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Abstract— Autonomous vehicles must be capable of localizing
even in GPS denied situations. In this paper, we propose a real-
time method to localize a vehicle along a route using visual im-
agery or range information. Our approach is an implementation
of topometric localization, which combines the robustness of
topological localization with the geometric accuracy of metric
methods. We construct a map by navigating the route using
a GPS-equipped vehicle and building a compact database of
simple visual and 3D features. We then localize using a Bayesian
filter to match sequences of visual or range measurements to the
database. The algorithm is reliable across wide environmental
changes, including lighting differences, seasonal variations, and
occlusions, achieving an average localization accuracy of 1 m
over an 8 km route. The method converges correctly even with
wrong initial position estimates solving the kidnapped robot
problem.

I. INTRODUCTION

Localization is a central problem for autonomous vehicles
that is often addressed using global positioning systems
(GPS), inertial navigation systems (INS), or both. At times,
the GPS signal may be unavailable, due to occlusions from
buildings in cities or trees in suburban areas, or due to
jamming from adversaries in military situations. Even when
available, the GPS signal accuracy is limited, with errors of 3
to 6 m a common occurance, and INS devices, while able to
improve accuracy and bridge short-term GPS dropouts, are
expensive. These observations motivate the need for cost-
effective, long-term localization in GPS-denied situations.

In this paper, we develop a long-term localization al-
gorithm that builds on the visual topometric localization
approach proposed in [4]. Most existing visual localization
approaches fall into two categories: metric or topological.
Metric localization produces exact measurements of the
observer’s pose or position on a map, typically using tri-
angulation [14] or alignment [5]. Topological localization
estimates the observer’s location qualitatively from a finite
set of possible positions. Such methods typically operate
on a graph in which nodes represent possible locations
and edges connect adjacent locations. Each approach offers
complimentary advantages: metric localization can be very
accurate, but may drift over time or fail for long sequences,
while topological localization may be more reliable, but only
provides rough position estimates.

Topometric localization combines topological and
metric localization to achieve the reliability of topological
localization with the geometric accuracy of metric
localization. Topometric localization uses the same graph
structure of topological localization, but at a fine-grained

Fig. 1. Localization can be difficult in varying natural environments, such
as this viewpoint seen during different seasons.

level. Associated with each node in the graph is a real,
metric location. Unlike topological methods, the nodes
are not semantically meaningful and are not necessarily
distinguishable using the available sensors. Topometric
localization involves two tasks: creating the map and
localizing with respect to the map.

Map creation. A vehicle equipped with sensors and a GPS
travels the route to be recognized one or more times. This
may seem like a daunting task, but the Google Streetview
project [8] shows that such mapping is feasible. In our
algorithm, as the vehicle travels the route, a graph is created
using the vehicle position at fixed distance intervals, and
the nodes are annotated with the vehicle position. Visual
or 3D features are extracted from the available sensor
data and stored in a database along with a reference to
the corresponding graph node. We currently focus on
non-branching routes. Branching routes could be addressed
by separating the map into non-branching segments, and a
more general approach is the subject of ongoing research.

Localization. At runtime, as the vehicle drives over the
mapped routes, a Bayes filter is used to estimate the prob-
ability distribution of the vehicle position along the route
by matching features extracted from the sensor data to the
map’s feature database. Although we describe and evaluate
the algorithm using an autonomous car, the method is equally
applicable to indoor localization tasks.

Localizing based solely on visual appearance or range
measurements presents a number of challenges. The algo-
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Fig. 2. Created map and ground truth data for evaluation (units in meters).
The arrow in 2a shows the start and end position. Figure 2c amplifies the
section marked in 2b. The circled area in 2d shows the location of the
construction site (see text for details).

rithm must handle environmental changes over time (e.g.,
seasonal changes, building construction), lighting differences
(e.g., sunny or cloudy days), and occlusions by other vehicles
on the road or parked. Figures 1 and 10 show examples of
all these cases. Furthermore, the vehicle may not follow the
exact same route each time, driving, for example, in different
lanes each time. The algorithm must also be robust to small
changes in the route.

This paper contains four contributions with respect to our
previously published work on topometric localization [4]. 1)
We develop a new global visual feature that reduces the data
storage requirements by a factor of 200 and increases the
speed of the localization by more than 15 times, thereby
enabling real-time localization (Section III-D). 2) We pro-
pose new 3D features based on simple statistics from a
single line laser scanner that, when combined with the visual
features, improve localization convergence (Section III-D).
3) We analyze the algorithm’s performance for solving the
kidnapped robot problem (Section V-B). 4) We evaluate our
algorithm across data sets collected over a period of seasonal
change (Section V-C).

II. RELATED WORK

We will give here only a brief overview of the most related
approaches.

Most localization methods rely on the extraction of local
features from images and range data to build a visual
database of the environment. Valgren and Lilienthal [17]
evaluated the use of SIFT and SURF features for long-term
topological localization. The authors used high-resolution
panoramic images acquired over long periods of time to cap-
ture the natural seasonal changes in an outdoor environment.
A comparison of results using variants of the SURF and SIFT
features was performed. Ascani et al. [3] also evaluated the
relative performance of SURF and SIFT features, finding

that SIFT performs better in indoor environments. SIFT
features were also used indoors using a topological approach
by Andreasson et al. [2] and a metric approach by Se et
al. [13]. Murillo et al. [12] proposed a two step approach.
First, SIFT features were used to obtain the topological
location of the observer. Second, a refinement of the location
was obtained by computing the trifocal tensor between the
best and second best database image matches. Silveira et
al. [14] proposed a metric localization approach without
explicit visual local feature detection. Although all these
methods show promising localization results, the problem
was approached as purely topological or metric, and the
size of the maps varied from small (a few dozen images)
to relatively small (less than 2500 images), whereas our
experiments use databases on the order of 26, 000 images.

The fusion of topological and metric localization has
also been approached before mainly in the simultaneous
localization and mapping (SLAM) domain and using 3D
sensors. Tomatis et al. [16], Kouzoubov and D. Austin [10],
Bosse et al. [6], and Blanco et al. [5] used hybrid approaches
to connect local metric submaps using high level topological
maps. In all cases, the fusion aims at segmenting metric maps
represented by topological nodes in order to organize and
identify submap relations and loop closures.

Our method differentiates from other approaches princi-
pally in two ways. 1) Instead of obtaining large number
of complex features extracted from image and range data,
our method relies on simple statistics of the observations,
allowing us to minimize computation and storage require-
ments. As we will see in the experimental results, reliable
localization can be achieved by the proper integration of
the measurements using Bayesian estimation. 2) Instead
of creating 3D maps or topological structures based on
clustering, our method integrates metric data directly into
the topological nodes by creating a database of the route, as
adresssed in the next section.

III. TOPOMETRIC LOCALIZATION

In this section, we describe the two components of the
topometric localization algorithm: map creation and local-
ization. Additional details may be found in [4].

A. Map Creation

The route map is a directed graph in which the nodes
represent possible vehicle locations and the edges represent
transitions between locations (Figure 2b). As the vehicle
drives the route, a new node storing the vehicle’s current
location is added each time the vehicle moves a constant
Euclidean distance ρ from the location of the previous vertex
(Figure 2c), and a vertex connecting the two nodes is also
added. At the same time, features are extracted from the
sensors and stored in a database. Each extracted feature is
stored with a reference to the current map node. In this
work, we evaluate features derived from visual imagery and
range information. For visual sensing, we use two cameras
aimed 45◦ to the left and right of forward (Figure 3a).
Two vertically scanning single line lidars provide range
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Fig. 3. Evaluation vehicle

information in “push-broom” format as the vehicle moves
forward.

A number of feature descriptors can be used for local-
ization [7]. We have experimented with several types of
features extracted from visual imagery and range data. In [4],
we used upright SURF (U-SURF) descriptors. Here, we
introduce a whole image descriptor as well as two range-
based descriptors:
• Whole image SURF (WI-SURF) descriptor. A vector

d ∈ R64 containing gradient information of the entire
image, computed as described in [1] (Figure 4).

• Range mean and range standard deviation. The average
r̄ and standard deviation σ of all range measurements
acquired during the cycle time ∆t, where ∆t is the time
between consecutive image acquisitions.

The measurement database consists of the set
D = {r1, r2, ..., rM} with components ri = {di, r̄i, σi, li},
where li is the ground truth location of the vehicle in the
map.

The WI-SURF descriptor provides a significant benefit
over the previously reported U-SURF descriptors in terms
of database size and runtime efficiency. Using U-SURF de-
scriptors, a typical feature database for our test route contains
over two million descriptors, since each image may result
in several detected features. The WI-SURF descriptor only
requires one feature per image, reducing the database from
approximately 1 GB to 5 MB (a factor of 200 reduction).
The WI-SURF descriptor also significantly reduces compu-
tational requirements. The standard SURF/SIFT matching
algorithm requires n!/(2(n − 2)!) vector comparisons [11]
(19, 900 comparisons per image for n = 200), whereas WI-

Fig. 4. Example of corresponding images (top) and grayscale representation
of their descriptors (bottom)

SURF matching requires only one descriptor comparison per
image. This optimization gives us a speed up factor of 15
with respect to the U-SURF approach. The experiments in
Section V-A demonstrate that the localization using the WI-
SURF descriptor has the same level of accuracy as achieved
using the U-SURF descriptors. Our current implementation
of the localization algorithm runs at 15 Hz on a standard
laptop.

B. Bayesian Localization

The state Xt defines the position of the vehicle in the
map at time t (i.e., the graph vertex where the vehicle
is located). The vertices of the graph define the possible
values that Xt might assume, i.e., xk, k = 1, 2, 3, ..., N . The
probability of the vehicle located at a particular position xk
in the graph at time t is specified as pk,t = p(Xt = xk).
The discrete probability distribution is expressed as the set
p(xk) = {pk,t}. The Bayes filter [15] keeps track of the
probabilities as the vehicle moves and new measurements
are acquired.

Two actions modify the pdf: prediction and update. The
prediction is the incorporation of the known motion of the
vehicle into the previous pdf. The update step incorporates
new measurements into the current predicted pdf. The dis-
crete Bayes filter performs these two steps recursively:

Input: {pk,t−1}, st, zt
Output: {pk,t}
# Predict
p̄k,t =

∑N
i=1 p(Xt = xk|st, Xt−1 = xi) pi,t−1;

# Update
pk,t = η p(zt|Xt = xk) p̄k,t

The state transition probability p(Xt = xk|st, Xt−1 = xi)
in the prediction step specifies how the state evolves over
time as the vehicle moves with velocity st in the environ-
ment. The measurement probability p(zt|Xt = xk) in the
update step specifies how measurement probabilities are
generated from the system state xk. The scalar η ensures that
the resulting pdf integrates to one. The discrete Bayes filter
requires the definition of the state transition probability and
the measurement probability as well as the initial probability
density function p0 = {pk,0}. The following sections derive
these functions for our localization problem.
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Fig. 5. State transition and measurement probability density functions

C. State Transition Probability

We will assume that the velocity of the vehicle st at
time t is a zero-mean noisy measurement with variance σ2

s .
The translation of the vehicle in the map between times
t − 1 and time t is µ = st∆t/ρ with a variance of
σ2 = (∆t σs/ρ)2, where ∆t is the cycle time, and ρ is the
distance between consecutive nodes in the map (ρ = 1 m in
the experimental results of Section V). We model the state
transition probability with a Gaussian pdf (Figure 5a):

p(xk,t|st, xi,t−1) =
1√

2πσ2
exp

(
− (xi,t−1 − µ)2

2σ2

)
(1)

Equation 1 has the effect of translating and smoothing the
vehicle location pdf p(xk,t−1).

D. Measurement Probability

The measurement probabilities are functions of the sim-
ilarity between the extracted features and those in the
database. To convert the similarity measures into probabil-
ities, we compute empirical probability distributions from
sample data and fit parametric models to the empirical pdfs.
This approach is in contrast to [4], where the pdfs were
custom-designed based on theoretical assumptions.

We define the dissimilarity between a measured WI-SURF
descriptor d and a database descriptor di using the norm of
the descriptor difference, i.e.,

zd = |d− di| (2)

Since the image descriptor vectors are normalized, zd lies in
the interval [0, 1]. Similarly, we define the distance between
current range features r̄ and σ and database range features
r̄i and σi as the square root difference between observed
quantities, i.e.,

zr̄ = |r̄ − r̄i| (3)

and
zσ = |σ − σi|. (4)

The pdf of the measurements p(z|xk), which is needed
by the Bayes filter, can be estimated from sample ground
truth data. Figure 5b-d show the empirical distribution of
the three dissimilarity measures for the data sets described
in Section IV-D. We observe that the distributions closely
match common parametric distributions. The WI-SURF dis-
similarity (zd) follows a Chi-squared distribution (Figure 5b).
The reduced probability for very small difference values
is primarily due to positioning offsets, lighting variation,
seasonal changes, and other image differences that prevent
perfect matching even at the correct location. The range mean
(zr̄) and range standard deviation (zσ) are well described by
exponential distributions (Figure 5c and d respectively).

The learned models do not account for coincidental
good matches that can occur between the measurement and
database entries for other (incorrect) vehicle locations. Such
matches occur, for example, due to repeated structures in
the environment – a long, uniform building facade or the
same model car parked in two locations along the route. We
model these random occurrences with a uniform pdf over
all possible vehicle locations. The final measurement pdf is
a linear combination between the learned measurement pdf
and the uniform distribution, i.e.,

p(zd|xk) = ηd

{
αd + χ(zd, k) if xk = li
αd otherwise (5)

p(zr̄|xk) = ηr̄

{
αr̄ + f(zr̄, λr̄) if xk = li
αr̄ otherwise (6)

p(zσ|xk) = ησ

{
ασ + f(zσ, λσ) if xk = li
ασ otherwise (7)

In these equations, li is the location of the database
feature used to compute the measurement; χ(zd, k) is the
learned Chi-squared distribution with k degrees of freedom;
f(z, λ) is the exponential pdf with corresponding learned
rate parameter λ; αd, αr̄, and ασ are factors weighting the
strength of the uniform distributions; and ηd, ηr̄, and ησ are
normalization factors that ensure that the pdfs integrate to
one.

Assuming independence of the measurements, the com-
bined measurement pdf for a time step t is simply the
multiplication of the individual distributions:

p(zit|xk) = η1p(zid|xk) p(zir̄|xk) p(ziσ|xk) (8)

where zit = (zid, z
i
r̄, z

i
σ)T is the ith measurement, and η1 is a

normalization factor. For M measurements in the database,
the final probability function is obtained by the product of
the individual measurement pdfs, i.e.,

p(zt|xk) = η2

M∏
i=1

p(zit|xk). (9)

with normalization factor η2.

E. MAP Estimation

The estimated location of the vehicle at every time step
will be that with the largest probability within the set of



possible locations, i.e., the maximum a posteriori (MAP)
estimate. From the update equation of the Bayes filter
algorithm, the MAP estimate is

Xt = arg max
k

(pk,t). (10)

IV. EXPERIMENTAL SETUP

We conducted our experiments using a test vehicle with
mounted video cameras and LIDARs operating on an 8 km
test route under varying environmental conditions.

A. Vehicle

Figure 3 shows our evaluation vehicle sensor suite. Two
cameras and two lidars were mounted on the roof of the
vehicle, oriented approximately 45◦ to the left and right of
directly forward as shown in Figure 3b. The diagonal orien-
tation was chosen considering the probability of observing
moving objects, and the expected amount of change in the
appearance of the environment while driving. The cameras
were configured to acquire 256×192 pixels images at 15 Hz.
The lidars acquire range measurements at 75 Hz with field
of view of 180 degrees and angular resolution of one degree.
The vehicle is also equipped with a differential GPS and an
advanced inertial motion unit system for map generation and
acquisition of ground truth data.

B. Evaluation Route

For the purpose of analysis and evaluation, we selected a
complex, 8 km route that contains a variety of environments,
ranging from urban to residential to parklike settings (Fig-
ure 2a). The route includes man-made and natural structures:
buildings, traffic signs, foliage, open spaces, and multiple
slopes, as well as moving objects such as vehicles, pedestri-
ans, cyclists, and motorcyclists. The trajectory makes a loop,
meaning that the vehicle must face all orientations during the
trajectory. This is important in order to test the robustness
of the method to illumination artifacts, such as specularities
made by direct sunlight exposure.

C. Generation of Ground Truth Data

The route map and ground truth information were mainly
obtained by the GPS system, which provides a zero-mean
estimation of the vehicle position (Figure 6a). However, GPS
data is noisy, it is obtained at a low rate (1 Hz), and it
might be incorrect or missing when the signal is blocked
by buildings or trees. On the other hand, the inertial motion
system is always available, is obtained at a high framerate
(80 Hz), and is very accurate for short distances. In contrast
to GPS, the position of the vehicle as computed by the
inertial sensor drifts over long periods of time (Figure 6b).
In order to compensate for each sensor deficiencies, we
combine both positioning estimates obtaining dense and ac-
curate vehicle trajectory. The fusion is performed by locally
aligning the GPS and odometry trajectories. For this purpose,
GPS positions are first interpolated to match the density of
the odometry data (Figure 6c). Then, for each interpolated
GPS position (green dot in Figure 6c), a local neighborhood
of the GPS path (typically ±400 m) is aligned with the

(a) GPS (b) Odometry (c) Interp. GPS

(d) Association (e) Alignment (f) Correction

Fig. 6. Example of GPS/Odometry fusion. The continuous line shows the
ground truth trajectory.

odometry path (Figure 6e). A robust version of the absolute
orientation problem [9] is used for finding the transformation
between the data sets. The data association is obtained thanks
to accurate data timestamping (Figure 6d). Finally, the new
ground truth path position is obtained from the corresponding
aligned odometry point (large yellow dot in Figure 6f).

D. Data Sets

We acquired five data sets on the test route over a period
of 4 months between September and December, 2010 (Table
I). The October 28 data set was used to generate the mea-
surement database (first column of Figure 10). The effects
of the fall season are visible orange-colored vegetation and
leaves on the ground. Two databases DL and DR for the left
and right sensors sets (Figure 3a) were generated offline.
Each entry of the databases contains a WI-SURF descriptor
di, the range mean and standard deviation r̄ and σ, and the
vertex number li of the map corresponding to the observed
features. An independent Bayes filter is initialized for the
left and right sensors. The final pdf is obtained by the fusion
of left and right probabilities, i.e.:

p(xt) = η3 pL(xt)pR(xt). (11)

where pL(xt) and pR(xt) are the left and right pdfs respec-
tively, and η3 is a normalization factor.

V. EXPERIMENTAL RESULTS

In this section, we conduct three experiments to evaluate
the performance of our localization algorithm. In the follow-
ing experiments, please note that GPS and odometry were
only used for the generation of the map and ground truth
data.

A. WI-SURF Descriptor versus U-SURF Descriptor

In this section, we evaluate the performance of the WI-
SURF descriptor in relation to the previous U-SURF de-
scriptor approach [4]. Figure 7 shows the localization results



Date Images Particularities
September 1, 2010, 9:41 AM 11, 140× 2 Sunny, abundant green vegetation, strong large shadows.
October 19, 2010, 11:58 AM 11, 857× 2 Sunny, abundant colored vegetation, shadows.
October 28, 2010, 11:23 AM 13, 357× 2 Cloudy, reduced colored vegetation, fallen leaves.

November 22, 2010, 11:52 AM 13, 319× 2 Cloudy. Reduced vegetation, dim lighting.
December 21, 2010, 14:17 AM 11, 250× 2 Cloudy. Reduced vegetation, snow on ground.

TABLE I: Data sets used in the experiments
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Fig. 7. Localization results using U-SURF and WI-SURF features

using the October 19 dataset. The initial probability density
function p0 = {pk, 0} was initialized with a point mass
distribution on the ground truth position of the vehicle at
the start of the route. Given the long time required by
the U-SURF descriptor approach, only measurements at a
maximum distance of ±80 nodes (i.e., ±80 m) from the
current estimated position of the vehicle were considered in
this experiment. The location of the vehicle at each time
step is obtained from the MAP of the estimated pdf. Range
features were not used in this experiment.

The results between both approaches were practically
equivalent as the following table shows.

Avg Error Std Dev Max Error Div
U-SURF Descriptor 0.87m 0.97m 8.28m 0
WI-SURF Descriptor 0.91m 0.84m 4.53m 0

Even though the average error slightly increases, it is better
bounded and its standard deviation decreases. No divergences
(last column of the table) occurred throughout the sequence,
i.e., the algorithm stayed converged all the time. The missing
gap between segments 6000 and 6200 in Figure 7 was
produced because the vehicle drove slightly different routes.
A short street of our predefined route was closed because of
a construction site in the south-west part of the route (see
Figs 2d and 10e). We have increased the tracking area in
this part of the sequence to ±480 m in order to allow the
Bayesian method to find the actual location once the vehicle
rejoins its original route.

Our new WI-SURF provides a powerful alternative for
large scale vehicle localization, requiring small storage and
computation requirements. Our current implementation per-
forms global tracking at 5 Hz, in contrast to the 5 Hz local
tracking (±80 m window) that we achieved using the U-
SURF descriptor approach.
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Fig. 8. Distance and time of travel required by the algorithm to converge
to the ground truth location solving the kidnapped robot problem

B. Kidnapped Robot Analysis

Global localization, in contrast to position tracking, im-
plies localizing the vehicle considering the full state space of
possible locations. Global localization is a desirable capabil-
ity for an autonomous robot system, because it is important to
ensure that the robot can recover even if incremental position
tracking fails.

We have performed an experiment to evaluate the capabil-
ity of our algorithm to solve the kidnapped robot problem.
In this experiment, we repeatedly “teleport” the vehicle to
a random route position. After each teleportation, we just
let the vehicle continue its standard global localization task,
estimating the full pdf of the vehicle location along the route.
We identify that the vehicle has been re-localized when the
MAP estimate corresponding to its ground truth location is at
least ten times larger than the second maximum peak in the
pdf. We ensure, in this way, not only the convergence of the
estimation to the new real location, but also that the vehicle
starts with a very strong confidence on a wrong location
as soon as it is teleported again. This means that after the
teleportation, the vehicle must lose its gained position belief
and build up new one to re-localize itself.

Figure 8 shows the time of travel and distance required
by the vehicle to find its new ground truth location using
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the data set acquired on October 19. We have evaluated the
relocalization performance by using the image and range
features independently and in combination. Between 115
and 125 teleportation were performed in each case. Image
features provide more reliable location evidence than range
features, allowing the vehicle to re-localize faster in shorter
distances. The best relocalization strategy is given by using
both image and range features. Observe that most of the time
not more than 50 meters and 4 seconds of travel are required
by the algorithm to achieve the relocalization. It is important
to remark that the algorithm was successful every time, i.e.
100% convergence success.

C. Long Term Localization

In this experiment, we evaluate the relative performance of
the extracted features on all data sets. The results are shown
in Table II, and Figures 9 and 10. The smallest localization
error is found for the closest dataset (Oct. 19), but the error
does not seems to increase as a function of elapsed time.
Range measurements provide, on average, slightly worse
localization performance than image features, and the fusion
of image and range features does not necessarily improve
the localization accuracy (it does, however, improve the con-
vergence rate, as demonstrated in the previous experiment).
In general, the localization was reliably computed along all
data sets. The largest average localization error is 1.26 m
with absolute maximum localization error of 7.68 m.

The last column of Table II shows the number of diver-
gences in each case. A divergence is detected if the local-
ization error is more than 10 m. Divergences usually occur
due to long-lasting occlusions, such as when vans or large
trucks drive parallel to the vehicle, occluding visualization
almost completely (first image on Figure 10d). In all cases,
the algorithm had no problems to converge rapidly again to
the right solution once the situation normalized. We have
also tested the performance of the algorithm by tracking
the vehicle (instead of performing global localization). The
tracking interval was set to 480 m around the current position
estimate. The localization errors obtained were the same as
shown in Table II (and therefore omitted for brevity), but no
divergences occurred.

VI. CONCLUSIONS

We have demonstrated that the real-time localization of
vehicles can be achieved using a combination of simple

Data set Meas Avg Error Std Dev Max Error Div
Image 0.97 m 1.08 m 4.34 m 1

Sept. 1 Range 1.01 m 1.11 m 6.23 m 0
Both 0.92 m 0.99 m 6.23 m 0

Image 0.89 m 0.84 m 4.34 m 1
Oct. 19 Range 0.88 m 0.95 m 5.07 m 1

Both 0.87 m 0.82 m 4.39 m 1
Image 1.11 m 1.39 m 6.28 m 0

Nov. 22 Range 1.26 m 1.41 m 7.68 m 0
Both 1.13 m 1.38 m 6.28 m 0

Image 1.03 m 1.14 m 5.15 m 1
Dec. 21 Range 1.16 m 1.22 m 6.66 m 3

Both 1.10 m 1.20 m 5.76 m 3

TABLE II: Localization results

statistics of the measured environment and the appropriate
Bayesian estimation. A simple pair of low resolution cam-
eras is more than enough to perform accurate localization
even over long periods of time on varying environmental
conditions. When possible and available, the use of range
information, can further help the localization task by pro-
viding not only redundancy, but also improved localization
convergence.
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(a) Lighting and seasonal change

(b) Seasonal change and shadows

(c) Seasonal change

(d) Occlusions

(e) Construction Site

(f) Lighting and seasonal change

(g) Lighting, shadows, and seasonal change

Fig. 10. Example of localization at different route positions. The appearance changes because of lighting, occlusions, seasonal changes, or a combination
of these factors.


