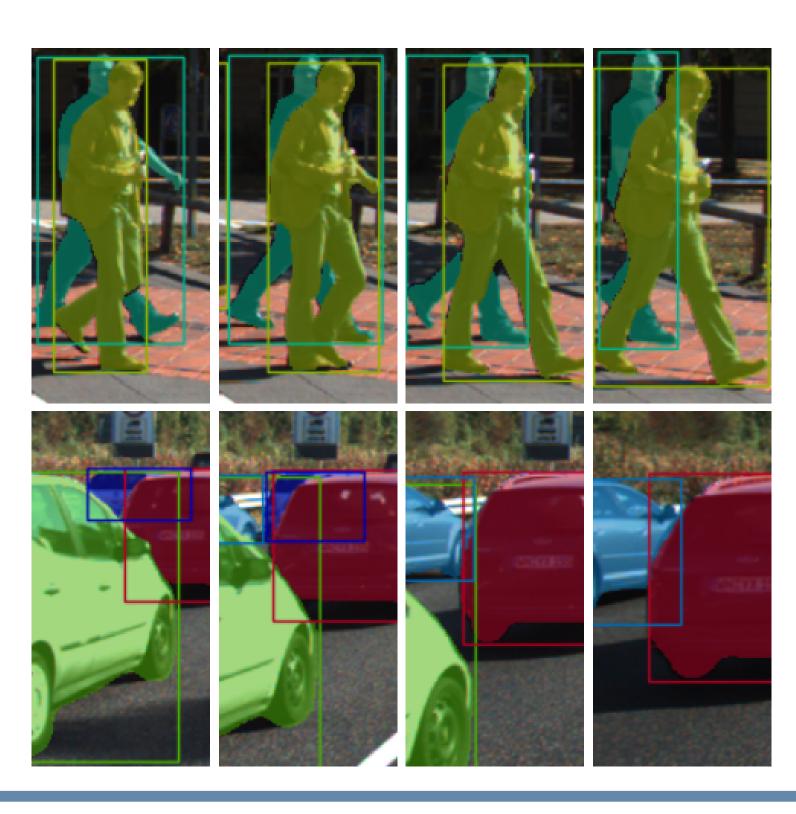


Overview

We extend the popular task of multi-object tracking to multi-object tracking and segmentation (MOTS). We provide pixel-level annotations for KITTI and MOTChallenge comprising 65,213 pixel masks for 977 objects (cars and pedestrians) in 10,870 video frames. We propose a new baseline method to address detection, tracking, and segmentation with a single convolutional network. We make our annotations, code, and models available at https://www.vision.rwth-aachen.de/page/mots.

Motivation

- Multi-object tracking has been considered mostly on bounding box level
- Bounding box information is often too coarse
- In order to move to the pixel level, we need new datasets and methods



Annotations

• Semi-automatic annotation procedure applied to KITTI [1] and MOTChallenge [7]

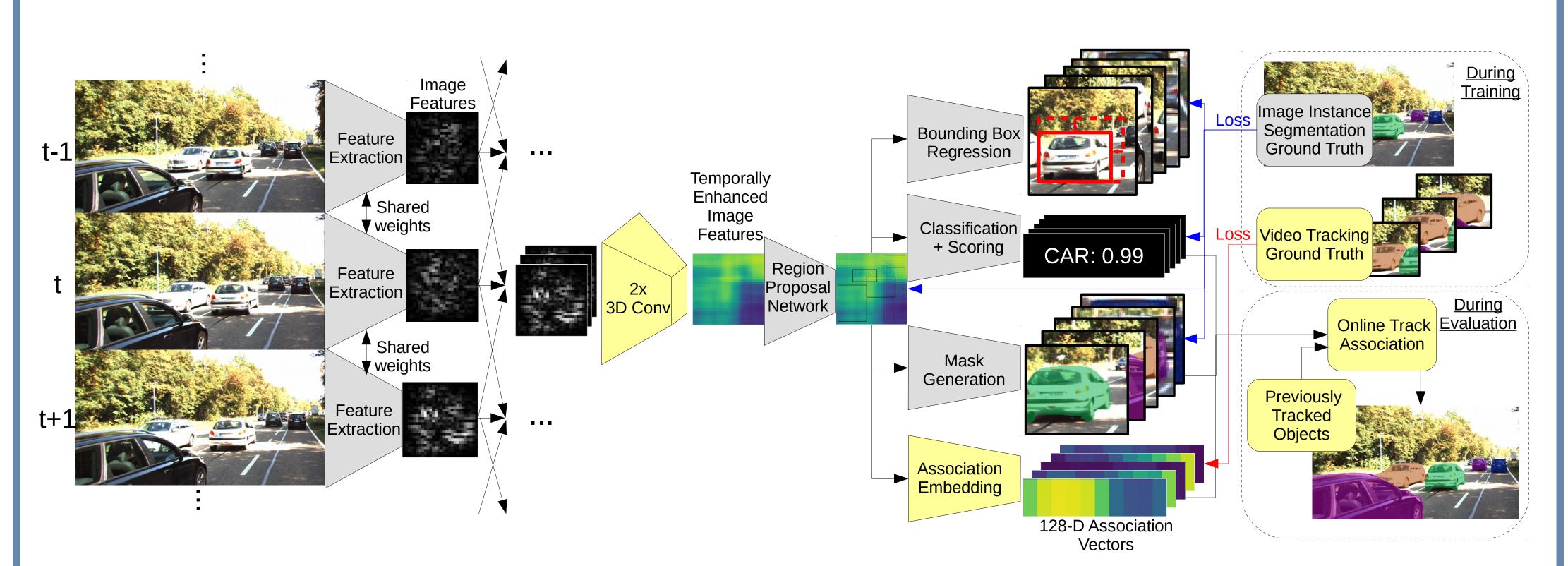
	KITTI train	MOTS val	MOTSChallenge
# Sequences # Frames	12 5,027	9 2,981	4 2,862
# Tracks Pedestrian # Masks Pedestrian	99	68	228
Total	8,073	3,347	26,894
Manually annotated	1,312	647	3,930
# Tracks Car # Masks Car	431	151	_
Total Manually annotated	18,831 1,509	8,068 593	

Paul Voigtlaender¹ Michael Krause¹ Aljoša Ošep¹ Jonathon Luiten¹

Berin Balachandar Gnana Sekar¹ Andreas Geiger² Bastian Leibe¹

TrackR-CNN

- Detection, segmentation, and data association in a single convolutional network
- Extends Mask R-CNN by 3D convolutions and association head



• Batch-hard triplet loss [3] for association head

 $\frac{1}{|D|} \sum \max \left(\max_{e \in \mathcal{D}^{:}} \|a_e - a_d\| - \min_{e \in \mathcal{D}^{:}} \|a_e - a_d\| + \alpha, 0 \right).$

Learned embeddings for associating detections over time using Euclidean distance

• Associate detections using Hungarian matching (very simple)

Evaluation Measures

- *c*: (unique) mapping from hypotheses to ground truth
- TP: true positives, TP: soft number of true positives
- FN: false negatives, FP: false positives, IDS: ID switches
- M: set of ground truth segmentation masks
- MOTSA: Multi-Object Tracking and Segmentation Accuracy
- MOTSP: Multi-Object Tracking and Segmentation Precision
- sMOTSA: Soft Multi-Object Tracking and Segmentation Accuracy

$$\begin{split} \widetilde{\mathrm{TP}} &= \sum_{h \in TP} \mathrm{IoU}(h, c(h)) \\ \mathrm{MOTSA} &= 1 - \frac{|FN| + |FP| + |IDS|}{|M|} = \frac{|TP| - |FP| - |IDS|}{|M|} \\ \mathrm{MOTSP} &= \frac{\widetilde{TP}}{|TP|} \\ \mathrm{sMOTSA} &= \frac{\widetilde{TP} - |FP| - |IDS|}{|M|} \end{split}$$

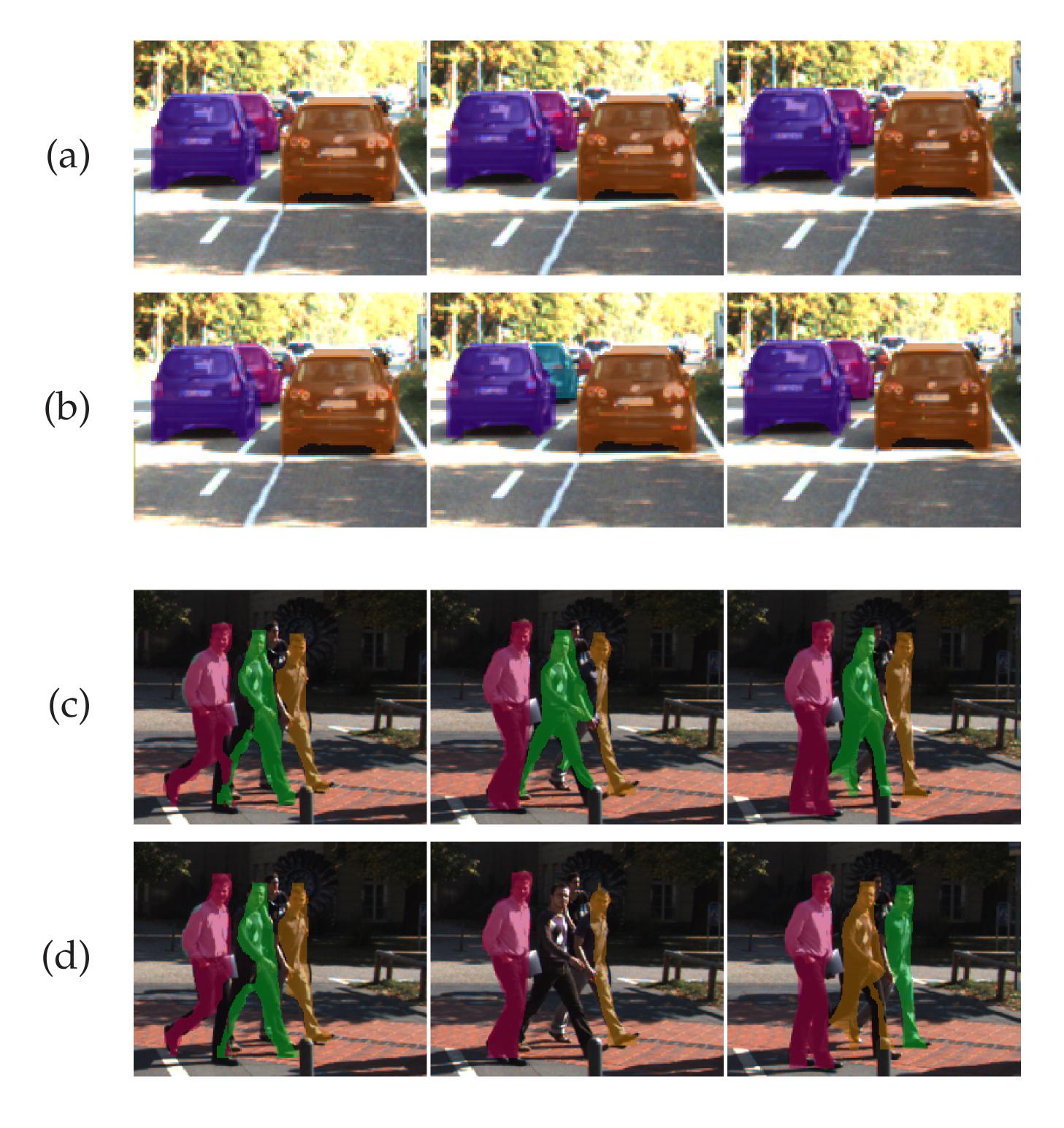
MOTS: Multi-Object Tracking and Segmentation

¹RWTH Aachen University ²MPI for Intelligent Systems and University of Tübingen

{voigtlaender,osep,luiten,leibe}@vision.rwth-aachen.de {michael.krause,berin.gnana}@rwth-aachen.de andreas.geiger@tue.mpg.de

Qualitative Results

- (a), (c): TrackR-CNN trained with segmentation masks on KITTI MOTS
- (b), (d): TrackR-CNN trained with boxes only + mask generation by Mask R-CNN



Quantitative Results

Results on KITTI MOTS

	sMOTSA		MOTSA		MOTSP	
	Car	Ped	Car	Ped	Car	Ped
TrackR-CNN (ours)	76.2	46.8	87.8	65.1	87.2	75.7
Mask R-CNN + maskprop	75.1	45.0	86.6	63.5	87.1	75.6
TrackR-CNN (box orig) + MG	75.0	41.2	87.0	57.9	86.8	76.3
TrackR-CNN (ours) + MG	76.2	47.1	87.8	65.5	87.2	75.7
CAMOT [9] (our det)	67.4	39.5	78.6	57.6	86.5	73.1
CIWT [8] (our det) + MG	68.1	42.9	79.4	61.0	86.7	75.7
BeyondPixels [10] + MG	76.9	_	89.7	_	86.5	_
GT Boxes (orig) + MG	77.3	36.5	90.4	55.7	86.3	75.3
GT Boxes (tight) + MG	82.5	50.0	95.3	71.1	86.9	75.4

– Line 2: Training using instance segmentation data only

- Line 3: Training using box based tracking data with post-hoc mask generation
- +MG: mask generation from bounding boxes using Mask R-CNN
- Results on MOTSChallenge

	sMOTSA MOTSA		MOTSP
TrackR-CNN (ours)	52.7	66.9	80.2
MHT-DAM [5] + MG FWT [2] + MG MOTDT [6] + MG	48.0 49.3 47.8	62.7 64.0 61.1	79.8 79.7 80.0
jCC [4] + MG	47.8	63.0	79.9
GT Boxes (tight) + MG	55.8	74.5	78.6

• MOTS is hard, even when given perfect ground truth bounding boxes!

CALIFORNIA

June 16-20, 2019

Ablations

Temporal component of TrackR-CNN

Temporal component	sMOTSA		MOTSA		MOTSP	
	Car	Ped	Car	Ped	Car	Ped
1xConv3D	76.1	46.3	87.8	64.5	87.1	75.7
2xConv3D	76.2	46.8	87.8	65.1	87.2	75.7
1xConvLSTM	75.7	45.0	87.3	63.4	87.2	75.6
2xConvLSTM	76.1	44.8	87.9	63.3	87.0	75.2
None	76.4	44.8	87.9	63.2	87.3	75.5

Association mechanism of TrackR-CNN

Association Mechanism	sMOTSA		MOTSA		MOTSP	
	Car	Ped	Car	Ped	Car	Ped
Association head	76.2	46.8	87.8	65.1	87.2	75.7
Mask IoU	75.5	46.1	87.1	64.4	87.2	75.7
Mask IoU (train w/o assoc.)	74.9	44.9	86.5	63.3	87.1	75.6
Bbox IoU	75.4	45.9	87.0	64.3	87.2	75.7
Bbox Center	74.3	43.3	86.0	61.7	87.2	75.7

More Qualitative Results

Conclusion

- We've introduced MOTS: new task, new annotations, metrics, and baseline
- Training benefits from time-consistent instance segmentations compared to
 - Single image instance segmentations
 - Box-based tracking data
- Be the first to beat our baseline!
- Get the new annotations now at https://www.vision.rwth-aachen.de/page/mots
- KITTI MOTS test-set evaluation server coming soon!

References

[1] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark suite. In *CVPR*, 2012.] Roberto Henschel, Laura Leal-TaixÃl', Daniel Cremers, and Bodo Rosenhahn. Fusion of head and full-body detectors for multi-object tracking. In CVPRW, 2018. [3] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017. [4] Margret Keuper, Siyu Tang, Bjoern Andres, Thomas Brox, and Bernt Schiele. Motion segmentation & multiple object tracking by correlation co-clustering. PAMI, 2018. [5] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M. Rehg. Multiple hypothesis tracking revisited. In *ICCV*, 2015. [6] Chen Long, Ai Haizhou, Zhuang Zijie, and Shang Chong. Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In ICME, [7] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. MOT16: A benchmark for multi-object tracking. *arXiv preprint arXiv:1603.00831*, 2016. [8] Aljoša Ošep, Wolfgang Mehner, Markus Mathias, and Bastian Leibe. Combined image- and world-space tracking in traffic scenes. In ICRA, 2017. [9] Aljoša Ošep, Wolfgang Mehner, Paul Voigtlaender, and Bastian Leibe. Track, then decide: Category-agnostic vision-based multi-object tracking. ICRA, 2018.

[10] S. Sharma, J. A. Ansari, J. K. Murthy, and K. M. Krishna. Beyond pixels: Leveraging geometry and shape cues for online multi-object tracking. In *ICRA*, 2018.