Towards Animatable Human Avatars

Andreas Geiger

Autonomous Vision Group University of Tübingen and MPI for Intelligent Systems

Covered Papers

SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes

X. Chen, Y. Zheng, M. Black, O. Hilliges and A. Geiger ICCV 2021

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

S. Wang, M. Mihajlovic, Q. Ma, A. Geiger and S. Tang NeurIPS 2021

Collaborators

Xu Chen

Shaofei Wang

Yufeng Zheng

Marko Mihajlovic

Qianli Ma

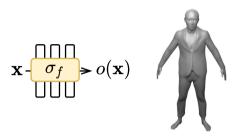
Michael Black

Otmar Hilliges

Siyu Tang

SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes

Neural Implicit Shapes



Neural implicit representations are useful for 3D human modeling:

- ► Topological flexibility
- Resolution independent

However:

Animating such representations is not straightforward

Animating Neural Implicit Shapes

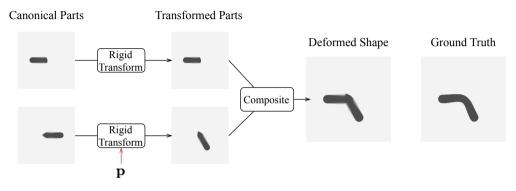
Goal:

- Generate implicit shapes in given poses
- ► Learn shape representation from deformed observations

Key question:

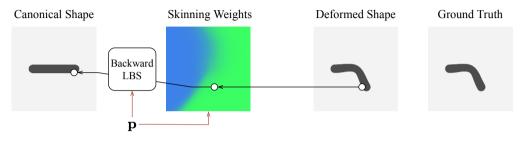
► How to model and learn skeletal deformation of implicit shapes?

Existing Solutions



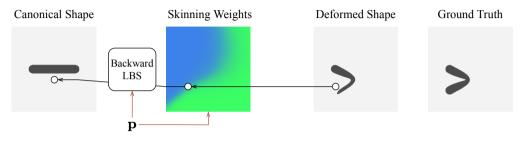
Piecewise rigid model: [Deng et al., ECCV 2020]

- Model shape as parts, and each part can be rigidly transformed
- Discontinuous artifacts at joints



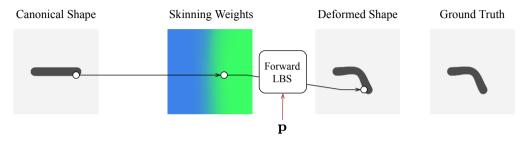
Backward skinning: [Jeruzalski et al., ArXiv 2020] [Mihajlovic et al., CVPR 2021]

Backward LBS with pose-dependent skinning weights in deformed space



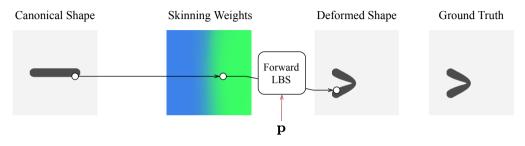
Backward skinning: [Jeruzalski et al., ArXiv 2020] [Mihajlovic et al., CVPR 2021]

- ► Backward LBS with pose-dependent skinning weights in deformed space
- Does not generalize to unseen poses
- Cannot handle one-to-many mapping



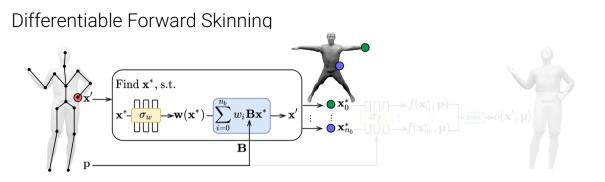
This work - forward skinning:

► Forward LBS with **pose-independent** skinning weights in canonical space



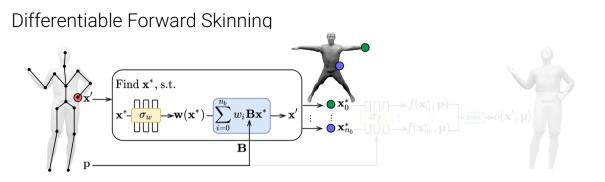
This work - forward skinning:

- ► Forward LBS with **pose-independent** skinning weights in canonical space
- Generalization to unseen poses
- ► Can handle one-to-many mapping



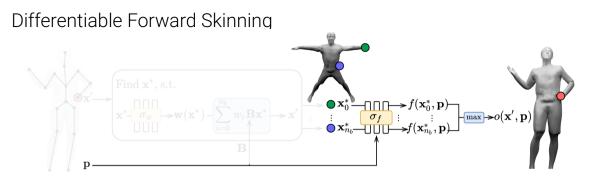
Correspondence search:

- Given query \mathbf{x}' , its canonical correspondences \mathbf{x}^* satisfy $\mathbf{d}_{\sigma_w}(\mathbf{x}^*, \mathbf{B}) \mathbf{x}' = \mathbf{0}$
- \blacktriangleright **x**^{*} can be numerically determined via iterative root finding



Multiple correspondences:

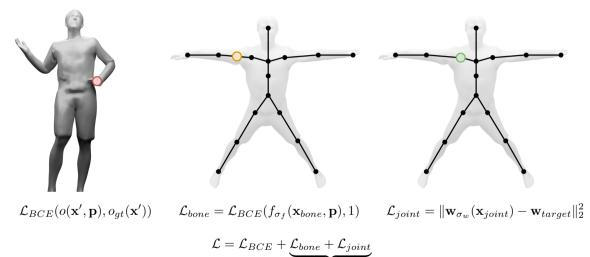
- ► Multiple solutions might exist → apply root finding with multiple initializations
- Rigidly transform the query point with each bone as initialization $\mathbf{x}_i^0 = \boldsymbol{B}_i^{-1} \cdot \mathbf{x}'$
- Collect valid solutions by convergence $\mathcal{X}^* = \{\mathbf{x}_i^* \mid \|\mathbf{d}_{\sigma_w}(\mathbf{x}_i^*, \boldsymbol{B}) \mathbf{x}'\|_2 < \epsilon\}$



Occupancy query:

- Model the canonical shape as a single occupancy network
- ► Condition the canonical shape on pose to model pose-dependent deformations
- Aggregate multiple correspondences $o(\mathbf{x}', \mathbf{p}) = \max_{\mathbf{x}^* \in \mathcal{X}^*} \{ f_{\sigma_f}(\mathbf{x}^*, \mathbf{p}) \}$

Training Objective



only first epoch

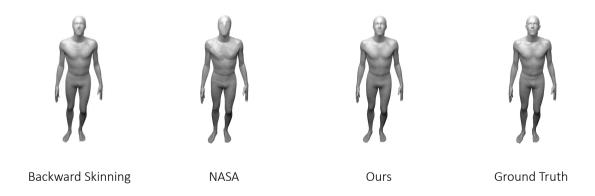
Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.

Analytical gradients via implicit differentiation:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \sigma_w} &= \frac{\partial \mathcal{L}}{\partial o} \cdot \frac{\partial o}{\partial f_{\sigma_f}} \cdot \frac{\partial f_{\sigma_f}(\mathbf{x}^*)}{\partial \mathbf{x}^*} \cdot \frac{\partial \mathbf{x}^*}{\partial \sigma_w}, \\ \frac{\partial \mathbf{x}^*}{\partial \sigma_w} &= -\left(\frac{\partial \mathbf{d}_{\sigma_w}(\mathbf{x}^*, \boldsymbol{B})}{\partial \mathbf{x}^*}\right)^{-1} \cdot \frac{\partial \mathbf{d}_{\sigma_w}(\mathbf{x}^*, \boldsymbol{B})}{\partial \sigma_w}. \end{aligned}$$

Chen, Zheng, Black, Hilliges and Geiger: SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. ICCV, 2021.

Results



Summary

Differentiable forward skinning:

- ► Learn forward skinning and shape fields in pose-independent space
- ► Learn from deformed shapes without direct supervision or prior (e.g., SMPL)
- Generalize to challenging unseen poses at test time

However:

- ► Root finding is time-consuming (10x slower than occupancy query)
 - Each iteration requires a skinning network query
- Requires 3D data \Rightarrow combine with differentiable renderer to learn from images
- Requires accurate poses for training \Rightarrow jointly optimize pose, shape and skinning
- So far only a single subject \Rightarrow generative model of animatable avatars

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

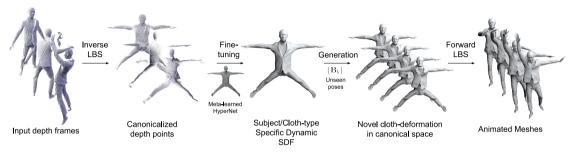
MetaAvatar

Goal:

- Controllable avatars learned from few monocular depth observations
- ► No fully-body scans or per-subject/cloth-type optimization required
- ► Fast optimization (2 minutes with 8 depth maps as input)

Idea: Meta-learn pose conditioned hypernetwork to predict parameters of neural SDF

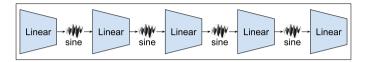
MetaAvatar



Approach:

- ► Using learned Inverse LBS, transform input depth frames into canonical pose
- ► Fine-tune a meta-learned HyperNet to predict parameters of neural SDF
- Given novel poses, our approach generates pose-dependent animated meshes

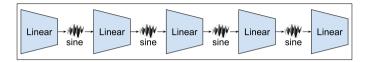
Meta-learning a SDF



Meta-learning a SDF:

- ► 5-layer **SIREN** network with 256 neurons in each layer: $f_{\phi^*}(\mathbf{x})$
- ▶ Point-based on-surface and off-surface loss function [Gropp et al. 2020]
- ▶ Meta-learn network parameters on all subjects using Reptile [Nichol et al. 2018]
- Allows fast fine-tuning on new subject, but no pose-dependent deformations

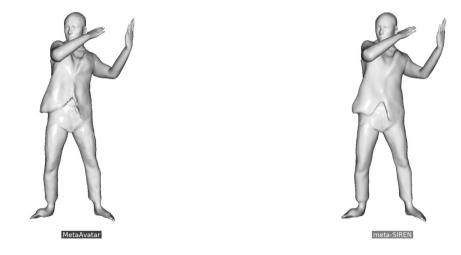
Meta-learning a pose-conditioned SDF



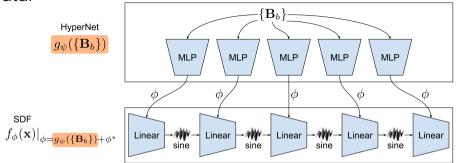
Meta-learning a pose-conditioned SDF:

- ► 5-layer SIREN network with 256 neurons in each layer: $f_{\phi}(\mathbf{x}, {\mathbf{B}_b})$
- Condition network on **bone transformations** $\{\mathbf{B}_b\}$
- Does not work very well, leads to overly smooth results

Meta-learning a pose-conditioned SDF



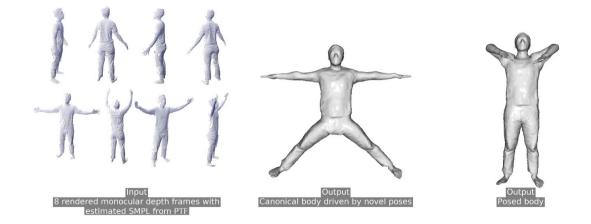
MetaAvatar



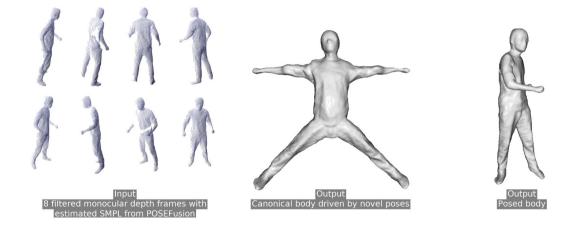
Meta-learning a pose-conditioned HyperNetwork:

- ► Learn **HyperNetwork** $g_{\psi}({\mathbf{B}_b})$ on parameters of neural SDF
- ▶ HyperNetwork predicts **residuals** to meta-learned SDF parameters ϕ^*
- At test time, **fine-tune** parameters ψ of HyperNetwork

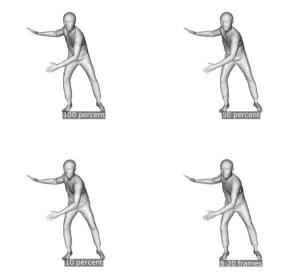
Learning with Raw Sensor Inputs



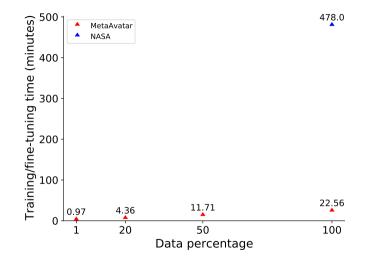
Fine-tuning on Kinect Data



Fine-tuning on Reduced Data

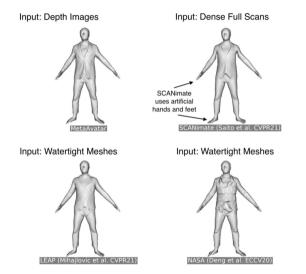


Fine-tuning on Reduced Data



Wang, Mihajlovic, Ma, Geiger and Tang: MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images. NeurIPS, 2021.

Comparison to Baselines



Summary

MetaAvatar:

- MetaAvatar enables generation of controllable clothed human avatars
- Meta-learning allows for fast subject-specific fine-tuning from few depth images
- MetaAvatar enables realistic clothed avatars in 2 minutes from 8 depth maps
- ► HyperNetworks are required to capture detailed pose dependent deformations
- ► Learned Inverse/Forward LBS models and bone transformations required as input

Thank you!

http://autonomousvision.github.io

