2. Usually, δ′ will be a finer grid than

δ. We can rewrite

Edesc(w1) =

∫
δ(x) |f2(x+w1(x))− f1(x)|2 dx

=
∑

i,δ(xi)=1

|f2(xi +w1(xi))− f1(xi)|2 (8)

Clearly, due to a missing regularity constraint, the sum entries

are mutually independent. Thus, we can optimize w1 at

each grid point xi independently. This can be achieved by

evaluating the energy for all possible grid points xj of δ′ and

choosing xj for which this energy is minimal. The optimal

w1(xi) = xj − xi. Obviously, the overall time complexity is

O(mn). It can be reduced by using efficient nearest neighbor

search [16]. �
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With the optimization of this part being extremely simple,

we only need to define reasonable descriptors and grids

where these descriptors are available. We investigate here

three different methods: one based on region matching as

proposed in [10], one based on HOG descriptors [15], and

one based on geometric blur (GB) [5]. The main requirements

for a good descriptor matching method is that the grid is fine

enough to capture the motion of smaller structures, and that

the descriptors are unique enough to limit the number of false

matches.

4.1.1 Region matching
For creating regions in the image, we rely on the segmenta-

tion method proposed in [2]. It creates a hierarchical over-

segmentation of the image. For each region of this hierarchy,

we can compute a descriptor based on SIFT and color and use

these descriptors for matching. For details about building the

descriptors from the regions and the exact matching procedure

we refer to [10]. The centroids of the region i in the first

frame and the matched region j in the second frame serve as

the grid points xi and xj , where the region correspondence is

integrated into the variational energy. The matching score is

defined as:

ρ(xi) :=
d2 − d1

d1
, (9)

where d1 and d2 denote the distances of the best and the

second best match, respectively. The distances are the sums

of squared differences of warped patches; see [10] for details.

Taking the second best match into account, helps to give

more weight to unique matches, whereas unclear situations

get damped.

For the experiments in Section 5, we supplement a con-

sistency check to the original matching procedure in [10]. A

region correspondence will be counted only if the best match

from frame 1 to frame 2 is equal to the best match from frame

2 to frame 1.

4.1.2 Histogram of oriented gradients
As an alternative to building descriptors from regions, we

densely compute histograms of oriented gradients (HOG)

in both frames [15]. Each gradient histogram comprises 15

different orientations and is computed in a 7×7 neighborhood.

In contrast to [15], the sign of the gradient is not neglected.

The computation is very fast when using integral images.

We also apply a Gaussian filter with σ = 0.8 in orientation

direction to reduce quantization effects.

The final descriptors are computed by collecting the his-

tograms at the central pixel and the eight neighbors in a

distance of 4 pixels; cf. Fig. 3. Thus, each descriptor consists

of 15 · 9 = 135 entries, and descriptors are available at

every pixel position in frame 1 and frame 2. The distance is

computed as the sum of squared differences between the two

vectors, and the matching score ρ is defined the same way as

in (9).

We define the grid δ(x) by picking a descriptor at every

fourth pixel in x- and y-direction. This reduces the matching

effort by a factor 16 compared to sampling a descriptor at

every pixel. Since every histogram has a 7 × 7 support, this

Fig. 3. Left: Each HOG descriptor consists of 9 local
histograms sampled at equidistant points. Right: Each
GB descriptor consists of local histograms computed at
three different integration scales.

subsampling does not miss any small structures. Moreover,

it is worth noting that the full resolution needed for precise

localization of motion boundaries is provided by the color and

gradient cues in the variational setting. These are better suited

to ensure high precision solutions, as HOG descriptors are

unprecise anyway due to their histogram nature.
We also compute the smaller eigenvalue λ of the struc-

ture tensor ∇I∇I� integrated over the same area as the

histograms, and ignore descriptors at points where λ is smaller

than one eighth of the average across the whole image. The

incentive is to save computation time and to reduce the number

of false matches by ignoring areas without any structure.
The grid δ′(x) is defined at the full pixel resolution to ensure

pixel accurate matches. For each match (xi,xj), we check

whether (xj ,xi) is also the best match in backward direction.

If not, δ(xi) is set to 0. This consistency check removes many

false matches, particularly those due to occlusion.
It is worth noting that the HOG descriptor is very similar to

the SIFT descriptor from [24] as soon as the scale and rotation

invariance of the SIFT detector is neglected. Both descriptors

can be made equivalent by sampling 8 orientations on a 4 by

4 grid and using a Gaussian kernel rather than a box kernel.

In the optical flow setting, we found it advantageous to have a

slightly reduced spatial extent of the descriptor, as this reduces

the blurring effects at motion discontinuities.

4.1.3 Geometric blur
Any other rich descriptor is applicable as long as it can

be computed densely across the image. As an alternative to

HOG/SIFT-like descriptors, we tried a variant of geometric

blur (GB) from [5]. We compute 15 oriented gradients like in

the HOG descriptor above, but rather than building a histogram

by applying a 7 × 7 box kernel, we apply Gaussian blurring

with three different blur levels σ0 = 0, σ1 = 1, and σ2 = 2.

The descriptor is assembled of one entry from level 0, 4

entries from level 1, and 8 entries from level 2 as illustrated in

Fig. 3. The sampling grids in the two frames and the matching

procedure are exactly the same as described above for the

HOG descriptors.

4.2 Continuation method
After decoupling Edesc(w1), the remainder of (7) can be

minimized the same way as proposed in [11] using a con-
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tinuation method. The additional term Ematch is convex in w
and does not cause any trouble. The idea of the continuation

method is to split the original problem into a sequence of

subproblems at different resolution levels by smoothing the

input images. In order to allow for smooth transitions between

levels, we use a very fine pyramid, where the image at

level k is a downsampled version of the input image with

downsampling factor 0.95(kmax−k). kmax is chosen such that

discrete derivative filters can still be applied. Another way

of continuation is by just smoothing the input images using

a Gaussian kernel but keeping the original resolution [1].

Continuation methods have been used also in many other

contexts, e.g. [8].

Proposition 2: The subproblem in each continuation step
is convex and can be globally optimized for fixed correspon-
dences w1.

Proof: The Euler-Lagrange equations for (7) read:

Ψ′ (I2z ) IzIx + γΨ′ (I2xz + I2yz
)
(IxxIxz + IxyIyz)

+β ρΨ′ ((u− u1)
2 + (v − v1)

2
)
(u− u1)

−α div
(
Ψ′ (|∇u|2 + |∇v|2)∇u

)
= 0

Ψ′ (I2z ) IzIy + γΨ′ (I2xz + I2yz
)
(IxyIxz + IyyIyz)

+β ρΨ′ ((u− u1)
2 + (v − v1)

2
)
(v − v1)

−α div
(
Ψ′ (|∇u|2 + |∇v|2)∇v

)
= 0,

(10)

where Ψ′(s2) is the first derivative of Ψ(s2) with respect to

s2, and we define

Ix := ∂xI2(x+w) Ixy := ∂xyI2(x+w)
Iy := ∂yI2(x+w) Iyy := ∂yyI2(x+w)
Iz := I2(x+w)− I1(x) Ixz := ∂xIz
Ixx := ∂xxI2(x+w) Iyz := ∂yIz.

(11)

Nested fixed point iterations can be used to resolve the

nonlinearity in (10). The continuation method is integrated

into this numerical scheme by running the outer iteration loop

across multiple image scales. The initialization w0 := (0, 0) is

specified at the coarsest scale, and updates wk+1 = wk+dwk

are computed at successively finer scales, where dwk :=
(duk, dvk) is the solution of

Ψ′
1I

k
x (I

k
z + Ikxdu

k + Iky dv
k) + βρΨ′

3(u
k + duk − u1)

+γΨ′
2I

k
xx(I

k
xz + Ikxxdu

k + Ikxydv
k)

+γΨ′
2I

k
xy(I

k
yz + Ikxydu

k + Ikyydv
k)

−α div
(
Ψ′

4∇(uk + duk)
)
= 0

Ψ′
1I

k
y (I

k
z + Ikxdu

k + Iky dv
k) + βρΨ′

3(v
k + dvk − v1)

+γΨ′
2I

k
xy(I

k
xz + Ikxxdu

k + Ikxydv
k)

+γΨ′
2I

k
yy(I

k
yz + Ikxydu

k + Ikyydv
k)

−α div
(
Ψ′

4∇(vk + dvk)
)
= 0

(12)

with

Ψ′
1 := Ψ′ ((Ikz + Ikxdu

k + Iky dv
k)2

)
Ψ′

2 := Ψ′((Ikxz + Ikxxdu
k + Ikxydv

k)2

+(Ikyz + Ikxydu
k + Ikyydv

k)2
)

Ψ′
3 := Ψ′ ((uk+duk−u1)

2 + (vk+dvk−v1)
2
)

Ψ′
4 := Ψ′ (|∇(uk + duk)|2 + |∇(vk + dvk)|2) .

(13)

It can be verified that the equations in (12) are the Euler-

Lagrange equations of the energy:

Ek(duk, dvk) =

∫
Ω

Ψ
(
(Ikxdu

k + Iky dv
k + Ikz )

2
)
dx

+γ

∫
Ω

Ψ
(
(Ikxxdu

k + Ikxydv
k + Ikxz)

2
)
dx

+γ

∫
Ω

Ψ
(
(Ikxydu

k + Ikyydv
k + Ikyz)

2
)
dx

+β

∫
Ω

Ψ
(
(uk + duk − u1)

2 + (vk + dvk − v1)
2
)
dx

+α

∫
Ω

Ψ
(|∇(uk + duk)|2 + |∇(vk + dvk)|2) .

(14)

With Ψ(s2) being convex in s, each of the terms is convex in

(duk, dvk), and consequently the energy Ek is convex for all

k and can be globally optimized. �
For solving (12), an inner fixed point iteration over l is

employed, where the robust functions in (13) are set constant

for fixed duk,l, dvk,l and are iteratively updated. The equations

are then linear in duk,l, dvk,l and can be solved by standard

iterative methods after proper discretization. The fact that we

discretize the equation system rather than the energy model

allows for a consistent discretization, i.e., one that converges

to the continuous limit when the image resolution gets finer.

For this reason there are no discrete artifacts like edges being

aligned with the grid axes. Discretization details can be found,

e.g., in [9].

The fact that the full optimization problem in (7) can be

split into a number of subproblems that can all be opti-

mized globally does not guarantee a global optimum for the

full problem. This is well known also in other optimization

settings, for instance expectation-maximization. However, the

proposed optimization procedure helps to avoid most of the

local minima of the original problem. It is worth noting that

this is not just a post-smoothing of the correspondences from

descriptor matching, but the correspondences are integrated

into the continuation method. This gives them high impact at

the beginning of the process, where the image resolution is

very small and the correspondences dominate the gray value

and gradient constancy terms. As the resolution increases, the

ratio between the fixed number of point correspondences and

the increasing number of pixels in the image drops, and so

does the impact of the correspondences. In the continuous

limit, this ratio goes to zero. We simulate this limit by running

one last iteration with β = 0.

The naturally decreasing importance of descriptor matching

at finer levels of the continuation method is very helpful in

practice. At coarse levels, the high impact of the matches

pushes the estimation towards large displacement solutions

which are otherwise ignored by the warping scheme. At finer

levels, this effect is no longer needed, whereas false matches

need to be sorted out at some point. Fig. 4 shows the evolution

of the solution in a sample case.

One could imagine iterating the whole optimization process,

thereby providing feedback to the descriptor matching by

restricting the search range of w1, for instance. This has

been proposed in [31], where a continuation method is not
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Fig. 4. Evolution of estimated flow. Left: Overlayed input images. Right: Evolving flow field from coarse (left) to fine
(right). The correspondences dominate the estimate at the beginning, pushing the solution towards the fast motion of
the leg and the racket. Some wrong matches are also visible, e.g. at the tip of the racket. These outliers are removed
over time as more and more data from the image is taken into account.

Fig. 5. Comparison of descriptors used for matching. From left to right: Overlaid input images, region descriptors
as proposed in [10], HOG descriptors, GB descriptors. The region descriptors produce more mismatches than HOG
descriptors and miss more parts like the racket than HOG and GB. GB is best in recovering all parts, like the racket in
the second example, whereas HOG produces fewer false matches.

used at all. In the setting here, further iterations yield only

very little improvement, but increase the computational cost

considerably.

5 EXPERIMENTS

5.1 Comparison among the used descriptors

As we suggested three alternative ways for descriptor match-

ing, in a first experiment we evaluated which one works best.

For a quantitative measurement, we ran the methods on all 8

sequences of the Middlebury benchmark with public ground

truth [3]. It is important to note that the Middlebury benchmark

does not include any ground truth examples with large motion.

All the examples can be easily handled with conventional

warping techniques. The additional descriptor matching cannot

be expected to improve the accuracy in the case of small

displacements, as it usually produces some disturbing false

large displacement matches, while the correct matches do

not have positive effects as the warping already produces

very good solutions with subpixel accuracy. Therefore, this

experiment cannot tell which of the descriptors is best for

dealing with large displacement situations, but which one

produces the least false matches. By comparing the numbers to

the baseline method without descriptor matching, i.e. β = 0,

we can also measure the accuracy that is lost by adding the

ability to deal with large displacement scenarios.

The parameters σ (presmoothing of the images), α, and

γ were optimized as to produce the best average angular

error among all 8 sequences. β = 300 was kept at the

same value as in all the other examples, ensuring that fast

motion could be estimated, if it was present in the sequences.

Table 1 shows the average angular error. As expected, the

baseline method performs best on this benchmark. Among

the descriptor matching techniques, the HOG descriptor leads

to the smallest loss in accuracy, followed by GB and region

matching. With 16%, the loss in accuracy is a price worth

paying for the ability to capture much larger displacements.

The conjecture that HOG descriptors lead to the smallest

number of mismatches is also confirmed by a qualitative

analysis. Fig. 5 shows two examples from a tennis sequence

including large displacements. Both region matching and GB

descriptors lead to some artifacts in the final flow that result

from false descriptor matching and that could not be pruned by

the variational method, whereas the result with HOG matching

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Warping only (β = 0) Regions HOG GB
Dimetrodon 1.82 1.74 1.85 1.95
Grove2 2.09 2.25 2.68 2.79
Grove3 5.59 6.55 6.38 6.35
Urban2 2.28 3.05 2.64 3.15
Urban3 3.99 5.76 5.07 5.19
RubberWhale 3.77 3.84 3.94 4.14
Hydrangea 2.32 2.36 2.44 2.54
Venus 5.19 7.37 6.45 6.52
Average 3.38 4.11 3.93 4.08

TABLE 1
Quantitative comparison of the descriptors on sequences

of the Middlebury benchmark (average angular error).
On average, HOG descriptors lead to the smallest loss in

accuracy.

σ α β γ AAE

0.6 9 300 3 3.93◦

0.3 4.25◦
1.2 4.54◦

4.5 4.31◦
18 4.40◦

1.5 4.07◦
6 4.08◦

TABLE 2
Effect of parameter variation. Results are quite stable.

does not show these artifacts. On the other hand, the second

example reveals that HOG matching misses the motion of the

racket, which is captured correctly with the GB descriptors.

Region matching misses the motion of the racket as well as

the arm and the foot.

This qualitative behavior persists when analyzing more

frames: HOG descriptors produce the fewest mismatches,

whereas GB descriptors tend to capture more details. These

effects are most likely due to a different behavior of the

descriptors in the consistency check, as the integration areas of

both descriptors are similar and their weighting in the energy

with β = 400 is the same. Due to the better localization of

the GB descriptor close to its central point, a match in one

direction is more often the best match in opposite direction.

As a consequence, more matches pass the consistency check,

leading both to more false matches and more correct large

displacement matches. The inferior results of region matching

with respect to both aspects is due to the sparser sampling of

region descriptors, thus missing more parts, and consistency

problems between the segmentations of the two frames, which

lead to additional false matches.

In all the other experiments, we used the HOG descriptors

for matching. Besides the nice property to be more conserva-

tive with respect to false matches, the computation of the HOG

descriptors is also the most efficient one. In applications where

large displacements clearly dominate, GB descriptors could be

advantageous, and there are also possibilities to combine both

descriptors. However, we did not further investigate this in

detail.

Table 2 shows results of an experiment on parameter varia-

tion. The method is fairly robust to small changes in the tuning

parameters. Even more important: with a fixed set of parame-

ters, the approach can produce reasonable flow estimates on a

variety of sequences. In the remaining experiments, we fixed

Warping [11] LDOF SIFT flow [23]
Fig.6, row 1, 384× 288 7s 18s 99s
Fig.6, row 2, 373× 485 12s 29s 167s
Fig.6, row 3, 450× 350 10s 44s 144s
Fig.6, row 4, 640× 480 21s 80s 67s∗
Fig.6, row 5, 530× 380 13s 39s 177s

TABLE 3
Computation times on various image sizes. Due to

insufficient memory, the fourth entry in the SIFT flow
column was obtained on half the resolution. Large

displacement optical flow (LDOF) is up to 5 times faster
than SIFT flow.

all parameters at σ = 0.8, α = 30, β = 300, and γ = 5. It is

worth noting that this set of parameters puts more emphasis

on smoothness than the above parameters optimized for the

Middlebury data. The reason is that flow on the Middlebury

sequences is very easy to compute, with rich structure at all

scales. According to our experience, optimum parameters on

the Middlebury set do not work well on a larger range of

real-world sequences.

5.2 Comparison to classical warping and SIFT flow

We compared the LDOF technique on some large displacement

examples to a classical warping technique [11] and to SIFT

flow [23]. For the latter comparison we used the code provided

on the authors’ website, which corresponds to their far more

efficient coarse-to-fine version from [22]. We removed the

lines in their code that downsample the input images to allow

for a fair comparison based on the same image resolution.

Fig. 6 shows the computed flows and Table 3 lists the

computation times on one core of a Core Duo 2.5GHz laptop

with 3GB of memory running Windows Vista. While the

descriptor matching clearly takes some extra time compared

to [11], it is faster than SIFT flow.

All examples show large displacements that cause problems

to classic warping methods. The fast motion of the hands in

the first, the leg in the second, and the balls in the fourth and

the last example are missed. The hand motion in the fourth

example is underestimated. The fast motion of the car in the

third example was coarsely captured, because the car itself is

a large structure in the image. However, we had to specifically

tune the smoothness parameter α to achieve this result, and

the reduced smoothness leads to unpleasant artifacts in the

flow field. Interestingly, the hand motion in the tennis example

is estimated correctly, since the contrast of the hand is very

high. On the other hand, the slower foot motion is missed

due to lower contrast. These examples clearly demonstrate the

necessity for descriptor matching when dealing with optical

flow in practice.

With the proposed LDOF method the large displacements

are correctly estimated. The large displacements are also well

estimated with SIFT flow except for the motion of the right

ball in the fourth and the ball in the last example. Comparing

LDOF and SIFT flow indicates a higher precision of LDOF.

There are two reasons for that. Firstly, SIFT flow shows

typical discretization and quantization artifacts, in particular

discontinuities aligned with the grid axes and block effects
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Fig. 6. Left: Input images. The second row example is from [30], the last row example from [3]. Center left: Classic
warping [11]. Center right: Proposed large displacement optical flow (LDOF). Right: SIFT flow [23].

due to missing subpixel accuracy. Secondly, SIFT and HOG

descriptors are histograms and are not perfectly localized.

While SIFT flow solely relies on these histogram descriptors,

our method uses these descriptors only for pushing the solution

towards large displacements, but finally makes use of the well-

localized point-wise color and gradient features.

A further advantage of the proposed optimization strategy

over belief propagation used in SIFT flow is the efficiency in

terms of memory. While our method just requires 120MB of

memory to run the VGA example in the last row of Fig. 6,

a system with 3GB of memory was not enough to run this

example with the coarse-to-fine belief propagation from [22]1.

1. Fairness requires to mention that part of this problem was due to
Windows Vista, which is quite famous for its inefficiency.
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Fig. 7. Warped second image; see Fig. 6 for flow.
Left: Large displacement optical flow. Right: SIFT flow.
The SIFT flow warps look nicer as occluding structures
are not doubled, but this reveals actual problems in the
estimated flow (see text). Animations are available in the
supplemental material.

This is why we ran this image pair with half the resolution.

The car example in Fig. 6 demonstrates two limitations

inherent to both optimization techniques. The first one is the

blurring effect in the lower left corner. Both approximative

optimization strategies show similar effects, whereas the global

optimum would certainly prefer to match the fine structures

on the street correctly2. Another problem is the precision of

motion boundaries when the background region is weakly

textured. In these cases, the motion boundary is dislocated

towards the background region. The situation looks better for

the SIFT flow result on the first glance because the shape is

more car-like, but actually it is worse. This can be seen from

Fig. 7. Aside from the fact that the warped car is too small,

i.e., SIFT flow underestimates its true motion, the warped

image obtained with SIFT flow looks perfectly similar to the

first image, pretending a perfect match. However, there is

significant occlusion, and a reasonable prior would be that

occluded background pixels should move in a similar way as

the neighboring background pixels. This would keep parts of

the running person and the moving car at their original place

and make them visible twice. This is almost achieved by our

method, although the space between the double structures still

indicates a dislocation of the correct motion boundary. In the

presence of occlusions or other mismatches like the tip of the

foot in the second example of Fig. 6, SIFT flow is perfect in

2. The area along the right image boundary is a different story, since large
parts disappear from the image.

making the warped second image look like the first one, but the

flow at this point is wrong. This behavior is very reasonable

for object and scene matching, but it is not useful in the scope

of motion analysis. If one is interested in the motion field, it is

not recommendable to judge the result only from the warped

image. A simple pixel-based nearest neighbor matching can

produce the perfect warped image, but the correspondence

field is most likely to be completely useless.

5.3 Large displacement optical flow on a number of
challenging sequences
To conclude the experiments, we show LDOF on a number of

longer sequences taken by ourselves using a consumer camera

or grabbed from movies. The input frames and videos of the

full sequences with the corresponding optical flow can be

downloaded from the first author’s home page.

Fig. 8 and 9 show two shots from a Miss Marple movie.

Basically in all movies there are some scenes with fast motion

that cannot be estimated with conventional techniques. Fig. 8

also shows another comparison to classical warping [11] and

SIFT flow [23]. Clearly, at the beginning of the shot, where

the motion is small, the warping technique and LDOF yield

basically the same results. Versus the end of the shot when the

motion gets fast, the quality of LDOF is better; see the hand

motion in the last frame for instance.

Fig. 10 shows a particularly challenging sequence, since

there is extremely fast motion of very small structures like

the ball or the hands, and at the same time there are highly

repetitive structures due to the fences in the background, which

are problematic for the descriptor matching. Some persisting

outliers can be seen in some frames. The latter problem gets

worse at the end of the sequence after the camera has zoomed

into the scene. Moreover, there is almost no structure on the

tennis court, which can lead to arbitrary flow estimates in these

areas.

LDOF performs quite well on this sequence, capturing the

motion of the ball and the limbs most of the time. The racket

is missed more often, which is also because it is partially

transparent. The last three frames in this figure show the most

typical limitations of the method that appear in this sequence:

missed motion of the racket due to its changing appearance,

false estimates near the fences due to too many false descriptor

matches, and false motion of the tennis court due to missing

structures and the moving shadow.

A sequence with a jumping monkey is shown in Fig. 11.

Due to bad lighting conditions the image contrast is low and

structures are blurred. This leads to several outliers in the

window area, where mostly line structures are available, which

are ambiguous. The actual motion of the jumping monkey and

of the person defending the food is estimated quite well.

6 DISCUSSION

In this paper we have presented a solution to the inherent

problem of current state-of-the-art optical flow estimation

methods to estimate large motions of small structures. This

has been achieved by integrating correspondences from de-

scriptor matching into a variational approach. While these
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Fig. 8. Shot from Miss Marple: A pocket full of rye. First row: Input pairs overlaid to visualize the motion. Second
row: Classic warping [11]. Third row: Large displacement optical flow (LDOF). Fourth Row: SIFT flow [23]. The hand
in the last frame actually moves to the left, which is only captured by LDOF.

Fig. 9. Shot from Miss Marple: A pocket full of rye. Top row: Input pairs overlaid to visualize the motion. Bottom row:
Flow fields estimated with LDOF.

correspondences are not intended to improve the accuracy of

the approach, they support the coarse-to-fine warping strategy

in avoiding local minima. As we have shown, both concepts

towards better minima are complementary as they correspond

to two different ways to split the non-convex optimization

problem into a series of tractable subproblems.

We see applications of this technique particularly in action

recognition and tracking. In action recognition, the new ability

to estimate the optical flow of the most prominent, fast motions

should help to better exploit the motion information in the

video signal. For instance, the histogram of optical flow

(HOF) features in [19] could directly benefit from our method.

Tracking is traditionally based on descriptor matching in a

local search window. We expect that the combination of local

descriptor matching with a spatial regularity constraint will

add robustness to tracking. Moreover, the subpixel accuracy

should reduce the problem of drift inherent to tracking. Issues

like temporal consistency and realtime performance still have

to be dealt with, though. The fact that GPU implementations

of classic warping techniques [36] already achieve 30fps on

VGA resolution indicates that realtime performance is also

feasible with the present approach. The additionally required

descriptor matching fits very well to parallel hardware.

Apart from these traditional motion applications, the ability

to estimate large displacements allows to reach out for more

general matching problems. Works like [4] and [22] have

demonstrated the potential of dense correspondence fields in

recognition tasks. A variant of our technique might be applied

in this field as well.

From a more technical point of view, the combination
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Fig. 10. Tennis sequence taken with a standard consumer camera. The motions of the legs, arms, the racket, and the
ball are particularly challenging. Moreover, the fences in the background with their repetitive structures cause many
errors in the descriptor matching. The flow fields have been estimated using HOG descriptors. The last three frames
were picked to show some remaining limitations.

of discrete matching with a continuous, variational approach

presented here can be investigated in more general settings.

For instance, one could imagine to replace the simple nearest

neighbor matching by a more efficient variant of the belief

propagation approach from [29]. This one would not need to be

particularly precise and could be computed on a coarser grid as

the high precision job is done by the variational optimization.

APPENDIX

Rather than integrating only the best match, the K best

matches can be considered by redefining the corresponding

energy term as:

Ematch(w) =

∫ K∑
i=1

δi(x)ρi(x)Ψ
(|w(x)−wi(x)|2

)
dx,

(15)

where each of the K hypotheses wi(x) is weighted by its

matching score ρi(x). The advantage of integrating multiple

hypotheses is the reduced number of missed correspondences.

This plays a role when tracking extremely small structures

like a tennis ball, which might be covered only by a single

descriptor. A denser sampling of descriptors, however, can

usually deal with this problem as well.

The disadvantage of integrating multiple hypotheses, be-

sides the increased computational cost, is the significantly

increased amount of mismatches that have to be sorted out

by the variational approach. The robust function Ψ(s2) =√
s2 + 0.0012, which is related to the median of the data, can

only deal with a limited outlier to inlier ratio. As a remedy, one

could think of using non-convex error norms, but this leads to a

harder optimization problem, which cannot be solved properly

in the variational setting.

REFERENCES
[1] L. Alvarez, J. Weickert, and J. Sánchez. Reliable estimation of dense

optical flow fields with large displacements. International Journal of
Computer Vision, 39(1):41–56, Aug. 2000.

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. From contours to
regions: an empirical evaluation. In Proc. International Conference on
Computer Vision and Pattern Recognition, 2009.

[3] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for optical flow. In
Proc. International Conference on Computer Vision, 2007.

[4] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition
using low distortion correspondence. In Proc. International Conference
on Computer Vision and Pattern Recognition, 2005.

[5] A. Berg and J. Malik. Geometric blur for template matching. In Proc. In-
ternational Conference on Computer Vision and Pattern Recognition,
volume 1, pages 607–614, 2001.

[6] M. J. Black and P. Anandan. Robust dynamic motion estimation over
time. In Proc. 1991 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 292–302, Maui, HI, June 1991.
IEEE Computer Society Press.

[7] M. J. Black and P. Anandan. The robust estimation of multiple motions:
parametric and piecewise smooth flow fields. Computer Vision and
Image Understanding, 63(1):75–104, Jan. 1996.

[8] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press,
Cambridge, MA, 1987.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Fig. 11. Monkey sequence taken with a standard consumer camera. Due to bad lighting conditions, the image quality
is rather low. The fast motion of the jumping monkey and the person defending the food is well captured, even though
there are some occasional mismatches in the background.

[9] T. Brox. From Pixels to Regions: Partial Differential Equations in Image
Analysis. PhD thesis, Faculty of Mathematics and Computer Science,
Saarland University, Germany, Apr. 2005.

[10] T. Brox, C. Bregler, and J. Malik. Large displacement optical flow.
In Proc. International Conference on Computer Vision and Pattern
Recognition, 2009.

[11] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical
flow estimation based on a theory for warping. In T. Pajdla and J. Matas,
editors, Proc. 8th European Conference on Computer Vision, volume
3024 of LNCS, pages 25–36. Springer, May 2004.

[12] A. Bruhn and J. Weickert. Towards ultimate motion estimation:
Combining highest accuracy with real-time performance. In Proc. 10th
International Conference on Computer Vision, pages 749–755. IEEE
Computer Society Press, Beijing, China, Oct. 2005.

[13] H. Chui and A. Rangarajan. A new point matching algorithm for non-
rigid registration. Computer Vision and Image Understanding, 89(2–
3):114–141, 2003.

[14] I. Cohen. Nonlinear variational method for optical flow computation.
In Proc. Eighth Scandinavian Conference on Image Analysis, volume 1,
pages 523–530, Tromsø, Norway, May 1993.

[15] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In Proc. International Conference on Computer Vision and
Pattern Recognition, pages 886–893, 2005.

[16] T. Darrell, P. Indyk, and G. Shakhnarovich, editors. Nearest Neighbor
Methods in Learning and Vision: Theory and Practice. MIT Press, 2006.
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