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Abstract. Paper-by-paper results make it easy to miss the forest for
the trees. We analyse the remarkable progress of the last decade by dis-
cussing the main ideas explored in the 40+ detectors currently present
in the Caltech pedestrian detection benchmark. We observe that there
exist three families of approaches, all currently reaching similar detec-
tion quality. Based on our analysis, we study the complementarity of the
most promising ideas by combining multiple published strategies. This
new decision forest detector achieves the current best known performance
on the challenging Caltech-USA dataset.

1 Introduction
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Fig. 1. The last decade has shown tremendous
progress on pedestrian detection. What have we
learned out of the 40+ proposed methods?

Pedestrian detection is a
canonical instance of object
detection. Because of its direct
applications in car safety,
surveillance, and robotics, it
has attracted much attention
in the last years. Importantly,
it is a well defined prob-
lem with established bench-
marks and evaluation metrics.
As such, it has served as a
playground to explore differ-
ent ideas for object detec-
tion. The main paradigms
for object detection “Viola&Jones variants”, HOG+SVM rigid templates,
deformable part detectors (DPM), and convolutional neural networks (Con-
vNets) have all been explored for this task.

The aim of this paper is to review progress over the last decade of pedes-
trian detection (40+ methods), identify the main ideas explored, and try to
quantify which ideas had the most impact on final detection quality. In the
next sections we review existing datasets (section 2), provide a discussion of the
different approaches (section 3), and experiments reproducing/quantifying the
recent years’ progress (section 4, presenting experiments over ∼ 20 newly trained
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(a) INRIA test set (b) Caltech-USA test set (c) KITTI test set

Fig. 2. Example detections of a top performing method (SquaresChnFtrs)

detector models). Although we do not aim to introduce a novel technique, by
putting together existing methods we report the best known detection results
on the challenging Caltech-USA dataset.

2 Datasets

Multiple public pedestrian datasets have been collected over the years; INRIA
[1], ETH [2], TUD-Brussels [3], Daimler [4] (Daimler stereo [5]), Caltech-USA [6],
and KITTI [7] are the most commonly used ones. They all have different char-
acteristics, weaknesses, and strengths.

INRIA is amongst the oldest and as such has comparatively few images. It
benefits however from high quality annotations of pedestrians in diverse settings
(city, beach, mountains, etc.), which is why it is commonly selected for training
(see also §4.4). ETH and TUD-Brussels are mid-sized video datasets. Daimler is
not considered by all methods because it lacks colour channels. Daimler stereo,
ETH, and KITTI provide stereo information. All datasets but INRIA are obtained
from video, and thus enable the use of optical flow as an additional cue.

Today, Caltech-USA and KITTI are the predominant benchmarks for pedes-
trian detection. Both are comparatively large and challenging. Caltech-USA
stands out for the large number of methods that have been evaluated side-
by-side. KITTI stands out because its test set is slightly more diverse, but is
not yet used as frequently. For a more detailed discussion of the datasets please
consult [7,8]. INRIA, ETH (monocular), TUD-Brussels, Daimler (monocular),
and Caltech-USA are available under a unified evaluation toolbox; KITTI uses
its own separate one with unpublished test data. Both toolboxes maintain an
online ranking where published methods can be compared side by side.

In this paper we use primarily Caltech-USA for comparing methods, INRIA
and KITTI secondarily. See figure 2 for example images. Caltech-USA and
INRIA results are measured in log-average miss-rate (MR, lower is better), while
KITTI uses area under the precision-recall curve (AUC, higher is better).

Value of Benchmarks. Individual papers usually only show a narrow view
over the state of the art on a dataset. Having an official benchmark that collects
detections from all methods greatly eases the author’s effort to put their curve
into context, and provides reviewers easy access to the state of the art results.
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Table 1. Listing of methods considered on Caltech-USA, sorted by log-average miss-
rate (lower is better). Consult sections 3.1 to 3.9 for details of each column. See also
matching figure 3. “HOG” indicates HOG-like [1]. Ticks indicate salient aspects of each
method.
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VJ [9] 94.73% DF � � Haar I
Shapelet [10] 91.37% - � Gradients I
PoseInv [11] 86.32% - � HOG I+

LatSvm-V1 [12] 79.78% DPM � HOG P
ConvNet [13] 77.20% DN � Pixels I
FtrMine [14] 74.42% DF � HOG+Color I
HikSvm [15] 73.39% - � HOG I

HOG [1] 68.46% - � � HOG I
MultiFtr [16] 68.26% DF � � HOG+Haar I

HogLbp [17] 67.77% - � HOG+LBP I
AFS+Geo [18] 66.76% - � Custom I

AFS [18] 65.38% - Custom I
LatSvm-V2 [19] 63.26% DPM � � HOG I

Pls [20] 62.10% - � � Custom I
MLS [21] 61.03% DF � HOG I

MultiFtr+CSS [22] 60.89% DF � Many T
FeatSynth [23] 60.16% - � � Custom I
pAUCBoost [24] 59.66% DF � � HOG+COV I

FPDW [25] 57.40% DF HOG+LUV I
ChnFtrs [26] 56.34% DF � � HOG+LUV I

CrossTalk [27] 53.88% DF � HOG+LUV I
DBN−Isol [28] 53.14% DN � HOG I

ACF [29] 51.36% DF � HOG+LUV I
RandForest [30] 51.17% DF � HOG+LBP I&C

MultiFtr+Motion [22] 50.88% DF � � Many+Flow T
SquaresChnFtrs [31] 50.17% DF � HOG+LUV I

Franken [32] 48.68% DF � HOG+LUV I
MultiResC [33] 48.45% DPM � � � HOG C

Roerei [31] 48.35% DF � � HOG+LUV I
DBN−Mut [34] 48.22% DN � � HOG C

MF+Motion+2Ped [35] 46.44% DF � � Many+Flow I+
MOCO [36] 45.53% - � � HOG+LBP C

MultiSDP [37] 45.39% DN � � � HOG+CSS C
ACF-Caltech [29] 44.22% DF � HOG+LUV C

MultiResC+2Ped [35] 43.42% DPM � � � HOG C+
WordChannels [38] 42.30% DF � Many C

MT-DPM [39] 40.54% DPM � � HOG C
JointDeep [40] 39.32% DN � Color+Gradient C

SDN [41] 37.87% DN � � Pixels C
MT-DPM+Context [39] 37.64% DPM � � � HOG C+

ACF+SDt [42] 37.34% DF � � ACF+Flow C+
SquaresChnFtrs [31] 34.81% DF � HOG+LUV C

InformedHaar [43] 34.60% DF � HOG+LUV C
Katamari-v1 22.49% DF � � � HOG+Flow C+
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The collection of results enable retrospective analyses such as the one presented
in the next section.

3 Main Approaches to Improve Pedestrian Detection

Figure 3 and table 1 together provide a quantitative and qualitative overview
over 40+ methods whose results are published on the Caltech pedestrian detec-
tion benchmark (July 2014). Methods marked in italic are our newly trained
models (described in section 4). We refer to all methods using their Caltech
benchmark shorthand. Instead of discussing the methods’ individual particular-
ities, we identify the key aspects that distinguish each method (ticks of table 1)
and group them accordingly. We discuss these aspects in the next subsections.

SquaresChnFtrs

SquaresChnFtrs

Katamari-v1

Fig. 3. Caltech-USA detection results

Brief Chronology. In
2003, Viola and Jones applied
their VJ detector [44] to the
task of pedestrian detec-
tion. In 2005 Dalal and
Triggs introduced the land-
mark HOG [1] detector,
which later served in 2008
as a building block for
the now classic deformable
part model DPM (named
LatSvm here) by Felzen-
swalb et al. [12]. In 2009 the
Caltech pedestrian detec-
tion benchmark was intro-
duced, comparing seven
pedestrian detectors [6]. At
this point in time, the
evaluation metrics changed
from per-window (FPPW)
to per-image (FPPI), once
the flaws of the per-window
evaluation were identified
[8]. Under this new eval-
uation metric some of the
early detectors turned out
to under-perform.

About one third of the methods considered here were published during 2013,
reflecting a renewed interest on the problem. Similarly, half of the KITTI results
for pedestrian detection were submitted in 2014.
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3.1 Training Data

Figure 3 shows that differences in detection performance are, not surprisingly,
dominated by the choice of training data. Methods trained on Caltech-USA sys-
tematically perform better than methods that generalise from INRIA. Table 1
gives additional details on the training data used1. High performing meth-
ods with “other training” use extended versions of Caltech-USA. For instance
MultiResC+2Ped uses Caltech-USA plus an extended set of annotations over
INRIA, MT-DPM+Context uses an external training set for cars, and ACF+SDt
employs additional frames from the original Caltech-USA videos.

3.2 Solution Families

Overall we notice that out of the 40+ methods we can discern three families: 1)
DPM variants (MultiResC [33], MT-DPM [39], etc.), 2) Deep networks (JointDeep
[40], ConvNet [13], etc.), and 3) Decision forests (ChnFtrs, Roerei, etc.). On
table 1 we identify these families as DPM, DN, and DF respectively.

Based on raw numbers alone boosted decision trees (DF) seem particularly
suited for pedestrian detection, reaching top performance on both the “train
on INRIA, test on Caltech”, and “train on Caltech, test on Caltech” tasks. It
is unclear however what gives them an edge. The deep networks explored also
show interesting properties and fast progress in detection quality.
Conclusion Overall, at present, DPM variants, deep networks, and (boosted)
decision forests all reach top performance in pedestrian detection (around 37%
MR on Caltech-USA, see figure 3).

3.3 Better Classifiers

Since the original proposal of HOG+SVM [1], linear and non-linear kernels have been
considered. HikSvm [15] considered fast approximations of non-linear kernels. This
method obtains improvements when using the flawed FPPW evaluation metric
(see section 3), but fails to perform well under the proper evaluation (FPPI). In
the work on MultiFtrs [16], it was argued that, given enough features, Adaboost
and linear SVM perform roughly the same for pedestrian detection.

Recently, more and more components of the detector are optimized jointly
with the “decision component” (e.g. pooling regions in ChnFtrs [26], filters in
JointDeep [40]). As a result the distinction between features and classifiers is
not clear-cut anymore (see also sections 3.8 and 3.9).

Conclusion There is no conclusive empirical evidence indicating that whether
non-linear kernels provide meaningful gains over linear kernels (for pedestrian
detection, when using non-trivial features). Similarly, it is unclear whether one
particular type of classifier (e.g. SVM or decision forests) is better suited for
pedestrian detection than another.
1 “Training” data column: I→INRIA, C→Caltech, I+/C+ →INRIA/Caltech and

additional data, P→Pascal, T→TUD-Motion, I&C→both INRIA and Caltech.



618 R. Benenson et al.

3.4 Additional Data

The core problem of pedestrian detection focuses on individual monocular colour
image frames. Some methods explore leveraging additional information at train-
ing and test time to improve detections. They consider stereo images [45], optical
flow (using previous frames, e.g. MultiFtr+Motion [22] and ACF+SDt [42]), track-
ing [46], or data from other sensors (such as lidar [47] or radar).

For monocular methods it is still unclear how much tracking can improve
per-frame detection itself. As seen in figure 4 exploiting optical flow provides a
non-trivial improvement over the baselines. Curiously, the current best results
(ACF-SDt [42]) are obtained using coarse rather than high quality flow. In section
4.2 we inspect the complementarity of flow with other ingredients. Good success
exploiting flow and stereo on the Daimler dataset has been reported [48], but
similar results have yet to be seen on newer datasets such as KITTI.
Conclusion Using additional data provides meaningful improvements, albeit on
modern dataset stereo and flow cues have yet to be fully exploited. As of now,
methods based merely on single monocular image frames have been able to keep
up with the performance improvement introduced by additional information.

3.5 Exploiting Context

Sliding window detectors score potential detection windows using the content
inside that window. Drawing on the context of the detection window, i.e.
image content surrounding the window, can improve detection performance.
Strategies for exploiting context include: ground plane constraints (MultiResC
[33], RandForest [30]), variants of auto-context [49] (MOCO [36]), other category
detectors (MT-DPM+Context [39]), and person-to-person patterns (DBN−Mut [34],
+2Ped [35], JointDeep [40]).
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Fig. 4. Caltech-USA detection improvements
for different method types. Improvement rel-
ative to each method’s relevant baseline
(“method vs baseline”).

Figure 4 shows the performance
improvement for methods incor-
porating context. Overall, we see
improvements of 3 ∼ 7 MR per-
cent points. (The negative impact
of AFS+Geo is due to a change
in evaluation, see section 3.) Inter-
estingly, +2Ped [35] obtains a con-
sistent 2 ∼ 5 MR percent point
improvement over existing meth-
ods, even top performing ones (see
section 4.2).
Conclusion Context provides con-
sistent improvements for pedestrian
detection, although the scale of
improvement is lower compared to additional test data (§3.4) and deep architec-
tures (§3.8). The bulk of detection quality must come from other sources.
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3.6 Deformable Parts

The DPM detector [19] was originally motivated for pedestrian detection. It is
an idea that has become very popular and dozens of variants have been explored.

For pedestrian detection the results are competitive, but not salient (LatSvm
[12,50], MultiResC [33], MT-DPM [39]). More interesting results have been obtained
when modelling parts and their deformations inside a deep architecture (e.g.DBN−-
Mut [34], JointDeep [40]).

DPM and its variants are systematically outmatched by methods using a sin-
gle component and no parts (Roerei [31], SquaresChnFtrs see section 4.1),
casting doubt on the need for parts. Recent work has explored ways to capture
deformations entirely without parts [51,52].

Conclusion For pedestrian detection there is still no clear evidence for the neces-
sity of components and parts, beyond the case of occlusion handling.

3.7 Multi-scale Models

Typically for detection, both high and low resolution candidate windows are
resampled to a common size before extracting features. It has recently been
noticed that training different models for different resolutions systematically
improve performance by 1 ∼ 2 MR percent points [31,33,39], since the detector
has access to the full information available at each window size. This technique
does not impact computational cost at detection time [53], although training
time increases.
Conclusion Multi-scale models provide a simple and generic extension to exist-
ing detectors. Despite consistent improvements, their contribution to the final
quality is rather minor.

3.8 Deep Architectures

Large amounts of training data and increased computing power have lead to
recent successes of deep architectures (typically convolutional neural networks)
on diverse computer vision tasks (large scale classification and detection [54,
55], semantic labelling [56]). These results have inspired the application of deep
architectures to the pedestrian task.

ConvNet [13] uses a mix of unsupervised and supervised training to create a
convolutional neural network trained on INRIA. This method obtains fair results
on INRIA, ETH, and TUD-Brussels, however fails to generalise to the Caltech
setup. This method learns to extract features directly from raw pixel values.

Another line of work focuses on using deep architectures to jointly model
parts and occlusions (DBN−Isol [28], DBN−Mut [34], JointDeep [40], and SDN
[41]). The performance improvement such integration varies between 1.5 to 14
MR percent points. Note that these works use edge and colour features [28,34,
40], or initialise network weights to edge-sensitive filters, rather than discovering
features from raw pixel values as usually done in deep architectures. No results
have yet been reported using features pre-trained on ImageNet [54,57].
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Conclusion Despite the common narrative there is still no clear evidence that
deep networks are good at learning features for pedestrian detection (when using
pedestrian detection training data). Most successful methods use such archi-
tectures to model higher level aspects of parts, occlusions, and context. The
obtained results are on par with DPM and decision forest approaches, making
the advantage of using such involved architectures yet unclear.

3.9 Better Features

The most popular approach (about 30% of the considered methods) for improv-
ing detection quality is to increase/diversify the features computed over the
input image. By having richer and higher dimensional representations, the clas-
sification task becomes somewhat easier, enabling improved results. A large set
of feature types have been explored: edge information [1,26,41,58], colour infor-
mation [22,26], texture information [17], local shape information [38], covariance
features [24], amongst others. More and more diverse features have been shown
to systematically improve performance.

While various decision forest methods use 10 feature channels (ChnFtrs,
ACF, Roerei, SquaresChnFtrs, etc.), some papers have considered up to an
order of magnitude more channels [16,24,30,38,58]. Despite the improvements
by adding many channels, top performance is still reached with only 10 channels
(6 gradient orientations, 1 gradient magnitude, and 3 colour channels, we name
these HOG+LUV); see table 1 and figure 3. In section 4.1 we study in more
detail different feature combinations.

From all what we see, from VJ (95% MR) to ChnFtrs (56.34% MR, by adding
HOG and LUV channels), to SquaresChnFtrs-Inria (50.17% MR, by exhaus-
tive search over pooling sizes, see section 4), improved features drive progress.
Switching training sets (section 3.1) enables SquaresChnFtrs-Caltech to reach
state of the art performance on the Caltech-USA dataset; improving over signif-
icantly more sophisticated methods. InformedHaar [43] obtains top results by
using a set of Haar-like features manually designed for the pedestrian detection
task. In contrast SquaresChnFtrs-Caltech obtains similar results without using
such hand-crafted features and being data driven instead.

Upcoming studies show that using more (and better features) yields further
improvements [59,60]. It should be noted that better features for pedestrian
detection have not yet been obtained via deep learning approaches (see caveat
on ImageNet features in section 3.8).

Conclusion In the last decade improved features have been a constant driver for
detection quality improvement, and it seems that it will remain so in the years
to come. Most of this improvement has been obtained by extensive trial and
error. The next scientific step will be to develop a more profound understanding
of the what makes good features good, and how to design even better ones2.
2 This question echoes with the current state of the art in deep learning, too.
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Fig. 5. Effect of features on detection
performance. Caltech-USA reasonable test
set.
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Fig. 6. Caltech-USA training set
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INRIA/Caltech-USA training set.

4 Experiments

Based on our analysis in the previous section, three aspects seem to be the most
promising in terms of impact on detection quality: better features (§3.9), addi-
tional data (§3.4), and context information (§3.5). We thus conduct experiments
on the complementarity of these aspects.

Among the three solution families discussed (section 3.2), we choose the
Integral Channels Features framework [26] (a decision forest) for conducting our
experiments. Methods from this family have shown good performance, train in
minutes∼hours, and lend themselves to the analyses we aim.

In particular, we use the (open source) SquaresChnFtrs baseline described in
[31]: 2048 level-2 decision trees (3 threshold comparisons per tree) over HOG+LUV
channels (10 channels), composing one 64 × 128 pixels template learned via
vanilla AdaBoost and few bootstrapping rounds of hard negative mining.

4.1 Reviewing the Effect of Features

In this section, we evaluate the impact of increasing feature complexity. We tune
all methods on the INRIA test set, and demonstrate results on the Caltech-USA
test set (see figure 5). Results on INRIA as well as implementation details can
be found in the supplementary material.

The first series of experiments aims at mimicking landmark detection tech-
niques, such as VJ [44], HOG+linear SVM [1], and ChnFtrs [26]. VJLike uses only
the luminance colour channel, emulating the Haar wavelet like features from the
original [44] using level 2 decision trees. HOGLike-L1/L2 use 8× 8 pixel pooling
regions, 1 gradient magnitude and 6 oriented gradient channels, as well as level
1/2 decision trees. We also report results when adding the LUV colour chan-
nels HOGLike+LUV (10 feature channels total). SquaresChnFtrs is the baseline
described in the beginning of section 4, which is similar to HOGLike+LUV to but
with square pooling regions of any size.
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Fig. 7. Some of the top quality detection meth-
ods for Caltech-USA. See section 4.2.
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Fig. 8. Pedestrian detection on the
KITTI dataset

Inspired by [60], we also expand the 10 HOG+LUV channels into 40 channels
by convolving each channel with three DCT (discrete cosine transform) basis
functions (of 7 × 7 pixels), and storing the absolute value of the filter responses
as additional feature channels. We name this variant SquaresChnFtrs+DCT.

Conclusion Much of the progress since VJ can by explained by the use of better
features, based on oriented gradients and colour information. Simple tweaks to
these well known features (e.g. projection onto the DCT basis) can still yield
noticeable improvements.

4.2 Complementarity of Approaches

After revisiting the effect of single frame features in section 4.1 we now consider
the complementary of better features (HOG+LUV+DCT), additional data (via
optical flow), and context (via person-to-person interactions).

We encode the optical flow using the same SDt features from ACF+SDt [33]
(image difference between current frame T and coarsely aligned T-4 and T-
8). The context information is injected using the +2Ped re-weighting strategy
[35] (the detection scores are combined with the scores of a “2 person” DPM
detector). In all experiments both DCT and SDt features are pooled over 8 × 8
regions (as in [33]), instead of “all square sizes” for the HOG+LUV features.

The combination SquaresChnFtrs+DCT+SDt+2Ped is called Katamari-v1.
Unsurprisingly, Katamari-v1 reaches the best known result on the Caltech-USA
dataset. In figure 7 we show it together with the best performing method for each
training set and solution family (see table 1). The supplementary material contains
results of all combinations between the ingredients.
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Conclusion Our experiments show that adding extra features, flow, and context
information are largely complementary (12% gain, instead of 3+ 7+ 5%), even
when starting from a strong detector.
It remains to be seen if future progress in detection quality will be obtained by
further insights of the “core” algorithm (thus further diminishing the relative
improvement of add-ons), or by extending the diversity of techniques employed
inside a system.

4.3 How Much Model Capacity Is Needed?

The main task of detection is to generalise from training to test set. Before
we analyse the generalisation capability (section 4.4), we consider a necessary
condition for high quality detection: is the learned model performing well on the
training set?

In figure 6 we see the detection quality of the models considered in section
4.1, when evaluated over their training set. None of these methods performs
perfectly on the training set. In fact, the trend is very similar to performance on
the test set (see figure 5) and we do not observe yet symptoms of over-fitting.

Conclusion Our results indicate that research on increasing the discriminative
power of detectors is likely to further improve detection quality. More discrim-
inative power can originate from more and better features or more complex
classifiers.

4.4 Generalisation Across Datasets

Table 2. Effect of training set over the detection
quality. Bold indicates second best training set for
each test set, except for ETH where bold indicates
the best training set.

Test
set

Training
set

INRIA Caltech-USA KITTI

INRIA 17 .42 % 60.50% 55.83%
Caltech-USA 50.17% 34 .81 % 61.19%

KITTI 38.61% 28.65% 44 .42 %
ETH 56.27% 76.11% 61.19%

For real world application
beyond a specific benchmark,
the generalisation capability of
a model is key. In that sense
results of models trained on
INRIA and tested on Caltech-
USA are more relevant than
the ones trained (and tested)
on Caltech-USA.

Table 2 shows the per-
formance of SquaresChnFtrs
over Caltech-USA when using
different training sets (MR for
INRIA/Caltech/ETH, AUC for KITTI). These experiments indicate that train-
ing on Caltech or KITTI provides little generalisation capability towards INRIA,
while the converse is not true. Surprisingly, despite the visual similarity between
KITTI and Caltech, INRIA is the second best training set choice for KITTI
and Caltech. This shows that Caltech-USA pedestrians are of “their own kind”,
and that the INRIA dataset is effective due to its diversity. In other words few
diverse pedestrians (INRIA) is better than many similar ones (Caltech/KITTI).
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The good news is that the best methods seem to perform well both across
datasets and when trained on the respective training data. Figure 8 shows
methods trained and tested on KITTI, we see that SquaresChnFtrs (named
SquaresICF in KITTI) is better than vanilla DPM and on par with the best
known DPM variant. The currently best method on KITTI, pAUC [59], is a vari-
ant of ChnFtrs using 250 feature channels (see the KITTI website for details
on the methods). These two observations are consistent with our discussions in
sections 3.9 and 4.1.

Conclusion While detectors learned on one dataset may not necessarily transfer
well to others, their ranking is stable across datasets, suggesting that insights
can be learned from well-performing methods regardless of the benchmark.

5 Conclusion

Our experiments show that most of the progress in the last decade of pedestrian
detection can be attributed to the improvement in features alone. Evidence sug-
gests that this trend will continue. Although some of these features might be
driven by learning, they are mainly hand-crafted via trial and error.

Our experiment combining the detector ingredients that our retrospective
analysis found to work well (better features, optical flow, and context) shows
that these ingredients are mostly complementary. Their combination produces
best published detection performance on Caltech-USA.

While the three big families of pedestrian detectors (deformable part models,
decision forests, deep networks) are based on different learning techniques, their
state-of-the-art results are surprisingly close.

The main challenge ahead seems to develop a deeper understanding of what
makes good features good, so as to enable the design of even better ones.
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