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Abstract

In this supplementary material we first provide details of our experimental setup and the inference process with respect
to the individual optimization blocks. Furthermore, we provide additional quantitative and qualitative results: First, we
show the full plots corresponding to Figure 5 in the main paper. Second, we visualize the accuracy and completeness of the
individual methods. And finally, we qualitatively compare the results of the proposed approach to the initial reconstruction
baseline on novel sequences.

1. Experimental Setup
For capturing our dataset and the 3D ground truth, we used a Velodyne HDL-64 laser scanner, running at 10 fps. For

synchronization, we attached a hardware trigger to the scanner (reed contact) which triggers all cameras at the moment the
scanner is facing forward. Each scan returns the timestamp of each point which is used to unwarp the point cloud according
to the vehicle motion obtained using a high-precision OXTS 3003 RTK GPS/IMU unit (2cm accuracy). The cameras have a
global shutter and are in perfect sync. The average driving velocity was 40 km/h.

2. Inference
This section provides details on optimizing the individual blocks in our energy function

argmin
π,φ,X,V,k

N∑
i=1

Ψi(π,φ,X,V,k) (1)

where

Ψi(·) = ψshp(πi, φki ,xi) + λscale ψscale(si,vki)

+λreg ψ
(i)
reg(πi) (2)

The reader is referred to section 3.3 of the paper for the definition of each term.

2.1. Block {π,V}

We optimize Eq. 1 with respect to {π,V} via gradient descent. For clarity of exposition we consider a single term Ψi,
dropping the observation index i. First, we note that the derivatives of ψscale(s,vk) and ψreg(π) with respect to {π,V} are
readily given due to their simple quadratic form. The derivative of ψshp(π, φ,x) with respect to π is given by

∂ψshp(π, φ,x)

∂π
=

∑
p∈Ω

(φ(p,x)− d(π(p)))
2 ∂w

∂π
− 2w(π(p))(φ(p,x)− d(π(p))

∂d

∂π
(3)
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Using pt to denote π(p) ∈ R3 (the transformed point) and the chain rule we have:

∂w

∂π
=

∂w

∂pt

∂pt
∂π

(4)

∂d

∂π
=

∂d

∂pt

∂pt
∂π

(5)

Where ∂w
∂pt

and ∂d
∂pt

are gradients of the weight field and the signed distance function field which we obtain using bilinear

interpolation. Finally, we compute ∂pt

∂π . According to our parametrization, the transformed point is given by pt = RSp +

[t 0]T , where R is the rotation matrix formed by 2D rotation angle r (i.e.,
[ cos r − sin r 0

sin r cos r 0
0 0 1

]
) , S is the diagonal scaling matrix

(i.e. diag(s)) and t is the 2D translation vector in the x-y plane (i.e., ground plane).
Thus, we obtain:

∂pt
∂r

=
∂(RSp + t)

∂r
(6)

=

− sin(r)sxpx − cos(r)sypy
cos(r)sxpx − sin(r)sypy

0

 (7)

∂pt
∂s

=
∂(RSp + t)

∂s
(8)

=

cos(r)px − sin(r)py 0
sin(r)px cos(r)py 0

0 0 pz

 (9)

∂pt
∂t

=

[
I2×2

01×2

]
(10)

2.2. Block {φ,X}

We solve the M independent weighted PCA problems using the robust approach of Torre et al. [1].

2.3. Block {X,k}

Recall that X = {x1, . . . ,xN} are the coefficient vectors for all observations and k = {k1, . . . , kN} denote the model
associations with ki ∈ {1, . . . ,M}. With slight change in notation, let the linear model associated with observation i be
described by the mean µki ∈ R|Ω| and the D-dimensional orthonomal basis ξdki ∈ R|Ω|, d ∈ {1, . . . , D}. The coefficient
vector xi for observation i is obtained by solving the following weighted least squares estimation problem (in closed form):

BT
kiWiBkixi = BkiWi(di − µki) (11)

Here, B = {ξ1
ki
, . . . , ξDki} denotes the |Ω|×D basis matrix, Wi = diag(w(πi(p))) ∈ R|Ω|×|Ω|, and di = d(πi(p)) ∈ R|Ω| is

the vector of signed distance function values for observation i. We estimate the solution to Eq. 11 for each ki ∈ {1, . . . ,M}
in order to find the minimizer of Eq. 9 in the main paper.



3. Additional Results
In this section, we first show the full plots for all methods corresponding to Figure 5 in the main paper (Fig. 1). Next,

we visualize the accuracy (Fig. 2) and the completeness (Fig. 3) of the different methods for the sequence presented in the
main paper. We also include zoomed in comparisons of our fused result (PC 0) to our initial reconstruction in terms of both
accuracy (Fig. 4, Fig. 6) and completeness (Fig. 5, Fig. 7). Finally, we show additional qualitative results on other sequences
from our dataset in Fig. 8 – Fig. 12.
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Figure 1: Varying the Evaluation Distance. This figure shows quantitative results in terms of completeness, accuracy and
F1 score when varying the evaluation distance τ between 0.2 and 1.0 m.



Figure 2: Accuracy Visualization. From top to bottom: Point cloud from PMVS2 using the default parameter setting,
point cloud from PMVS2 with optimized parameters, PMVS2 (optimized) + Poisson, PMVS2 (optimized) + SSD, our initial
reconstruction, and our fused result (PC 0). Green-coloured points are reconstructed 3D points for which at least one ground
truth 3D point is within a distance of τ = 0.5 m and red-coloured points are other (falsely) reconstructed points.



Figure 3: Completeness Visualization. From top to bottom: Point cloud from PMVS2 using the default parameter setting,
point cloud from PMVS2 with optimized parameters, PMVS2 (optimized) + Poisson, PMVS2 (optimized) + SSD, our ini-
tial reconstruction, and our fused result (PC 0). Green-coloured points are ground truth 3D points for which at least one
reconstructed 3D point is within a distance of τ = 0.5 m and red-coloured points are other (missed) ground truth points.



Figure 4: Accuracy Visualization. Our initial reconstruction and our fused result (PC 0). Green-coloured points are recon-
structed 3D points for which at least one ground truth 3D point is within a distance of τ = 0.5 m and red-coloured points are
other (falsely) reconstructed points.



Figure 5: Completeness Visualization. Our initial reconstruction and our fused result (PC 0). Green-coloured points are
ground truth 3D points for which at least one reconstructed 3D point is within a distance of τ = 0.5 m and red-coloured
points are other (missed) ground truth points.



Figure 6: Accuracy Visualization. Our initial reconstruction and our fused result (PC 0). Green-coloured points are recon-
structed 3D points for which at least one ground truth 3D point is within a distance of τ = 0.5 m and red-coloured points are
other (falsely) reconstructed points.



Figure 7: Completeness Visualization. Our initial reconstruction and our fused result (PC 0). Green-coloured points are
ground truth 3D points for which at least one reconstructed 3D point is within a distance of τ = 0.5 m and red-coloured
points are other (missed) ground truth points.



4. Additional Qualitative Result

Figure 8: Reconstruction of a sequence with elongated buildings from two different viewpoints. The first and third rows
show the original (initial) reconstruction, the second and fourth row show our final result. Note how our model is able to
complete missing walls by reasoning jointly about buildings of similar shape.



Figure 9: Reconstruction of cars. The left figure shows the original reconstruction, the right figure shows our final result.

Figure 10: Reconstruction of a third sequence. The first row shows the original reconstruction, the second row shows our
final result. Note how the proposed approach is to complete buildings even in the presence of very little surface information
in the initial reconstruction.



Figure 11: Comparison of reconstruction for two more sequences.



Figure 12: Comparison of reconstruction result using PC0 and PC1. From top to bottom: initial reconstruction, PC0 and
PC1. Note for the righmost building, PC1 correctly captures the variation in the front wall, however noise are introduced on
the roof because of weaker regularization.


