\begin{tabular}{c | c | c | c | c | c | c | c | c | c}
{\bf Method} & {\bf Setting} & {\bf MaxF} & {\bf AP} & {\bf PRE} & {\bf REC} & {\bf FPR} & {\bf FNR} & {\bf Runtime} & {\bf Environment}\\ \hline
SNE-RoadSegV2 & & 97.55 \% & 93.98 \% & 97.57 \% & 97.53 \% & 1.34 \% & 2.47 \% & 0.03 s / GPU & \\
RD-RoTr & & 97.53 \% & 92.97 \% & 97.32 \% & 97.74 \% & 1.48 \% & 2.26 \% & 0.02 s / 1 GPU & \\
SNE-RoadSeg+ & & 97.50 \% & 93.98 \% & 97.41 \% & 97.58 \% & 1.43 \% & 2.42 \% & 0.08 s / GPU & H. Wang, R. Fan, P. Cai and M. Liu: SNE-RoadSeg+: Rethinking
depth-normal translation and deep supervision for
freespace detection. 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2021.\\
SPNet & & 97.21 \% & 93.87 \% & 97.38 \% & 97.04 \% & 1.44 \% & 2.96 \% & 0.04 s / GPU & \\
PLARD & la & 97.03 \% & 94.03 \% & 97.19 \% & 96.88 \% & 1.54 \% & 3.12 \% & 0.16 s / GPU & Z. Chen, J. Zhang and D. Tao: Progressive LiDAR adaptation for road
detection. IEEE/CAA Journal of Automatica
Sinica 2019.\\
HEAT & & 97.00 \% & 93.09 \% & 96.53 \% & 97.48 \% & 1.93 \% & 2.51 \% & 0.08 s / 1 core & \\
LRDNet+ & la & 96.95 \% & 92.22 \% & 96.88 \% & 97.02 \% & 1.72 \% & 2.98 \% & 0.01 s / GPU & A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection. IEEE Transactions on Multimedia 2023.\\
HEAT & & 96.95 \% & 93.06 \% & 96.51 \% & 97.39 \% & 1.94 \% & 2.61 \% & 0.08 s / 1 core & \\
M2CRN & & 96.93 \% & 92.93 \% & 96.61 \% & 97.26 \% & 1.88 \% & 2.74 \% & 0.01 s / GPU & \\
UCENet & & 96.91 \% & 93.22 \% & 96.59 \% & 97.24 \% & 1.89 \% & 2.76 \% & 0.02 s / 1 core & \\
DUNet & & 96.89 \% & 93.22 \% & 96.57 \% & 97.21 \% & 1.90 \% & 2.79 \% & 0.02 s / 1 core & \\
USNet & & 96.89 \% & 93.25 \% & 96.51 \% & 97.27 \% & 1.94 \% & 2.73 \% & 0.02 s / GPU & Y. Chang, F. Xue, F. Sheng, W. Liang and A. Ming: Fast Road Segmentation via
Uncertainty-aware Symmetric Network. IEEE International Conference on
Robotics and Automation (ICRA) 2022.\\
LRDNet (L) & la & 96.87 \% & 91.91 \% & 96.73 \% & 97.01 \% & 1.81 \% & 2.99 \% & 0.1 s / GPU & A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection. IEEE Transactions on Multimedia 2023.\\
UCENet+ & & 96.80 \% & 93.87 \% & 96.66 \% & 96.94 \% & 1.84 \% & 3.06 \% & 0.04 s / 1 core & \\
DFM-RTFNet & & 96.78 \% & 94.05 \% & 96.62 \% & 96.93 \% & 1.87 \% & 3.07 \% & 0.08 s / GPU & H. Wang, R. Fan, Y. Sun and M. Liu: Dynamic fusion module evolves
drivable area and road anomaly detection: A
benchmark and algorithms. IEEE Transactions on Cybernetics 2021.\\
SNE-RoadSeg & & 96.75 \% & 94.07 \% & 96.90 \% & 96.61 \% & 1.70 \% & 3.39 \% & 0.18 s / GPU & R. Fan, H. Wang, P. Cai and M. Liu: SNE-RoadSeg: Incorporating
Surface Normal Information into Semantic
Segmentation for Accurate Freespace Detection. ECCV 2020.\\
LRDNet(S) & la & 96.74 \% & 92.54 \% & 96.79 \% & 96.69 \% & 1.76 \% & 3.31 \% & .009 s / GPU & A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection. IEEE Transactions on Multimedia 2023.\\
SARNet & & 96.63 \% & 90.76 \% & 95.87 \% & 97.41 \% & 2.31 \% & 2.59 \% & 0.70 s / 1 core & \\
UCENet & & 96.62 \% & 93.84 \% & 96.49 \% & 96.75 \% & 1.94 \% & 3.25 \% & 0.04 s / GPU & \\
3MT & & 96.60 \% & 93.90 \% & 96.46 \% & 96.73 \% & 1.95 \% & 3.27 \% & 0.07 s / GPU & \\
LightFusion & & 96.53 \% & 93.87 \% & 96.03 \% & 97.03 \% & 2.21 \% & 2.97 \% & 0.027 s / GPU & \\
CLCFNet & la & 96.38 \% & 90.85 \% & 96.38 \% & 96.39 \% & 1.99 \% & 3.61 \% & 0.02 s / GPU & S. Gu, J. Yang and H. Kong: A Cascaded LiDAR-Camera Fusion
Network for Road Detection. ICRA 2021.\\
RBANet & & 96.30 \% & 89.72 \% & 95.14 \% & 97.50 \% & 2.75 \% & 2.50 \% & 0.16 s / GPU & J. Sun, S. Kim, S. Lee, Y. Kim and S. Ko: Reverse and Boundary Attention Network for
Road Segmentation. Proceedings of the IEEE International
Conference on Computer Vision Workshops 2019.\\
LidCamNet & la & 96.03 \% & 93.93 \% & 96.23 \% & 95.83 \% & 2.07 \% & 4.17 \% & 0.15 s / GPU & L. Caltagirone, M. Bellone, L. Svensson and M. Wahde: LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks. Robotics and Autonomous Systems 2018.\\
NIM-RTFNet & & 96.02 \% & 94.01 \% & 96.43 \% & 95.62 \% & 1.95 \% & 4.38 \% & 0.05 s / GPU & H. Wang, R. Fan, Y. Sun and M. Liu: Applying Surface Normal
Information in Drivable Area and Road Anomaly
Detection for Ground Mobile Robots. 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2020.\\
CLCFNet (LiDAR) & la & 95.97 \% & 90.61 \% & 96.12 \% & 95.82 \% & 2.13 \% & 4.18 \% & 0.02 s / GPU & S. Gu, J. Yang and H. Kong: A Cascaded LiDAR-Camera Fusion
Network for Road Detection. ICRA 2021.\\
CRS & & 95.94 \% & 93.44 \% & 95.52 \% & 96.37 \% & 2.49 \% & 3.63 \% & 0.70 s / 1 core & \\
LC-CRF & la & 95.68 \% & 88.34 \% & 93.62 \% & 97.83 \% & 3.67 \% & 2.17 \% & 0.18 s / GPU & S. Gu, Y. Zhang, J. Tang, J. Yang and H. Kong: Road Detection through CRF based
LiDAR-Camera Fusion. ICRA 2019.\\
MBRoadSeg & & 95.64 \% & 90.30 \% & 95.78 \% & 95.51 \% & 2.32 \% & 4.49 \% & 7.1ms / GPU & \\
MBRoadSeg & & 95.64 \% & 90.30 \% & 95.78 \% & 95.51 \% & 2.32 \% & 4.49 \% & .007 s / GPU & \\
RGB36-Cotrain & & 95.55 \% & 93.71 \% & 95.68 \% & 95.42 \% & 2.37 \% & 4.58 \% & 0.1 s / 1 core & L. Caltagirone, S. Lennart, M. Wahde and M. Sanfridson: Lidar-Camera Co-Training for Semi-
Supervised Road Detection. arXiv preprint arXiv:1911.12597 2019.\\
SSLGAN & & 95.53 \% & 90.35 \% & 95.84 \% & 95.24 \% & 2.28 \% & 4.76 \% & 700ms / GPU & X. Han, J. Lu, C. Zhao, S. You and H. Li: Semisupervised and Weakly Supervised
Road Detection Based on Generative Adversarial
Networks. IEEE Signal Processing Letters 2018.\\
TVFNet & la & 95.34 \% & 90.26 \% & 95.73 \% & 94.94 \% & 2.33 \% & 5.06 \% & 0.04 s / GPU & S. Gu, Y. Zhang, J. Yang, J. Alvarez and H. Kong: Two-View Fusion based
Convolutional Neural Network for Urban Road
Detection. IROS 2019.\\
LFD-RoadSeg & & 95.21 \% & 93.71 \% & 95.35 \% & 95.08 \% & 2.56 \% & 4.92 \% & .004 s / GPU & \\
RBNet & & 94.97 \% & 91.49 \% & 94.94 \% & 95.01 \% & 2.79 \% & 4.99 \% & 0.18 s / GPU & Z. Chen and Z. Chen: RBNet: A Deep Neural Network for Unified Road and
Road Boundary Detection. International Conference on Neural Information
Processing 2017.\\
BJN & & 94.89 \% & 90.63 \% & 96.14 \% & 93.67 \% & 2.07 \% & 6.33 \% & 0.02 s / 1 core & B. Yu, D. Lee, J. Lee and S. Kee: Free Space Detection Using Camera-LiDAR
Fusion in a Bird’s Eye View Plane. Sensors 2021.\\
StixelNet II & & 94.88 \% & 87.75 \% & 92.97 \% & 96.87 \% & 4.04 \% & 3.13 \% & 1.2 s / 1 core & N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A. Ayash, V. Goldner, R. Cohen, K. Horn and D. Levi: Real-time category-based and general
obstacle detection for autonomous driving. 5th Workshop on Computer Vision for
Road Scene Understanding and Autonomous Driving
(CVRSUAD'17, IEEE-ICCV 2017
Workshop) 2017.\\
MultiNet & & 94.88 \% & 93.71 \% & 94.84 \% & 94.91 \% & 2.85 \% & 5.09 \% & 0.17 s / GPU & M. Teichmann, M. Weber, J. Zoellner, R. Cipolla and R. Urtasun: MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. CoRR 2016.\\
Hadamard-FCN & & 94.85 \% & 91.48 \% & 94.81 \% & 94.89 \% & 2.86 \% & 5.11 \% & 0.02 s / GPU & M. Oeljeklaus: An Integrated Approach for Traffic Scene Understanding from Monocular Cameras. 2021.\\
HA-DeepLabv3+ & & 94.83 \% & 93.24 \% & 94.77 \% & 94.89 \% & 2.88 \% & 5.11 \% & 0.06 s / 1 core & R. Fan, H. Wang, P. Cai, J. Wu, M. Bocus, L. Qiao and M. Liu: Learning collision-free space detection
from stereo images: Homography matrix brings
better data augmentation. IEEE/ASME Transactions on
Mechatronics 2021.\\
DTN-DSC & & 94.73 \% & 93.51 \% & 94.63 \% & 94.84 \% & 2.97 \% & 5.16 \% & 11m s / GPU & \\
TEDNet & la & 94.62 \% & 93.05 \% & 94.28 \% & 94.96 \% & 3.17 \% & 5.04 \% & 0.09 s / GPU & M. Bayón-Gutiérrez, J. Benítez- Andrades, S. Rubio-Martín, J. Aveleira-Mata, H. Alaiz-Moretón and M. García-Ordás: Roadway Detection Using Convolutional
Neural Network Through Camera and LiDAR Data. Hybrid Artificial Intelligent Systems 2022.\\
RoadNet3 & & 94.44 \% & 93.45 \% & 94.69 \% & 94.18 \% & 2.91 \% & 5.82 \% & 300 ms / GPU & Y. Lyu, L. Bai and X. Huang: Road Segmentation using CNN and
Distributed LSTM. 2019 IEEE International Symposium on
Circuits and Systems (ISCAS) 2019.\\
CLRD & la & 94.20 \% & 92.66 \% & 94.25 \% & 94.14 \% & 3.16 \% & 5.86 \% & 0.05 s / GPU & M. Bayón-Gutiérrez, J. Benítez- Andrades, S. Rubio-Martín, J. Aveleira-Mata, H. Alaiz-Moretón and M. García-Ordás: Roadway Detection Using Convolutional
Neural Network Through Camera and LiDAR Data. Hybrid Artificial Intelligent Systems 2022.\\
LoDNN & la & 94.07 \% & 92.03 \% & 92.81 \% & 95.37 \% & 4.07 \% & 4.63 \% & 18 ms / GPU & L. Caltagirone, S. Scheidegger, L. Svensson and M. Wahde: Fast LIDAR-based Road Detection
Using Fully Convolutional Neural Networks. IEEE Intelligent Vehicles
Symposium 2017.\\
ChipNet & la & 94.05 \% & 88.29 \% & 93.57 \% & 94.53 \% & 3.58 \% & 5.47 \% & 12 ms / GPU & Y. Lyu, L. Bai and X. Huang: ChipNet: Real-Time LiDAR Processing for
Drivable Region Segmentation on an FPGA. IEEE Transactions on Circuits and
Systems I: Regular Papers 2019.\\
DEEP-DIG & & 93.98 \% & 93.65 \% & 94.26 \% & 93.69 \% & 3.14 \% & 6.31 \% & 0.14 s / GPU & J. Muñoz-Bulnes, C. Fernandez, I. Parra, D. Fernández-Llorca and M. Sotelo: Deep Fully Convolutional
Networks with Random Data Augmentation
for Enhanced Generalization in Road
Detection. Workshop on Deep
Learning for Autonomous Driving on IEEE
20th International Conference on
Intelligent Transportation Systems 2017.\\
Up-Conv-Poly & & 93.83 \% & 90.47 \% & 94.00 \% & 93.67 \% & 3.29 \% & 6.33 \% & 0.08 s / GPU & G. Oliveira, W. Burgard and T. Brox: Efficient Deep Methods for Monocular
Road Segmentation. IROS 2016.\\
OFA Net & & 93.74 \% & 85.37 \% & 90.36 \% & 97.38 \% & 5.72 \% & 2.62 \% & 0.04 s / GPU & S. Zhang, Z. Zhang, L. Sun and W. Qin: One For All: A Mutual Enhancement Method
for Object Detection and Semantic Segmentation. Applied Sciences 2019.\\
DDN & & 93.43 \% & 89.67 \% & 95.09 \% & 91.82 \% & 2.61 \% & 8.18 \% & 2 s / GPU & R. Mohan: Deep Deconvolutional Networks for Scene Parsing. 2014.\\
HID-LS & la & 93.11 \% & 87.33 \% & 92.52 \% & 93.71 \% & 4.18 \% & 6.29 \% & 0.25 s / 1 cores & S. Gu, Y. Zhang, J. Yang and H. Kong: Lidar-based urban road detection by
histograms of normalized inverse
depths and line scanning. ECMR 2017.S. Gu, Y. Zhang, X. Yuan, J. Yang, T. Wu and H. Kong: Histograms of the Normalized
Inverse Depth and Line Scanning for Urban
Road Detection. IEEE Trans. Intelligent
Transportation Systems 2019.\\
RGB36-Super & & 92.94 \% & 92.29 \% & 93.14 \% & 92.74 \% & 3.77 \% & 7.26 \% & 0.1 s / 1 core & L. Caltagirone, S. Lennart, M. Wahde and M. Sanfridson: Lidar-Camera Co-Training for Semi-
Supervised Road Detection. arXiv preprint arXiv:1911.12597 2019.\\
RoadNet-RT & & 92.55 \% & 93.21 \% & 92.94 \% & 92.16 \% & 3.86 \% & 7.84 \% & 8m s / GPU & L. Bai, Y. Lyu and X. Huang: RoadNet-RT: High Throughput CNN
Architecture and SoC Design for Real-Time Road
Segmentation. arXiv preprint arXiv:2006.07644 2020.\\
Up-Conv & & 92.39 \% & 90.24 \% & 93.03 \% & 91.76 \% & 3.79 \% & 8.24 \% & 0.05 s / GPU & G. Oliveira, W. Burgard and T. Brox: Efficient Deep Methods for Monocular
Road Segmentation. IROS 2016.\\
ALO-AVG-MM & & 92.03 \% & 85.64 \% & 90.65 \% & 93.45 \% & 5.31 \% & 6.55 \% & 0.0296 sec / & F. Reis, R. Almeida, E. Kijak, S. Malinowski, S. Guimaraes and Z. Jr.: Combining convolutional side-outputs for
road image segmentation. 2019 International Joint Conference
on Neural Networks (IJCNN) - \textbfAccepted 2019.\\
FTP & & 91.61 \% & 90.96 \% & 91.04 \% & 92.20 \% & 5.00 \% & 7.80 \% & 0.28 s / GPU & A. Laddha, M. Kocamaz, L. Navarro-Serment and M. Hebert: Map-Supervised Road Detection. IEEE Intelligent Vehicles Symposium Proceedings 2016.\\
HybridCRF & la & 90.81 \% & 86.01 \% & 91.05 \% & 90.57 \% & 4.90 \% & 9.43 \% & 1.5 s / 1 core & L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu and T. Wu: Hybrid conditional random field based
camera-LIDAR fusion for road detection. Information Sciences 2018.\\
FCN-LC & & 90.79 \% & 85.83 \% & 90.87 \% & 90.72 \% & 5.02 \% & 9.28 \% & 0.03 s / & C. Mendes, V. Frémont and D. Wolf: Exploiting Fully Convolutional Neural
Networks for Fast Road Detection. IEEE Conference on Robotics and
Automation (ICRA) 2016.\\
LidarHisto & la & 90.67 \% & 84.79 \% & 93.06 \% & 88.41 \% & 3.63 \% & 11.59 \% & 0.1 s / 1 core & L. Chen, J. Yang and H. Kong: Lidar-histogram for fast road and obstacle
detection. 2017 IEEE International Conference on
Robotics and Automation (ICRA) 2017.\\
HIM & & 90.64 \% & 81.42 \% & 91.62 \% & 89.68 \% & 4.52 \% & 10.32 \% & 7 s / >8 cores & D. Munoz, J. Bagnell and M. Hebert: Stacked Hierarchical Labeling. European Conference on Computer Vision (ECCV) 2010.\\
MixedCRF & la & 90.59 \% & 84.24 \% & 89.11 \% & 92.13 \% & 6.20 \% & 7.87 \% & 6s / 1 core & X. Han, H. Wang, J. Lu and C. Zhao: Road detection based on the fusion of
Lidar and image data. 2017.\\
BMCF & st & 89.75 \% & 84.15 \% & 89.02 \% & 90.49 \% & 6.15 \% & 9.51 \% & 2.5 s / 1 core & L. Wang, T. Wu, Z. Xiao, L. Xiao, D. Zhao and J. Han: Multi-cue road boundary detection using stereo
vision. 2016 IEEE International Conference on Vehicular
Electronics and Safety (ICVES) 2016.\\
NNP & st & 89.68 \% & 86.50 \% & 89.67 \% & 89.68 \% & 5.69 \% & 10.32 \% & 5 s / 4 cores & X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object
Class Detection. NIPS 2015.\\
StixelNet & & 89.12 \% & 81.23 \% & 85.80 \% & 92.71 \% & 8.45 \% & 7.29 \% & 1 s / GPU & D. Levi, N. Garnett and E. Fetaya: StixelNet: A Deep Convolutional Network for
Obstacle Detection and Road Segmentation.. 26TH British Machine Vision Conference
(BMVC) 2015.\\
CB & & 88.97 \% & 79.69 \% & 89.50 \% & 88.44 \% & 5.71 \% & 11.56 \% & 2 s / 1 core & C. Mendes, V. Frémont and D. Wolf: Vision-Based Road Detection using
Contextual Blocks. 2015.\\
FusedCRF & la & 88.25 \% & 79.24 \% & 83.62 \% & 93.44 \% & 10.08 \% & 6.56 \% & 2 s / 1 core & L. Xiao, B. Dai, D. Liu, T. Hu and T. Wu: CRF based Road Detection with Multi-Sensor Fusion. Intelligent Vehicles Symposium (IV) 2015.\\
MAP & & 87.80 \% & 89.96 \% & 86.01 \% & 89.66 \% & 8.04 \% & 10.34 \% & 0.28s / & A. Laddha, M. Kocamaz, L. Navarro-Serment and M. Hebert: Map-Supervised Road Detection. IEEE Intelligent Vehicles Symposium Proceedings 2016.\\
ProbBoost & st & 87.78 \% & 77.30 \% & 86.59 \% & 89.01 \% & 7.60 \% & 10.99 \% & 2.5 min / >8 cores & G. Vitor, A. Victorino and J. Ferreira: A probabilistic distribution approach for the classification of urban roads in complex environments. Workshop on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots on IEEE International Conference on Robotics and Automation (ICRA) 2014.\\
SPRAY & & 87.09 \% & 91.12 \% & 87.10 \% & 87.08 \% & 7.10 \% & 12.92 \% & 45 ms / & T. Kuehnl, F. Kummert and J. Fritsch: Spatial Ray Features for Real-Time Ego-Lane Extraction. Proc. IEEE Intelligent Transportation Systems 2012.\\
multi-task CNN & & 86.81 \% & 82.15 \% & 78.26 \% & 97.47 \% & 14.92 \% & 2.53 \% & 25.1 ms / GPU & M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes. IEEE Intelligent Transportation Systems Conference 2018.\\
RES3D-Velo & la & 86.58 \% & 78.34 \% & 82.63 \% & 90.92 \% & 10.53 \% & 9.08 \% & 0.36 s / 1 core & P. Shinzato, D. Wolf and C. Stiller: Road Terrain Detection: Avoiding Common Obstacle Detection Assumptions Using Sensor Fusion. Intelligent Vehicles Symposium (IV) 2014.\\
GRES3D+VELO & la & 86.07 \% & 84.34 \% & 82.16 \% & 90.38 \% & 10.81 \% & 9.62 \% & 60 ms / 4 cores & P. Shinzato: Estimation of obstacles and road area with sparse 3D points. 2015.\\
PGM-ARS & & 85.69 \% & 73.83 \% & 82.34 \% & 89.33 \% & 10.56 \% & 10.67 \% & 0.05 s / i74700MQ & M. Passani, J. Yebes and L. Bergasa: Fast Pixelwise Road Inference Based on
Uniformly Reweighted Belief Propagation
. Proc. IEEE Intelligent
Vehicles Symposium 2015.\\
geo+gpr+crf & st & 85.56 \% & 74.21 \% & 82.81 \% & 88.50 \% & 10.12 \% & 11.50 \% & 30 s / 1 core & Z. Xiao, B. Dai, H. Li, T. Wu, X. Xu, Y. Zeng and T. Chen: Gaussian process regression-based robust
free space detection for autonomous vehicle by 3-D
point cloud and 2-D appearance information fusion. International Journal of Advanced
Robotic Systems 2017.\\
GRES3D+SELAS & st & 85.09 \% & 86.86 \% & 82.27 \% & 88.10 \% & 10.46 \% & 11.90 \% & 110 ms / 4 core & P. Shinzato: Estimation of obstacles and road area with sparse 3D points. 2015.\\
SCRFFPFHGSP & st & 84.93 \% & 76.31 \% & 85.37 \% & 84.49 \% & 7.98 \% & 15.51 \% & 5 s / 8 cores & I. Gheorghe: Semantic Segmentation of
Terrain and
Road Terrain for Advanced Driver
Assistance Systems. 2015.\\
HistonBoost & st & 83.92 \% & 73.75 \% & 82.24 \% & 85.66 \% & 10.19 \% & 14.34 \% & 2.5 min / >8 cores & G. Vitor, A. Victorino and J. Ferreira: Comprehensive Performance Analysis of Road Detection Algorithms Using the Common Urban Kitti-Road Benchmark. Workshop on Benchmarking Road Terrain and Lane Detection Algorithms for In-Vehicle Application on IEEE Intelligent Vehicles Symposium (IV) 2014.\\
BM & st & 83.47 \% & 72.23 \% & 75.90 \% & 92.72 \% & 16.22 \% & 7.28 \% & 2 s / 2 cores & B. WANG, V. Fremont and S. Rodriguez Florez: Color-based Road Detection and its
Evaluation on the KITTI Road Benchmark. Workshop on Benchmarking Road Terrain
and Lane Detection Algorithms for In-Vehicle
Application, IEEE Intelligent Vehicles Symposium 2014.\\
SRF & & 82.44 \% & 87.37 \% & 80.60 \% & 84.36 \% & 11.18 \% & 15.64 \% & 0.2 s / 1 core & L. Xiao, B. Dai, D. Liu, D. Zhao and T. Wu: Monocular Road Detection Using Structured
Random Forest. Int J Adv Robot Syst 2016.\\
RES3D-Stereo & st & 81.08 \% & 81.68 \% & 78.14 \% & 84.24 \% & 12.98 \% & 15.76 \% & 0.7 s / 1 core & P. Shinzato, D. Gomes and D. Wolf: Road estimation with sparse 3D points from stereo data. Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on 2014.\\
ARSL-AMI & & 80.36 \% & 70.23 \% & 83.24 \% & 77.67 \% & 8.61 \% & 22.33 \% & 0.05 s / 4 cores & M. Passani, J. Yebes and L. Bergasa: CRF-based semantic labeling in
miniaturized road scenes
. Proc. IEEE Intelligent
Transportation Systems 2014.\\
SPlane + BL & st & 79.63 \% & 83.90 \% & 72.59 \% & 88.17 \% & 18.34 \% & 11.83 \% & 2 s / 1 core & N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.\\
CN & & 79.02 \% & 78.80 \% & 76.64 \% & 81.55 \% & 13.69 \% & 18.45 \% & 2 s / 1 core & J. Alvarez, T. Gevers, Y. LeCun and A. Lopez: Road Scene Segmentation from a Single Image. ECCV 2012 2012.\\
SPlane & st & 78.69 \% & 77.16 \% & 71.96 \% & 86.80 \% & 18.63 \% & 13.20 \% & 2 s / 1 core & N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.\\
ANN & st & 67.70 \% & 52.50 \% & 54.19 \% & 90.17 \% & 41.98 \% & 9.83 \% & 3 s / 1 core & G. Vitor, D. Lima, A. Victorino and J. Ferreira: A 2D/3D Vision Based Approach Applied to Road Detection in Urban Environments. Intelligent Vehicles Symposium (IV), 2013 IEEE 2013.
\end{tabular}