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Road Detection Based on Illuminant Invariance
José M. Álvarez and Antonio M. Ĺopez

Abstract—By using an onboard camera, it is possible to detect
the free road surface ahead of the ego-vehicle. Road detection
is of high relevance for autonomous driving, road departure
warning, and supporting driver-assistance systems such as vehicle
and pedestrian detection. The key for vision-based road detec-
tion is the ability to classify image pixels as belonging or not
to the road surface. Identifying road pixels is a major challenge
due to the intraclass variability caused by lighting conditions.
A particularly difficult scenario appears when the road surface
has both shadowed and nonshadowed areas. Accordingly, we
propose a novel approach to vision-based road detection that is
robust to shadows. The novelty of our approach relies on using
a shadow-invariant feature space combined with a model-based
classifier. The model is built online to improve the adaptability
of the algorithm to the current lighting and the presence of other
vehicles in the scene. The proposed algorithm works in still images
and does not depend on either road shape or temporal restrictions.
Quantitative and qualitative experiments on real-world road se-
quences with heavy traffic and shadows show that the method is
robust to shadows and lighting variations. Moreover, the proposed
method provides the highest performance when compared with
hue–saturation–intensity (HSI)-based algorithms.

Index Terms—Driving-assistance system, illuminant invariance,
road detection, shadows.

I. INTRODUCTION

ADVANCED driver-assistance systems aim to understand
the environment of the vehicle contributing to traffic

safety. In this context, not only active sensors (e.g., radar and
laser scanner) but also passive sensors (e.g., different types of
cameras) play a relevant role. Vision-based approaches are used
to address functionalities such as lane marking detection, traffic
sign recognition, pedestrian detection, etc.

In this paper, we focus on vision-based road detection. That
is, detecting the free road surface ahead of the ego-vehicle using
an onboard camera (see Fig. 1). Road detection is an important
task within the context of autonomous driving. Moreover, it is
an invaluable background segmentation stage for other func-
tionalities such as vehicle [1] and pedestrian [2] detection. The
knowledge of the free road surface reduces the image region to
search for these targets, thus contributing to reach real time and
to reduce false detection.
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Fig. 1. Aim of vision-based road detection is identifying road pixels in an
image.

Road detection is a challenging task since roads are in
outdoor scenarios imaged from a mobile platform. Hence, on
the one hand, the algorithms must deal with a continuously
changing background and the presence of different objects (ve-
hicles, pedestrians, and infrastructure elements) with unknown
movements. On the other hand, the algorithms must deal with
a high intraclass variability since there are different road types
(shape, size, and wear down) and different imaging conditions
(e.g., varying illumination).

The review of related literature reveals that using a monoc-
ular color camera as a sensor [3]–[8] is the preferred option.
Therefore, texture and color are potential features to character-
ize the road. However, the imaged road texture varies too much
with the distance to the camera; thus, color analysis is the option
that is chosen most. Some authors propose the use of depth as an
additional cue for adding robustness, as in [9], in which depth
comes from active sensors, or in [10], in which depth comes
from a stereo rig.

Current road-detection algorithms use different color spaces
as features, as well as different classification processes. For
instance, the hue–saturation–intensity (HSI) color space is used
in [3] and [7]. HSI is a color space that mitigates the in-
fluence of lighting variations [11], [12]. However, HSI does
not appropriately behave when the road presents shadowed
areas. Thus, additional constraints must be included to improve
their performance, e.g., in [13], Sotelo et al. use road shape
restrictions and ad hoc postprocessing to recover undetected
shadowed areas. Other authors use standard red–green–blue
(RGB) and put more emphasis on the classification process. For
instance, a mixture of Gaussians (MoG) is used in [5] and [9]
for road modeling. However, selecting the proper number of
Gaussians is not straightforward, and the presence of shadows
is still a problem.

In [6], Tan et al. use histograms in the rg color space to
build a model for the road and another for the background. The
road variability is modeled using different histograms, which
are dynamically updated from frame to frame. This is not a
straightforward process since empirical criteria to incorporate
new histograms, remove old ones, fuse similar ones, and fix the
number of histograms are required. The background is modeled
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Fig. 2. Great challenges for monocular vision-based road detection are the
treatment of shadows and the presence of other vehicles.

using a single histogram. This way, background pixels from one
frame are used to build the background model in the next frame,
which is a kind of temporal constraint. Therefore, errors are
propagated, particularly when other vehicles are present in the
scene.

In [4], several color spaces, i.e., UV , rg, and luminance, are
combined. For each color space, two MoGs are used: one to
model the road and the other to model the background. Then,
the results from each color space are combined using a voting
approach. However, selecting the proper number of Gaussians
is an issue, as well as background modeling. In addition, the
method relies on road shape restrictions.

All these works use road shape constraints, temporal as-
sumptions, or complex models to mitigate the problem of
lighting variations and shadows. However, these assumptions
and models drop off the performance of the algorithms in
many common driving situations. For instance, road shape
restrictions are difficult to apply with complex road shapes
(crossings or roundabouts) or when the road borders are not
clearly visible (due to traffic or in urban scenarios). Temporal
restrictions do not hold when abrupt driving changes occur
as accelerations/decelerations of the ego-vehicle or appear-
ing/disappearing of other vehicles.

In this paper, we aim to perform road detection using a
monocular color camera in the presence of shadows and other
vehicles (see Fig. 2). Moreover, we aim to avoid the use of
road shape or temporal restrictions as part of the algorithm.
This way, as a novelty, we propose to use the illuminant-
invariant image introduced by Finlayson et al. [14] as the
feature space. This invariant image is derived from the physics
behind color formation in the presence of a Planckian light
source, Lambertian surfaces, and narrowband imaging sensors.
Our argument is that sunlight is approximately Planckian, road
surfaces are mainly Lambertian, and regular color cameras are
near narrowband. Then, the invariant image can be appropriate
for road detection.

The computation of the illuminant invariant from a color im-
age requires a parameter of the camera, namely, the illuminant-
invariant angle. A few proposals for computing this invariant
direction exist in the literature. In this paper, we also present an
alternative that outperforms them.

The illuminant-invariant feature space is combined with a
likelihood-based classifier to identify each image pixel as road
or nonroad (background). A road model is automatically built
for each still image, and the background model is not required.

The reminder of this paper is organized as follows: In
Section II, the illuminant-invariant space is introduced, as well
as our proposal to obtain the illuminant-invariant angle. In
Section III, the likelihood-based region growing proposal for

pixel classification is detailed. Then, Section IV describes
the overall road-detection algorithm. Qualitative and quanti-
tative results are provided in Section V. Comparison of the
illuminant-invariant space against the popular HSI is also in-
cluded. The images used during such an evaluation process
present shadows and other vehicles. Finally, in Section VI,
conclusions are drawn.

II. ILLUMINANT-INVARIANT SPACE

A. Theory in a Nutshell

Image formation models are defined in terms of the interac-
tion between the spectral power distribution of the illumination,
the surface reflectance, and the spectral sensitivity of the imag-
ing sensors. In [14], Finlayson et al. show that having Planckian
illumination and Lambertian surfaces imaged by three nar-
rowband sensors (PLN-assumptions hereafter), it is possible to
convert a given RGB color image, i.e., IRGB = (IR, IG, IB),
into a shadow-free color image, i.e., Isf

RGB = (Isf
R , Isf

G , Isf
B ).

This shadow-free image has the same spatial dimensions than
the original one and the same colors, except at the shadowed
areas, where Isf

RGB presents the underlying color of the imaged
surfaces, i.e., the color if there were no shadows during image
acquisition (we refer to [14] for visual examples). In fact,
empirical results prove that this theory holds even for real data,
i.e., using a regular camera (roughly narrowband sensors) to
image real-world scenes (roughly Lambertian surfaces) under
only an approximately Planckian illumination [15].

The process to compute Isf
RGB from IRGB has two main

stages: First, a grayscale image I is obtained from IRGB . In
this image, the influence of lighting variations (i.e., shadows)
is greatly attenuated. Second, a shadow-free image Isf

RGB is
computed by combining I and IRGB using a reintegration
process. In practice, obtaining I is a pixel-level procedure,
whereas obtaining Isf

RGB is a image-level procedure. Hence, the
computation of I can be done in real time, whereas obtaining
Isf
RGB turns out in a much more time-consuming process.

Therefore, in this paper, I is used as a feature space to perform
reliable road surface detection despite shadows and lighting
variations. Notice, that we do not rely on obtaining Isf

RGB; thus,
real time is preserved.

Let R, G, and B be the standard color channels, and let
r = log(R/G) and b = log(B/G) be the corresponding log-
chromaticity values using the G channel as the normalizing
channel. Then, under PLN-assumptions, a set of color surfaces
of different chromaticities imaged under different illuminations
in the log-chromaticity space forms parallel straight lines,
which offset corresponds to chromatic differences. Further-
more, these lines define an orthogonal axis, i.e., �θ, where a
surface under different illuminations is represented by the same
point, and movements along �θ imply changing the surface
chromaticity (see Fig. 3). In other words, �θ is a gray-level
axis, where each gray level corresponds to a surface chromatic-
ity, independently of the illumination. Thus, I is a grayscale
image, invariant to lighting variations. The reason for I being
illuminant invariant is, in short, that nonshadow surface areas
are illuminated by both direct sunlight and skylight (a sort of
scattered ambient light), whereas areas in the umbra are only
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Fig. 3. Ideal log–log chromaticity plot. Each patch (Lambertian surface) under a Planckian illumination is represented using one point. The straight lines
associated with each line are obtained by changing the color temperature of the illuminator. As a result, patches of different chromaticities have different lines
associated with them. All these lines form a family of parallel lines, i.e. Ψθ . Then, �θ is the line perpendicular to Ψθ , and θ is its slope. The lines in Ψθ are
projected onto �θ to obtain a one-to-one correspondence. The main property of �θ is preserving differences with regard to chromaticity but removing differences
due to illumination changes.

illuminated by skylight. Since both skylight alone and with
sunlight addition can be considered Planckian illuminations
[16], the areas of the same chromaticity are ideally projected
onto the same point in �θ, regardless of whether these areas are
in shadow or not.

B. Camera Calibration

According to the theory, obtaining the main direction of �θ

(camera calibration hereafter) is the key to obtaining I. In fact,
the angle θ is a function of the camera sensor, which does not
correlate with the lighting condition or the surface material.
Hence, θ can be understood as an intrinsic parameter of each
color camera. Accordingly, the calibration process for a given
camera needs to be done once and can be computed offline.

Two different calibration approaches can be found in the
literature [17], [18]. In the first calibration approach, Finlayson
et al. [17] use different images of a Macbeth color checker
imaged under different daytime illuminations to obtain θ. The
algorithm consists in analyzing the log-chromaticity plot gen-
erated from the color patches in the Macbeth color checker (see
Fig. 3). In this plot, the color difference between patches is just
a line offset. However, in practice, elongated clouds of points of
different main-axis orientations are obtained due to deviations
from the PLN-assumptions (see Fig. 4). Therefore, to obtain
θ, each cloud of points can be shifted to a common center
by subtraction of their respective mean. Then, the invariant
direction is obtained by applying a robust estimator to the
centrally aligned cloud of points.

In the second calibration approach, Finlayson et al. [18]
analyze the histograms derived from the invariant images
to recover θ. Let Iα be the grayscale image obtained from
projecting the rg pixel values of a given color image onto a line
�α of slope α. Let Eα be the entropy of Iα, which is computed
using its histogram Hα as Eα = −

∑L
i Hα(i) log(Hα(i)),

where L is the number of bins of Hα. Then, a distribution
of entropy values is obtained by varying the values of α. The
underlying idea of the calibration algorithm is analyzing the

Fig. 4. Log-chromaticity plot using a Macbeth color checker imaged under
different daytime illuminations using an imperfect narrowband camera. Ac-
cordingly, each color patch of the Macbeth checker generates an elongated
cloud of points instead of a straight line. In addition, each elongated cloud has
a different major axis and a different dispersion degree along the minor axis.

entropy distribution as follows: With a wrong α, i.e., with
α �= θ, similar chromaticity values of IRGB are scattered along
the corresponding �α, contributing to different bins of Hα. This
turns out in a high value of Eα. With the right α, i.e., α = θ,
similar chromaticity values of IRGB contribute to the same bin
of Hα. Hence, a low value of Eα is expected.

In our opinion, from a practical point of view, the Macbeth-
based calibration is inferior to the entropy-based one. Notice
that the former is quite tedious and cannot be adapted for
the onboard self-calibration, whereas the latter automatically
works. In addition, the entropy-based calibration only relies on
image content. Hence, the onboard self-calibration is possible.
However, our calibration experiments with road scenarios re-
veal that the estimation of θ using the entropy-based calibration
is unstable. For instance, Fig. 5 shows the entropy distribution
variability of images from the same sequence.

The failure analysis of the entropy-based calibration ap-
proach reveals that the key step of the algorithm is defining the
bin width used for obtaining Hα. This way, the authors fix the
bin width by relying on Scott’s rule [19], i.e., the bin width
is set as 3.5N−(1/3)std(Iα), where std() stands for standard
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Fig. 5. (Upper row) Example images used to obtain the characteristic direction θ of our camera using the entropy-based approach in [18]. (Lower row) Variability
of the corresponding entropy distributions Eα. This variability influences the stability of θ.

deviation, and N is the number of pixels of Iα. Moreover, the
influence of outliers is reduced by considering only the middle
90% of the Iα range when computing Hα. Then, in this case,
N is the number of pixels of Iα inside the range. Notice that
the bin width estimated using Scott’s rule without removing the
outliers would be too thick since the outliers increase std(Iα).

Accordingly, in this paper, a new entropy-based calibration
procedure is proposed to provide stable and precise θ values.
The algorithm is similar to [18] in the sense of relying on
entropy minimization. However, there are two main differences
that improve the reliability of θ values.

1) Difference 1 (D1). The 90% of the middle range of Iα

values used to estimate Hα is not fixed. Instead, Cheby-
shev’s theorem [20] is applied to obtain more meaningful
lower and upper bounds. Thus, each Iα has its own
adapted range.

2) Difference 2 (D2). The proposed algorithm does not rely
on the entropy distribution of a single image. Instead, the
analysis is performed on the entropy distributions of a
set of input images. Then, the minimization is performed
over the average entropy distribution Êα. This average
distribution is obtained using a robust mean approach to
minimize the influence of extreme scores. This way, for
each α, only the 90% middle range is used.

The summary of the algorithm is detailed here.

1) Select a subset of K color images from the database, i.e.,
{I(1)

RGB , . . . , I
(K)
RGB}.

2) Select an image I
(k)
RGB from the subset. Initialize the

projection angle α = 0.
3) Obtain a grayscale image Iα projecting log-chromaticity

pixel values of I
(k)
RGB onto α.

4) Reject the outliers in Iα according to Chebyshev’s theo-
rem.

5) Use pixels within the middle 90% range of nonoutlier
pixels from Iα to compute Hα, i.e., the histogram of Iα.
The bin width of the histogram is fixed using Scott’s rule.

6) Compute the entropy of Iα using Eα =
−

∑L
i Hα(i) log(Hα(i)), where L is the number of

bins of Hα.
7) Obtain the distribution of entropy values for I

(k)
RGB by

repeating steps 3–6, varying α within the [0, 1, . . . , 179]
range.

8) Repeat steps 2–7 for each image in the subset (k ∈
[1, 2, . . . ,K]).

9) Obtain the average distribution of entropy using the ro-
bust mean method. That is, for each α, exclude the highest
and the lowest 5% of the data.

10) Obtain θ as the absolute minimum of the average distrib-
ution of entropy values.

Fig. 6 shows our calibration results corresponding to the
original images in Fig. 5. As shown, the proposed method leads
to a reliable estimation of θ. Using adapted ranges for each
image (D1) improves the similarity between entropy distribu-
tions of images acquired using the same camera. Furthermore,
slight differences between the minimum for each distribution
are compensated using multiple images (D2).

III. LIKELIHOOD-BASED CLASSIFICATION

In this section, the classifier used to identify road pixels is
introduced. The classifier must exploit the illuminant-invariant
properties of the feature space introduced in Section II. Accord-
ing to these properties, road pixels are expected to be similar to
each other, even when shadows are present. Furthermore, there
are other important requirements that must be considered: 1)
being as simple as possible (Occam’s razor) to enable real-time
computation; 2) not using road shape or temporal constraints;
and 3) enabling self-adaptation to process still images.

Therefore, we propose using a likelihood-based classifier.
This classifier assigns labels to each pixel according to two
different classes, namely, road surface and background. The
former refers to pixels representing the free road surface. The
latter refers to anything not being road (vehicles, buildings,
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Fig. 6. For each image in the upper row of Fig. 5, the corresponding entropy distributions obtained with the entropy minimization we propose for a single image
are shown. The lower row shows the averaged entropy distribution used to obtain the final estimator of θ.

infrastructures, trees, sky, and so on). Hence, this class is quite
heterogeneous and, therefore, difficult to model. Consequently,
modeling only road pixels is desirable.

The proposed classifier uses two entities to decide whether a
pixel belongs or not to the road class. The former is a similarity
measure between each pixel and a road model. The latter is a
fixed threshold λ on this measure. In particular, we use a class-
conditional function p(I(p)|road), providing the probability of
pixel p being road according to its illuminant-invariant value
I(p). Hence, a pixel is assigned to the road class according to
the following classification rule:

{
p is road, if p (I(p)|road) ≥ λ
p is background, otherwise.

(1)

It remains to estimate p(I(p)|road), i.e., the road model.
One possibility consists in fitting a parametric model such a
MoG, as it is done in [4] and [5]. However, nonparametric
models are more appropriate in this case since they present two
clear advantages: 1) They are fast in training and usage, and
2) they can fit any shape of the likelihood function (i.e., data
distribution). Notice that, ideally, the histogram of values of I
at pixel imaging road surface HIroad is expected to be unimodal
with low dispersion and skewness, even in the presence of
shadows. Nevertheless, the road surface itself can present some
color variations (e.g., worn out asphalt and nonuniformly wet
road), which can introduce dispersion and skewness in HIroad .
Thus, parametric models using the first-order statistics do not
always summarize HIroad properly. In fact, works on other
types of applications suggest the superiority of histograms com-
pared with parametric models [12], [21]. Therefore, we use the
normalized histogram as an empirical form of the probability
distribution for a random variable [22].

In particular, under the assumption that the bottom area of
a road image shows the road surface, the road model is built
using a set of Ns seeds in this area of each image. These seeds
are placed in I following an equidistant distribution along two

Fig. 7. (Left) Color image IRGB . (Middle) Corresponding I computed
using the invariant angle θ. (Right) Nonparametric road model built using the
normalized histogram formed with the surrounding region of several seeds
(nine in this case) placed at the bottom part of I.

rows Rs at the bottom part of each image. Then, the normalized
histogram, i.e., p(I(p)|road), is computed using squared pixel
areas surrounding each seed. In particular, we use regions of
Ks × Ks pixels in I. This process is exemplified in Fig. 7.

It is worth to mention that the assumption of considering the
bottom part of the images showing the road surface is not too
restrictive. This region usually corresponds to a distance of a
few meters from the own vehicle; thus, the assumption is right if
the vehicle keeps a gap with preceding ones for safety driving.
For the sequences in this paper, this distance is of about 4 m
away from the camera. Other works in the field [6], [13] follow
similar assumptions.

IV. ROAD-DETECTION ALGORITHM

In this section, a road-detection algorithm is devised by com-
bining the illuminant-invariant feature space and the likelihood-
based classifier. The incoming color image is converted to the
illuminant-invariant space, and the road model is estimated.
Applying this model results in a road probability map that
is binarized using λ. Then, a connected-component algorithm
is applied to the binary image using the same set of seeds
used to build the road model. The results present small holes
usually placed from the middle to the bottom part of the images,
i.e., where the road is imaged with more detail, thus actually
representing just small road patches. Hence, a postprocessing
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step using a fill-in hole procedure is included. This procedure
is simply based on mathematical morphology operations: a
closing with a structuring element efi followed by a flood-fill
operation that does not require parameters.

Thus, our road detection algorithm is summarized in the list
that follows.

1) Compute I from IRGB using θ.
2) Build the road model p(I(p)|road) using the normalized

histogram of the surrounding area (Ks × Ks pixels) of a
set of Ns seeds placed at the bottom part of the image.
This set of seeds is placed following Rs.

3) Obtain Ir by thresholding I according to p(I(p)|road)
and a fixed threshold λ. Set Ir(p) = 1 if the value of the
I(p)th bin of p(I(p)|road) is higher than λ; otherwise,
set Ir(p) = 0.

4) Obtain Icc by performing a connected-component proce-
dure on Ir. The same set of Ns seeds is used as starting
points.

5) Fill in small holes in Icc: a closing with efi followed by a
flood fill.

V. EXPERIMENTAL RESULTS

A. Data Set

Experiments are conducted on image sequences acquired
using an onboard camera based on the Sony ICX084 sensor.
This is a charge-coupled device chip of 640 × 480 pixels
and 8 bits per pixel that makes use of a Bayer pattern for
collecting color information. Standard Bayer pattern decoding
(bilinear interpolation) is used to obtain RGB color images. The
camera is equipped with a microlens of 6-mm focal length.
The frame acquisition rate is 15 fps. Furthermore, the camera
shutter is set to automatic mode to avoid global over- and
underexposure, i.e., it avoids both totally saturated images and
very dark ones. However, isolated image regions that are either
over- or underexposed still appear.

The data set is divided in three different sequences. The first
sequence, i.e., Sθ, consists of 350 images, and it is used to
evaluate the camera calibration algorithm. The second sequence
consists of 250 images acquired during a rainy day, just after
the rain stopped so that the road was wet, although there
were no reflecting puddles. The third sequence consists of
450 images acquired during a sunny day to favor the existence
of shadows. The second and third sequences are combined in a
single sequence, i.e., SRD, which is used to validate the road de-
tection algorithm. Example images of this sequence are shown
in Figs. 1 and 2. The former shows an image with wet asphalt
and vehicles. The latter shows images taken during a sunny day,
with shadows and the presence of other vehicles. The dataset is
available online at http://www.cvc.uab.es/adas/databases.

The sequence SRD is a well-balanced testing set in terms of
diversity of images since it contains a good tradeoff between
shadows, vehicles, and clear roads. The summary of these
statistics (percentages) is listed in Table I. In this table, the
column Shadows represents images showing heavy disturbing
shadows, whereas the row Close vehicles (either preceding or
oncoming) refers to images showing vehicles with their wheels

TABLE I
SUMMARY OF TESTING SEQUENCE STATISTICS WITH REGARD TO THE

PRESENCE OF SHADOWS AND OTHER VEHICLES IN THE SCENE. THESE

PERCENTAGES REFLECT THE VARIABILITY OF IMAGES IN SRD

lying below a fixed row. For instance, an image labeled Close
vehicles and No shadows is shown on the left side of Fig. 2.
That is, there is a car considered close, and at the same time,
this image does not present heavy disturbing shadows. An
image labeled Further away vehicle and Shadows is shown
on the right side of Fig. 2.

B. Camera Calibration Evaluation

In this section, two different experiments are conducted on
Sθ to validate the camera calibration algorithm. The number of
images used for calibration i.e., the parameter K, is fixed using
exhaustive search. This way, the calibration is repeated for
different values of K in the [3, 4, . . . , 50] range. This way, given
a value of K, the calibration is performed using the first K
images of Sθ, and then, a sliding-window approach is followed
to calibrate all the images in the data set. Therefore, given a K,
we obtain a number of θ angles; thus, we can compute the mean
and standard deviation for each K value (see Fig. 8). As shown,
the mean is stable in the range [43◦, 44◦], whereas the standard
deviation stays below 1◦ from K = 15 on. Hence, K is fixed to
15 for the rest of the experiments. Notice that these 15 images
correspond to an acquisition window of 1 s. Thus, the onboard
self-calibration is possible.

The first experiment consists in evaluating the repeatability
of the proposed calibration method. This way, all the images in
Sθ are calibrated using a sliding-window method with K = 15.
For comparison, these images are calibrated using the entropy-
based approach in [18] (described in Section II-B). The cal-
ibration results are shown in Fig. 9. As shown, our proposal
exhibits higher stability than the entropy-based method. The
output values of our method range from 43◦ to 45◦, whereas the
output values of the other method range from 40◦ to 65◦. From
these results, we can conclude that our calibration algorithm is
more repetitive than the baseline.

The second experiment consists in assessing the precision of
the proposed calibration algorithm. Ground truth is generated
considering the Macbeth-based technique proposed in [17] (see
Section II-B). This way, the Macbeth color checker is im-
aged under different illumination conditions, and the 2-D log-
chromaticity feature space is formed by computing the median
of pixel values for each color patch (see Fig. 4). Then, for each
patch, the set of log-chromaticity values is centrally aligned
(i.e., cluster-mean subtraction). The characteristic direction of
the camera, i.e., θ, corresponds to the principal orientation of
the group of center-shifted log-chromaticity values [17]. As a
result, the ground-truth angle is θ = 42.3◦. Furthermore, the
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Fig. 8. (Top) Mean and (bottom) standard deviation (in degrees) of the θ angle output by our calibration method as a function of the number of images used for
such calibration over the validation sequence.

Fig. 9. Comparison of the θ obtained by setting K = 15 in our calibration
algorithm and the θ obtained by following the approach in [18].

range of reliability of the estimation is analyzed using the 95%
confidence interval [23].

Fig. 10 shows three lines corresponding to the ground-truth
angle. The slope of the first line is 44◦, corresponding to the
averaged angle provided by our calibration method. The slope
of the second line is 50.9◦, corresponding to the averaged angle
provided by the entropy-based approach [18]. The slope of the
first line is 42.3◦, corresponding to the ground truth. As shown,
the output of our algorithm is within the confidence interval,
whereas the result obtained using the entropy-based approach
is not. Hence, we can conclude that our calibration method
provides a precise estimation of θ. Furthermore, the algorithm
is more accurate than the state of the art.

C. Road-Detection Evaluation

In this section, experiments are conducted on SRD to val-
idate the proposed road-detection algorithm. Ground truth is
generated by manually segmenting all the images in SRD. For

Fig. 10. Calibration results using the Macbeth color checker method. The
ground truth is the main axes of the centrally aligned cloud of points from
each patch in the Macbeth chart. The reliability of the estimation is shown
through the 95% confidence interval. Moreover, the results provided by (green)
our method and (blue) the entropy-based method [18] are also shown.

instance, Fig. 1 shows an image and its ground truth presented
as a filled-in reddish polyline.

Quantitative evaluations are provided comparing the results
against ground truth using three pixelwise measures: 1) preci-
sion P ; 2) recall R; and 3) effectiveness F [24]. Precision and
recall are defined as P = (

∑
G · Ir)/

∑
Ir and R = (

∑
G ·

Ir)/
∑

G, where G and Ir are the ground-truth mask and the
road detection result of a given image IRGB , respectively. The
symbol “·” stands for pixelwise product, and

∑
means sum-

mation over all pixels. Precision and recall provide different in-
sights in the performance of the method: Low precision means
that many background pixels are classified as road, whereas
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Fig. 11. Road-detection examples. (Top row) Original image. (Second row)
Illuminant-invariant image. (Third row) Detected road. (Bottom row) Compari-
son against hand-segmented result. (Yellow) Correctly classified pixels. (Green)
Falsely detected road pixels. (Red) False background pixels.

low recall indicates failure to detect the road surface. Finally,
effectiveness is the tradeoff using weighted harmonic mean
between precision and recall. Equally weighting precision and
recall, effectiveness follows the equation F = (2P R)/(P +
R). All three measures range from 0 to 1, and higher values are
desired.

The parameters of the algorithm are set as follows: The
invariant direction θ is fixed using the results of the calibration
experiment. That is, θ = 44◦. An equidistant distribution along
two rows in the bottom part of the image is used as the rule
for placing the seeds, i.e., Rs. In particular, rows 417 and
428 are selected. Furthermore, Ns = 9, b = 1 (the minimum
possible value), and Ks = 11. These settings (Ks, Ns, and Rs)
imply that p(I(p)|road) is built from nine small image patches
equidistantly placed along the road width. Fig. 7 shows an ex-
ample of the seed placement and the corresponding normalized
histogram. The structuring element efi is empirically set to 5 ×
3 pixels. Finally, a learning approach is used to fix the value
of λ. This way, a set of training images is used to evaluate the
effectiveness of the detection algorithm when λ varies in the
range [0.05, 0.08, . . . , 0.98]. The optimal value of λ is the one
that maximizes the average effectiveness.

Fig. 11 shows road detection results, the illuminant-invariant
image, and the comparison against ground truth (hand seg-
mentation). Other example detection results are shown in
Fig. 12. More results in video format can be viewed at
http://www.cvc.uab.es/~jalvarez/RDinv.htm. These results sug-
gest that the algorithm can detect road pixels, even in the
presence of shadows and other vehicles being in the scene.
From these results, we can conclude that the proposed road
detection algorithm performs well at detecting road pixels, even
in the presence of shadows and other vehicles. Nevertheless,
failure analysis reveals two main causes of performance drop-
off (see Fig. 13). The first cause refers to the presence of
undersaturated (penumbra) and oversaturated (highlights) areas
in the image. In these areas, there is a lack of color information,
leading to areas in the image where the invariant image is not
valid. However, this issue can be addressed by improving the
acquisition system (i.e., cameras with a higher dynamic range).
The second cause refers to the presence of thick continuous lane
markings, which stop the connected-component algorithm. This
issue could be addressed by combining road detection with lane
marking-detection algorithms [25].

For comparison, the image sequence SRD is processed using
an HSI-based road-detection algorithm inspired in [7] and [13].
The HSI-based algorithm is summarized here.

1) Convert the input RGB image, i.e. IRGB , onto the HSI
color space, i.e., IHSI = (H,S, I) [26].

2) Compute the HSI model ξ̂ = (ĥ, ŝ, î), averaging the val-
ues of pixel within surrounding regions of size Ks × Ks

around a set of Ns seeds placed at Rs rows.
3) Compute the distances of each pixel to ξ̂ using the dissim-

ilarity measure dHSI in the HSI space, which is defined
as follows:

dHSI =
√

ŝ2 + s2 − ŝs cos(ϕ) + |i − î|2

ϕ =
{
|h − ĥ|, if |h − ĥ| < 180◦

360◦ − |h − ĥ|, otherwise

where h = H(p), s = S(p), and i = I(p) are the HSI
values at pixel p.

4) Threshold the result using a fixed threshold γ.
5) Perform connected-component analysis by keeping only

the pixels that passed the threshold and that belonged to
the same connected component than the seeds.

6) Fill in small holes using efi.
For fair comparison, the parameters Rs, Ks, Ns, and efi

of the HSI-based algorithm are the same as for the proposed
algorithm. Finally, the threshold γ is fixed using the same
learning approach than for fixing λ. However, the meaningful
range of values for γ is empirically set to [0.05, 0.005, . . . , 0.5]
since the results outside this range are poor.

The performance of the algorithms is evaluated through a
cross-validation approach. This way, subsets of 5% of the
images in SRD are randomly selected for learning both thresh-
olds λ and γ. The rest of the images are used for testing the
algorithm. That is, in our data set, 35 are used for training
and 665 for testing. The process is repeated 20 times using
nonoverlapped training sets. The effectiveness of each image
in the testing set is computed, as well as the mean F̂ and the
standard deviation σF of the effectiveness per round. Accord-
ingly, at the end of the process, we have 20 means and standard
deviations of effectiveness. Then, the evaluation consists in
comparing the performance of both algorithms in terms of
average effectiveness, i.e., F̂ = (1/20)

∑20
i=1 F̂i, and average

standard deviation, i.e., σ̂F = (1/20)
∑20

i=1 σFi
.

A summary of results is listed in Table II. As shown, the
illuminant-invariant road-detection proposal outperforms the
HSI-based algorithms for images containing strong shadows
and other vehicles in the scene. Hence, from these results,
we can conclude that the illuminant-invariant feature space
introduced in this paper is more adequate than the HSI color
space for road detection.

Finally, the computational cost of the algorithm is analyzed.
Our current implementation is in nonoptimized MATLAB code.
This code takes about 600 ms to perform road segmentation
at full resolution (640 × 480 images) using a standard central
processing unit at 2.4 GHz. This computations cost is decom-
posed as follows: 375 ms for obtaining the invariant image and
the likelihood function; less than 1 ms doing the threshold using
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Fig. 12. Road-detection results. Example results include the following: (First column) Images from a sunny day with annoying shadows and traffic; (second
column) images from a wet road without puddles with dim shadows and traffic; (third column) different scenarios; (fourth column) different road shapes; (last
column) presence of other vehicles.

Fig. 13. Examples where our road-detection method currently fails.

TABLE II
PERFORMANCE OF ROAD DETECTION ALGORITHMS USING A

CROSS-VALIDATION METHOD

the likelihood model; 175 ms running the connected compo-
nents; and 50 ms for the fill-in of small holes. According to our
experience in similar applications, we think that just by going to
C++, this code can easily run in less than 50 ms. In addition,
there are some easy optimizations, such as removing at least
one third of the upper part of the image since it is not likely to
contain the road surface. In fact, performing road detection on
half-resolution images using our current implementation takes
around 40 ms.

VI. CONCLUSION

In this paper, a novel approach to road detection has been pre-
sented. The algorithm combines an illuminant-invariant feature
space with a road class-likelihood classifier in a frame-by-frame
framework to provide reliable road detection results despite
lighting variations and shadows. The novelty of the approach
relies in exploiting the invariance to lighting variations of a
feature space that has not been used before in the road-detection
context. The main properties of the proposed method are given

as follows: It is able to run in real-time in a per-frame basis, it
is not constrained to specific road shapes, the likelihood-based
classifier is build online adapted to each frame, and a modeling
of the background is not required.

Experiments are conducted to validate the method on a
data set that includes images with heavy shadows and traffic.
Furthermore, the algorithm is quantitatively evaluated and com-
pared with an HSI-based road-detection algorithm. From the
experimental results, it is concluded that the proposed method
is suitable for handling shadows while still allowing one to
distinguish road pixels from the background, including vehicles
on the road. Moreover, the proposed algorithm outperforms
state-of-the-art road-detection algorithms.

The illuminant-invariant space is camera dependent. Thus, an
intrinsic parameter of the camera, i.e., the invariant direction,
must be provided. Accordingly, we have proposed a method
for calibrating the camera that improves the precision and
repetitiveness of current algorithms. Furthermore, the method
can work onboard, enabling the self-calibration of the camera.

As future work, we want to address the problem of local over-
and undersaturations by improving the image acquisition sys-
tem. Moreover, we want to incorporate road-detection results
to improve onboard vehicle-detection algorithms [27].
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