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Abstract. Ambitious driver assistance for complex urban scenarios de-
mands a complete awareness of the situation, including all moving and
stationary objects that limit the free space. Recent progress in real-time
dense stereo vision provides precise depth information for nearly every
pixel of an image. This rises new questions: How can one efficiently an-
alyze half a million disparity values of next generation imagers? And
how can one find all relevant obstacles in this huge amount of data in
real-time? In this paper we build a medium-level representation named
“stixel-world”. It takes into account that the free space in front of ve-
hicles is limited by objects with almost vertical surfaces. These surfaces
are approximated by adjacent rectangular sticks of a certain width and
height. The stixel-world turns out to be a compact but flexible represen-
tation of the three-dimensional traffic situation that can be used as the
common basis for the scene understanding tasks of driver assistance and
autonomous systems.

1 Introduction

Stereo vision will play an essential role for scene understanding in cars of the near
future. Recently, the dense stereo algorithm “Semi-Global Matching” (SGM) has
been proposed [1], which offers accurate object boundaries and smooth surfaces.
According to the Middlebury data base, three out of the ten most powerful stereo
algorithms are currently SGM variants. Due to the computational burden, in
particular the required memory bandwidth, the original SGM algorithm is still
too complex for a general purpose CPU. Fortunately, we were able to implement
an SGM variant on an FPGA (Field Programmable Gate Array).

The task at hand is to extract and track every object of interest captured
within the stereo stream. The research of the last decades was focused on the de-
tection of cars and pedestrians from mobile platforms. It is common to recognize
different object classes independently. Therefore the image is evaluated repet-
itively. This common approach results in complex software structures, which
remain incomplete in detection, since only objects of interest are observed. Aim-
ing at a generic vision system architecture for driver assistance, we suggest the
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(a) Dense disparity image (SGM result) (b) Stixel representation

Fig. 1. (a) Dense stereo results overlaid on the image of an urban traffic situation.
The colors encode the distance, red means close, green represents far. Note that SGM
delivers measurements even for most pixels on the road. (b) Stixel representation for
this situation. The free space (not explicitly shown) in front of the car is limited by the
stixels. The colors encode the lateral distance to the expected driving corridor shown
in blue.

use of a medium level representation that bridges the gap between the pixel and
the object level.

To serve the multifaceted requirements of automotive environment perception
and modeling, such a representation should be:

– compact: offering a significant reduction of the data volume,
– complete: information of interest is preserved,
– stable: small changes of the underlying data must not cause rapid changes

within the representation,
– robust: outliers must have minimal or no impact on the resulting represen-

tation.

We propose to represent the 3D-situation by a set of rectangular sticks named
“stixels” as shown in Fig. 1(b). Each stixel is defined by its 3D position relative
to the camera and stands vertically on the ground, having a certain height.
Each stixel limits the free space and approximates the object boundaries. If for
example, the width of the stixels is set to 5 pixels, a scene from a VGA image
can be represented by 640/5=128 stixels only.

Observe, that a similar stick scheme was already formulated in [2] to represent
and render 3D volumetric data at high compression rates. Although our stixels
are different to those presented in [2], the properties of compression, compactness
and exploitation of the spatial coherence are common in both representations.

The literature provides several object descriptors like particles [3], quadtrees,
octtrees and quadrics [4] [5], patchlets [6] or surfels [7]. Even though these struc-
tures partly suffice our designated requirements, we refrain from their usage for
our matter since they do not achieve the degree of compactness we strive for.
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Section 2 describes the steps required to build the stixel-world from raw stereo
data. Section 3 presents results and properties of the proposed representation.
Future work is discussed in Section 4 and Section 5 concludes the paper.

2 Building the Stixel-World

Traffic scenes typically consist of a relatively planar free space limited by 3D
obstacles that have a nearly vertical pose. Fig. 1 displays a typical disparity
input and the resulting stixel-world. The different steps applied to construct
this representation are depicted in Fig. 2 and Fig. 3. An occupancy grid is
computed from the stereo data (see Fig. 2(a)) and used for an initial free space
computation. We formulate the problem in such a way that we are able to use
dynamic programming which yields a global optimum. The result of this step is
shown in Fig. 2(c) and 3(a). By definition, the free space ends at the base-point
of vertical obstacles. Stereo disparities vote for their membership to the vertical
obstacle generating a membership cost image (Fig. 3(c)).

A second dynamic programming pass optimally estimates the height of the
obstacles. An appropriate formulation of this problem allows us to reuse the same
dynamic programming algorithm for this task, which was applied for the free
space computation. The result of the height estimation is depicted in Fig. 3(d).
Finally, a robust averaging of the disparities of each stixel yields a precise model
of the scene.

2.1 Dense Stereo

Most real-time stereo algorithms based on local optimization techniques deliver
sparse disparity data. Hirschmüller [1] proposed a dense stereo scheme named
”Semi-Global Matching” that runs within a few seconds on a PC. For road scenes,
the “Gravitational Constraint” has been introduced in [8] which improves the
results by taking into account that the disparities tend to increase monotonously
from top to bottom. The implementation of this stereo algorithm on a FPGA
allows us to run this method in real-time. Fig. 1(a) shows that SGM is able to
model object boundaries precisely. In addition, the smoothness constraint used
in the algorithm leads to smooth estimations in low contrast regions, exemplarily
seen on the street and the untextured parts of the vehicles and buildings.

2.2 Occupancy Grid

The stereo disparities are used to build a stochastic occupancy grid. An occu-
pancy grid is a two-dimensional array or grid which models occupancy evidence
of the environment. Occupancy grids were first introduced in [9]. A review is
given in [10].

Occupancy grids are computed in real-time using the method presented in
[11] which allows to propagate the uncertainty of the stereo disparities onto
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(a) Polar occ. grid.
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(b) Background subtraction.
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(c) Obtained free space.

Fig. 2. Occupancy grids: Fig. (a) shows the polar occupancy grid obtained from the
disparity image shown in Fig. 1(a) (brightness encode the likelihood of occupancy).
Fig. (b) shows the resulting image when background subtraction is applied to Fig. (a).
The free space obtained from dynamic programming is shown in Fig. (c) in green,
overlaid on a Cartesian representation of the occupancy grid.

the grid. We use a polar occupancy grid in which the image column is used to
represent the angular coordinate and the stereo disparity is used to represent
the range. Figure 2(a) shows an example of a the polar occupancy grid obtained
from the stereo result shown in Fig. 1(a).

Only those 3D measurements lying above the road are registered as obstacles
in the occupancy grid. Instead of assuming a planar road, we estimate the road
pose by fitting a B-Spline surface to the 3D data as proposed in [12].

2.3 Free space computation

The task in free space analysis is to find the first visible relevant obstacle in the
positive direction of depth. By observing Fig. 2(a) this means that the search
must start from the bottom of the image in vertical direction until an occu-
pied cell is found. The space found in front of this cell is considered free space.
Instead of using a thresholding operation for every column independently, we
use dynamic programming (DP) to find the optimal path cutting the polar grid
from left to right. As proposed in [11], spatial smoothness is imposed by using a
cost that penalizes jumps in depth, while temporal smoothness is imposed by a
cost that penalizes the deviation of the current solution from a prediction. The
prediction is obtained from the segmentation result of the previous cycle.

In real world scenes, an image column may contain more than one object.
In the example considered here, the guardrail at the right and the building at
the background in Fig. 1, both have a corresponding occupancy likelihood in the
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occupancy grid of Fig. 2(a). Nevertheless, per definition, the free space is given
only up to the guardrail. Applying dynamic programming directly on the grid of
Fig. 2(a) might lead to a solution where the optimal boundary is found on the
background object (i.e. the building) and not on the foreground object (i.e. the
guardrail).

To cope with the above problem, a background subtraction is carried out
before applying DP. All occupied cells behind the first maximum which is above
a given threshold are marked as free. The threshold must be selected so that it
is quite larger than the occupancy grid noise expected in the grid. An example
of the resulting background subtraction is shown in Fig. 2(b).

The output of the DP is a set of vector coordinates (u, d̂u), where u is a
column of the image and d̂u the disparity corresponding to the distance up to
which free space is available. For every pair (u, d̂u) a corresponding triangulated
pair (xu, zu) is computed, which defines the 2D world point corresponding to
(u, d̂u). The sorted collection of points (xu, zu) plus the origin (0, 0) form a
polygon which defines the free space area from the camera point of view (see
Fig. 2(c)). Fig. 3(a) shows the free space overlaid on the left image when dynamic
programming is applied on Fig. 2(b).

Observe that each free space point of the polygon in Fig. 3(a) indicates not
only the interruption the free space but also the base-point of a potential obstacle
located at that position (a similar idea was successfully applied in [13]). The next
section describes how to apply a second pass of dynamic programming in order
to obtain the upper boundary of the obstacle.

2.4 Height Segmentation

The height of the obstacles is obtained by finding the optimal segmentation
between foreground and background disparities. This is achieved by first com-
puting a cost image and then applying dynamic programming to find the upper
boundary of the objects.

Given the set of points (u, d̂u) and their corresponding triangulated coordi-
nate vectors (xu, zu) obtained from the free space analysis, the task is to find
the optimal row position vt where the upper boundary of the object at (xu, zu)
is located.

In our approach every disparity d(u, v) (i.e. disparity on column u and row
v) of the disparity image votes for its membership to the foreground object. In
the simplest case a disparity votes positively for its membership as belonging to
the foreground object if it does not deviate more than a maximal distance from
the expected disparity of the object. The disparity votes negatively otherwise.
The Boolean assignments make the threshold for the distance very sensitive: if it
is too large, all disparities vote for the foreground membership, if it is too small,
all points vote for the background. A better alternative is to approximate the
Boolean membership in a continuous variation with an exponential function of
the form

Mu,v(d) = 2

(
1−
(
d−d̂u
∆Du

)2)
− 1 (1)
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where ∆Du is a computed parameter and d̂u is the disparity obtained from
the free space vector (Sec. 2.3), i.e. the initially expected disparity of the fore-
ground object in the column u. The variable ∆Du is derived for every column
independently as

∆Du = d̂u − fd(zu +∆Zu), where fd(z) =
b · fx

z
(2)

and fd(z) is the disparity corresponding to depth z. b corresponds to the baseline,
fx is the focal length and ∆Zu is a parameter. This strategy has the objective
to define the membership as a function in meters instead of pixels to correct
for perspective effects. For the results shown in this paper we use ∆Zu = 2 m.
Fig. 3(b) shows an example of the membership values. Our experiments show
that the explicit choice of the functional is not crucial as long as it is continuous.

From the membership values the cost image is computed:

C(u, v) =
i=v−1∑

i=0

Mu,v(d(u, i))−
i=vf∑
i=v

Mu,v(d(u, i)) (3)

where vf is the row position such that the triangulated 3D position of disparity
d̂u on image position (u, vf ) lies on the road, i.e. is the row corresponding to the
base-point of the object. Fig. 3(c) shows an exemplary cost image.

For the computation of the optimal path, a graph Ghs(Vhs, Ehs) is generated.
Vhs is the set of vertices and contains one vertex for every pixel in the image.
Ehs is the set of edges which connect every vertex of one column with every
vertex of the following column.

The cost minimized by dynamic programming is composed of a data and a
smoothness term, i.e.;

cu,v0,v1 = C(u, v0) + S(u, v0, v1) (4)

is the cost of the edge connecting the vertices Vu,v0 and Vu+1,v1 where C(u, v) is
the data term as defined in Eq. 3. S(u, v0, v1) applies smoothness and penalizes
jumps in the vertical direction and is defined as:

S(u, v0, v1) = Cs|v0 − v1| ·max
(

0, 1− |zu − zu+1|
NZ

)
(5)

where Cs is the cost of a jump. The cost of a jump is proportional to the dif-
ference between the rows v0 and v1. The last term has the effect of relaxing the
smoothness constraint at depth discontinuities. The spatial smoothness cost of
a jump becomes zero if the difference in depth between the columns is equal or
larger than NZ . The cost reaches its maximum Cs when the free space distance
between consecutive columns is 0. For our experiments we use NZ = 5 m, Cs = 8.

An exemplary result of the height segmentation for the free space computed
in Fig. 3(a) is shown in Fig. 3(d).
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(a) Free space (b) Membership values

(c) Membership cost image (d) Height segmentation

Fig. 3. Stixels computation: Fig. (a) shows the result obtained from free space com-
putation with dynamic programming. The assigned membership values for the height
segmentation are shown in Fig. (b), while the cost image is shown in Fig. (c) (the grey
values are negatively scaled). Fig. (d) shows the resulting height segmentation.

2.5 Stixel Extraction

Once the free space and the height for every column has been computed, the
extraction of the stixel is straightforward. If the predefined width of the stixel
is more than one column, the heights obtained in the previous step are fused
resulting in the height of the stixel. The parameters base and top point vB and
vT as well as the width of the stixel span a frame where the stixel is located.

Due to discretization effects of the free space computation, which are caused
by the finite resolution of the occupancy grid, the free space vector is condemned
to a limited accuracy in depth. Further spatial integration over disparities within
this frame grant an additional gain in depth accuracy. The disparities found
within the stixel area are registered in a histogram while regarding the depth
uncertainty known from SGM. A parabolic fit around the maximum delivers the
new depth information. This approach offers outlier rejection and noise suppres-
sion, which is illustrated by Fig. 4, where the SGM stereo data of the rear of
a truck are displayed. Assuming a disparity noise of 0.2 px, a stereo baseline of
0.35 m and a focal length of 830 px, as in our experiments, the expected standard
deviation for the truck at 28 meters is approx. 0.54 m. Since an average stixel
covers hundreds of disparity values, the integration significantly improves the
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Fig. 4. 3D visualization of the raw stereo data showing a truck driving 28 meters ahead.
Each red line represents 1 meter in depth. One can clearly observe the high scattering
of the raw stereo data while the stixels remain as a compound and approximate the
planar rear of the truck.

depth of the stixel. As expected, the uncertainty falls below 0.1m for each stixel.

3 Experimental Results

Figure 5 displays the results of the described algorithm when applied to images
taken from different road scenarios such as highways, construction sites, rural
roads and urban environments. The stereo baseline is 0.35 m, the focal length
830 pixels and the images have a VGA (640× 480 pixels) resolution.

The color of the stixels encodes the lateral distance to the expected driving
corridor. It’s highly visible that even filigree structures like beacons or reflector
posts are being captured in their position and extension. For clarity reasons we
do not explicitly show the obtained free space.

The complete computation of stixels on a Intel Quad Core 3.00 GHz processor
takes less than 25 milliseconds. The examples shown in this paper must be
taken as representative results of the proposed approach. In fact, the method
has successfully passed days of real-time testing in our demonstrator vehicle in
urban, highway and rural environments.

4 Future work

In the future we intend to apply a tracking for stixels based upon the principles
of 6D-Vision [14], where 3D points are tracked over time and integrated with
Kalman filters. The integration of stixels over time will lead to further improve-
ment of the position and height. At the same time it will be possible to estimate
the velocity and acceleration, which will ease subsequent object clustering steps.
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(a) Highway (b) Construction site

(c) Rural road (d) Urban traffic

Fig. 5. Evaluation of stixels in different real world road scenarios showing a highway, a
construction site, a rural road and an urban environment. The color encodes the lateral
distance to the driving corridor. Base points (i.e. distance) and height estimates are in
very good accordance to the expectation.

Almost all objects of interest within the dynamic vehicle environment touch
the ground. Nevertheless, hovering or flying objects such as traffic signs, traffic
lights and side mirrors (an example is given in Fig. 5(b) at the traffic sign)
violate this constraint. Our efforts in the future work also includes to provide a
dynamic height of the base-point.

5 Conclusion

A new primitive called stixel was proposed for modeling 3D scenes. The resulting
stixel-world turns out to be a robust and very compact representation (not only)
of the traffic environment, including the free space as well as static and moving
objects.

Stochastic occupancy grids are computed from dense stereo information. Free
space is computed from a polar representation of the occupancy grid in order
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to obtain the base-point of the obstacles. The height of the stixels is obtained
by segmenting the disparity image in foreground and background disparities
applying the same dynamic programming scheme as used for the free space
computation. Given height and base point the depth of the stixel is obtained
with high accuracy.

The proposed stixel scheme serves as a well formulated medium-level repre-
sentation for traffic scenes. Obviously, the presented approach is also promising
for other applications that obey the same assumptions of the underlying scene
structure.
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