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Abstract

In this document, we present details of our inference algorithm and additional results. First, we present derivations of the
sum-product belief propagation equations. We also present pseudo-code for the inference algorithm. We then present several
additional experiments. Our first experiment evaluates the proposed approach with varying model parameters. Second, we
present visualizations from our experiment with a small number of images, where our approach significantly improves upon
baseline methods. Finally, we present visualizations of the robustness of our approach to approximate input shapes as well
as it’s ability to combine image and object shape evidence to produce detailed reconstructions.

1. Inference Algorithm Details
Our inference algorithm is based on sum-product particle belief propagation. The main submission presented the prob-

abilistic model but the belief propagation equations and their derivations were omitted due to lack of space. We present
detailed derivations in Section 1.1. We then present pseudo-code for our message passing schedule in Section 1.3.

1.1. Message Passing Equations for Sum-product Belief Propagation

We begin by briefly repeating the probabilistic model below for completeness. Please refer to the main submission for the
notation and further details.

We formulate volumetric 3D reconstruction as inference in a Markov random field and specify the joint distribution over
binary voxel occupancy variables o, continuous voxel color variables a, binary object presence variables b and continuous
object pose variables p as

p(o,a,b,p) =
1

Z

∏
i∈X

ϕoi (oi)
∏
r∈R

ψr(or,ar)
∏
s∈S

ϕbs(bs) ϕps(ps) ∏
q∈Qs(ps)

κq(oq, bs,ps)

 (1)

where Z denotes the partition function. The potentials ϕoi , ϕ
b
s and ϕps model the prior beliefs on voxel occupancy, object

presence and object pose respectively. The potentials ψr and κq are high-order ray and raylet potentials respectively.
The general form of the message equation for sum-product belief propagation on factor graphs is given by

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x

µy→f (y) (2)

µx→f (x) =
∏

g∈Fx\f

µg→x(x) (3)

where f denotes a factor, x is a random variable, Xf denotes all variables associated with factor f and Fx is the set of factors
to which variable x is connected.
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1.1.1 Message equations for the unary potentials

We first present the factor-to-variable message equations for the unary factors in our MRF, i.e., ϕoi , ϕ
b
s, and ϕps . These

equations are readily given as each factor involves only a single variable:

Voxel Occupancy Prior:
µϕo

i→oi(oi) = γoi (1− γ)1−oi (4)

Object Presence Prior:

µϕb
s→bs(bs) = exp(−λb |Qs| bs) (5)

Object Pose Prior:

µϕp
s→ps

(ps) = 1 (6)

In this work we do not consider a prior on the object pose. However, this information can be easily integrated into our
graphical model.

1.1.2 Message equations for the appearance ray potential

The reader is referred to the supplementary document for [5] for the derivations for the appearance ray potential messages.

1.1.3 Message equations for the raylet potential

The raylet potential message equations are derived similarly to that of the appearance ray potentials. We repeat the raylet
potential definition below for completeness.

κq(oq, bs,ps) =

{∑Nq

i=1 o
q
i

∏
j<i (1− o

q
j) η

q
i (ps) if bs = 1

1 otherwise
(7)

In the following, we derive the message equations for the newly introduced raylet potentials κq .

Message to the object model presence variables: We begin with the message from potential to the model presence indicator
bs. Plugging in the potential into Eq. 2 we obtain,

µκq→bs(bs) =

∫
ps

∑
oq1

...
∑
oqNq

κq(oq, bs,ps)µ(ps)

Nq∏
i=1

µ(oqi ) (8)

where we have abbreviated the incoming messages as µ(ps) = µps→κq and µ(oqi ) = µoqi→κq
for brevity. For bs = 0, we

obtain:

µκq→bs(bs = 0) =

∫
ps

∑
oq1

...
∑
oqNq

1µ(ps)

Nq∏
i=1

µ(oqi ) = 1 (9)

where we assume all incoming messages µ(.) sum/integrate to 1. We rely on this assumption for the rest of this document to
simplify the message equations.

For b = 1, we have:

µκq→bs(bs = 1) =
∑
oq1

...
∑
oqNq

∫
ps

κq(oq, bs,ps = 1)µ(ps)

Nq∏
i=1

µ(oqi ) (10)



Following the derivation of the ray potential message equations, we carry out the summations over the occupancy variables
one by one. We start with expanding the summation over o1.

µκq→bs(bs = 1) = (11)

µ(oq1 = 1)

(†)︷ ︸︸ ︷∑
oq2

...
∑
oqNq

∫
ps

κq(o1 = 1, o2, ..., oNq , bs,ps = 1)µ(ps)

Nq∏
i=2

µ(oqi )

+

µ(oq1 = 0)

∑
oq2

...
∑
oqNq

∫
ps

κq(o1 = 0, o2, ..., oNq
, bs,ps = 1)µ(ps)

Nq∏
i=2

µ(oqi )


︸ ︷︷ ︸

(‡)

The raylet potential in (†) evaluates to ηq1(ps). Hence, we have,

(†) =
∑
oq2

...
∑
oqNq

∫
ps

ηq1(ps)µ(ps)

Nq∏
i=2

µ(oqi ) (12)

=

[∫
ps

ηq1(ps)µ(ps)

] ∑
oq2

...
∑
oqNq

Nq∏
i=2

µ(oqi ) =

∫
ps

ηq1(ps)µ(ps) (13)

To evaluate (‡), we expand the summation over o2 as follows:

(‡) = (14)

µ(oq2 = 1)

(�)︷ ︸︸ ︷∑
oq3

...
∑
oqNq

∫
ps

κq(o1 = 0, o2 = 1, o3, ..., oNq , bs,ps = 1)µ(ps)

Nq∏
i=3

µ(oqi )

+

µ(oq2 = 0)

∑
oq3

...
∑
oqNq

∫
ps

κq(o1 = 0, o2 = 0, o3, ..., oNq
, bs,ps = 1)µ(ps)

Nq∏
i=3

µ(oqi )


︸ ︷︷ ︸

(4)

We can simplify (�) similar to the way (†) was simplified. Namely, the raylet potential inside (�) evaluates to ηq2(ps). We
have,

(†) =
∑
oq3

...
∑
oqNq

∫
ps

ηq2(ps)µ(ps)

Nq∏
i=3

µ(oqi ) (15)

=

[∫
ps

ηq2(ps)µ(ps)

] ∑
oq3

...
∑
oqNq

Nq∏
i=3

µ(oqi ) =

∫
ps

ηq2(ps)µ(ps) (16)



Plugging (�) into (‡), we get

(‡) = µ(oq2 = 1)

[∫
ps

ηq2(ps)µ(ps)

]
+ (17)

µ(oq2 = 0)

∑
oq3

...
∑
oqNq

∫
ps

κq(o1 = 0, o2 = 0, o3, ..., oNq
, bs,ps = 1)µ(ps)

Nq∏
i=3

µ(oqi )


︸ ︷︷ ︸

(4)

Plugging the simplified (†) and (‡) back into Eq. 11, we get

µκq→bs(bs = 1) = µ(oq1 = 1)

[∫
ps

ηq1(ps)µ(ps)

]
+ (18)

µ(oq1 = 0)µ(oq2 = 1)

[∫
ps

ηq2(ps)µ(ps)

]
+ µ(oq1 = 0)µ(oq2 = 0) (4) (19)

(4) can be simplified similarly and so on until all summations over the occupancy variables are expanded. We finally obtain

µκq→bs(bs = 1) =

Nq∑
i=1

µ(oqi = 1)
∏
j<i

µ(oqj = 0)

[∫
ps

ηri (ps)µ(ps).

]
(20)

Message to the object pose variables: Plugging in the potential into Eq. 2 we obtain,

µκq→ps(ps) =
∑
bs

∑
oq1

...
∑
oqNq

κq(oq, bs,ps)

Nq∏
i=1

µ(oqi )µ(bs) (21)

Expanding the summation over the binary variable bs, we obtain

µκq→ps
(ps) =µ(bs = 0)

∑
oq1

...
∑
oqNq

κq(oq, bs = 0,ps)

Nq∏
i=1

µ(oqi )

+

µ(bs = 1)

∑
oq1

...
∑
oqNq

κq(oq, bs = 1,ps)

Nq∏
i=1

µ(oqi )

 (22)

= µ(bs = 0)

∑
oq1

...
∑
oqNq

1

Nq∏
i=1

µ(oqi )

+

µ(bs = 1)

∑
oq1

...
∑
oqNq

κq(oq, bs = 1,ps)

Nq∏
i=1

µ(oqi )

 (23)

= µ(bs = 0) + µ(bs = 1)

[∑
oq1

...
∑
oqNq

κq(oq, bs = 1,ps)

Nq∏
i=1

µ(oqi )

︸ ︷︷ ︸
(5)

]
(24)

(5) can be simplified similarly as in the derivation of the object presence variable b, by expanding the summations over the
occupancy variables one by one. We obtain,

µκq→ps
(ps) = µ(bs = 0) + µ(bs = 1)

[ Nq∑
i=1

µ(oqi = 1)
∏
j<i

µ(oqj = 0) ηqi (ps)

]
(25)



Message to the voxel occupancy variables: Plugging in the potential into Eq. 2 we obtain,

µκq→oqi (o
q
i ) =

∑
bs

∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(oq, bs,ps)

Nq∏
j=1
j 6=i

µ(oqj)µ(bs) (26)

We begin by expanding the summation over the binary object model presence variable.

µκq→oqi (o
q
i ) = (27)

µ(bs = 0)

∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(oq, bs = 0,ps)

Nq∏
j=1
j 6=i

µ(oqj)

+

µ(bs = 1)

∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(oq, bs = 1,ps)

Nq∏
j=1
j 6=i

µ(oqj)


= µ(bs = 0) + µ(bs = 1)

[∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(oq, bs = 1,ps)

Nq∏
j=1
j 6=i

µ(oqj)

︸ ︷︷ ︸
(�)

]

We simplify (�) similar to the derivations above. For oqi = 1 we have,

(�) =
∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(o
q
1, ..., o

q
i−1, o

q
i = 1, oqi+1, ..., o

q
Nq
, bs = 1,ps)

Nq∏
j=1
j 6=i

µ(oqj)

=
∑
j<i

µ(oqj = 1)
∏
k<j

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]

+
∏
k<i

µ(oqk = 0)

[ ∫
ps

ηqi (ps)µ(ps)

]
(28)

For oqi = 0 we have,

(�) =
∑
oq1

...
∑
oqi−1

∑
oqi+1

...
∑
oqNq

∫
ps

κq(o
q
1, ..., o

q
i−1, o

q
i = 0, oqi+1, ..., o

q
Nq
, bs = 1,ps)

Nq∏
j=1
j 6=i

µ(oqj)

=
∑
j<i

µ(oqj = 1)
∏
k<j

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]
+
∑
j>i

µ(oqj = 1)
∏
k<j
k 6=i

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]

(29)

In summary, the message to the occupancy variables can be written as,

µκq→oqi (o
q
i = 1) =µ(bs = 0) + µ(bs = 1) (30)

·
[∑
j<i

µ(oqj = 1)
∏
k<j

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]
+
∏
k<i

µ(oqk = 0)
[ ∫

ps

ηqi (ps)µ(ps)
]]

µκq→oqi (o
q
i = 0) =µ(bs = 0) + µ(bs = 1) (31)

·
[∑
j<i

µ(oqj = 1)
∏
k<j

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]
+
∑
j>i

µ(oqj = 1)
∏
k<j
k 6=i

µ(oqk = 0)
[ ∫

ps

ηqj (ps)µ(ps)
]]



1.2. Particle Belief Propagation

The integral equations that arise in the message passing equations (Eq. 20+30+31) do not admit closed form solutions. As
discussed in the main submission, we follow a particle based strategy [3] and maintain a sample distribution to approximate
the continuous state space of p. This discretization allows Monte Carlo estimates of the integral equations.

Let {p(1)
s , . . . ,p

(K)
s } denote the set of particles, and let ω(ps) denote the distribution obtained using a kernel density

estimator on {p(1)
s , . . . ,p

(K)
s }. We use this discretization to approximate the following message equations.

Message to the object model presence variables:

µκq→bs(bs) =

∫
ps

∑
oq1

...
∑
oqNq

κq(oq, bs,ps)µ(ps)

Nq∏
i=1

µ(oqi )

≈ 1

K

K∑
k=1

∑
oq1

...
∑
oqNq

κq(oq, bs,ps)
µ(p

(k)
s )

ω(p
(k)
s )

Nq∏
i=1

µ(oqi ) (32)

Now we evaluate the specific cases bs = 0 and bs = 1:

µκq→bs(bs = 0) ≈ 1

K

K∑
k=1

∑
oq1

...
∑
oqNq

κq(oq, bs,ps = 0)
µ(p

(k)
s )

ω(p
(k)
s )

Nq∏
i=1

µ(oqi ) =
1

K

K∑
k=1

µ(p
(k)
s )

ω(p
(k)
s )

(33)

µκq→bs(bs = 1) =

Nq∑
i=1

µ(oqi = 1)
∏
j<i

µ(oqj = 0)

[∫
ps

ηri (ps)µ(ps).

]

≈
Nq∑
i=1

µ(oqi = 1)
∏
j<i

µ(oqj = 0)

[
1

K

K∑
k=1

µ(p
(k)
s )

ω(p
(k)
s )

ηri (p
(k)
s )

]
(34)

Message to the voxel occupancy variables: Similar to the approximation above, the messages to the voxel occupancies

Eq. 30+31 contain the integral
∫
ps
ηqi (ps)µ(ps) which is approximated as follows:

∫
ps

ηqi (ps)µ(ps) ≈
1

K

K∑
k=1

µ(p
(k)
s )

ω(p
(k)
s )

ηri (p
(k)
s ) (35)



1.3. Inference Algorithm Pseudo-code

In the following, we present pseudo-code our inference algorithm. The general algorithm is presented in Algorithm 1.
In an offline stage, we compute the truncated signed distance function (TSDF) of each input object shape model. We

assume the shapes are encoded as meshes. We position the objects in the center of the scene for this computation. This
pre-computation allows evaluating the TSDF of an object in any pose simply by a look-up, which is very fast. Since our
algorithm evaluates the TSDF of each object for thousands of poses during inference, this pre-computation enables tractable
inference.

For the coarse pose sampling (line 2) in the proposal generation algorithm (Algorithm 3), we make use of the ground plane
knowledge in our datasets. In particular, we estimate the ground plane by robustly fitting a plane to the point cloud generated
by structure-from-motion. For purposes of the proposal generation, the pose of each object is modeled as the translation on
the XY plane, rotation around the Z axis (perpendicular to the ground plane) as well as scale. We further assume each shape
model is roughly at the correct scale. For the aerial datasets, we used the geolocation information in the Trimble Warehouse.
For the LIVINGROOM dataset, we manually scaled the models to approximately the right scale.

Algorithm 1 Inference algorithm

1: procedure INFERENCE
2: Shuffle images.
3: Perform an initial round of message passing for the appearance ray potentials as proposed in [5].
4: while not converged do
5: GENERATE POINT CLOUD()
6: for each input shape model do
7: GENERATE PARTICLES()
8: Perform message passing for all raylet potentials.

REFINE OCTREE()
9: Perform a round of message passing for the appearance ray potentials [5].

Algorithm 2 Generate Point Cloud Procedure

1: procedure GENERATE POINT CLOUD
2: for each octree leaf do
3: if probability (belief) of voxel occupancy > 0.3 then
4: Add voxel center to point cloud.

. Sparsification
5: for each point in the point cloud do
6: neighbors← all elements in the point cloud within ε distance.
7: Remove neighbors from the point cloud.

Algorithm 3 Generate Object Pose Proposals (Particles) Procedure

1: procedure GENERATE PARTICLES
2: Coarsely sample the pose space.
3: Evaluate Eq. 9 (in the original doc.) for each proposal and keep the best modes.
4: samples← ∅
5: for each mode do
6: samples←

⋃
Metropolis-Hastings (MH) sampling with a Gaussian proposal centered at the mode. We run MH

for 10K iterations.
7: Sort samples according to their energy (Eq. 9 in the original doc.)
8: Remove similar samples and retain at most K = 64 particles.



Algorithm 4 Octree Refinement Procedure

1: procedure REFINE OCTREE
2: for each octree leaf do . empirically chosen threshold
3: if probability (belief) of voxel occupancy > 0.3 then
4: Subdivide octree leaf into eight children.
5: Initialize the voxel occupancy and appearance messages to uniform.

2. Parameter Experiments
Our probabilistic model contains two main parameters: λb and λp. λb > 0 expresses our belief about the presence of an

input object shape, e.g. a high λb means a low prior belief on the presence of the object. Although this parameter could be
tuned per object shape (according to semantic information available), we use λb = 0.75 for all objects in our experiments.
Empirically we found this setting to work well. The other parameter λp > 0 controls the strength of the likelihood for
the raylet potentials. A small λp yields a smoother likelihood, whereas a high λp results in a peaked likelihood. For all
experiments, we use λp = 8.

In this section, we present quantitative evaluations with varying model parameters λb and λp. We use the DOWNTOWN
dataset for this evaluation and the evaluation protocol explained in the main submission document. In particular, we test the
approach using varying λb and λp values as well as compare against Ulusoy et al. [5] whose formulation is equivalent to
removing the object shape prior from our model and which we refer to as “No prior” in the following. Further, we evaluate
both approaches on a small number (9) and a large number (180) of images.
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(a) 9 images from DOWNTOWN.
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(b) 180 images from DOWNTOWN.

Figure 1: Quantitative evaluation of varying model parameter λb and comparison to the baseline approach with no prior [5].
The evaluation was done using the DOWNTOWN dataset. Higher is better.

For varying λp, we present the quantitative results in Fig. 1. For small number of images (see Fig. 1a), even a small λb
helps improve the reconstruction. We found that for such low λb, the algorithm chooses to enable almost all input shape
models (see Fig 1b in the original submission). Although four of these models are actually not present in the scene, their
presence does not decrease performance substantially. As λb is increased, these false positive detections are removed and
the model enables only the correct 7 models that are present in the scene. This leads to an improvement in performance for
λ > 0.75. Finally, when λp is increased even further, i.e. λb > 1.5 the model begins to disable even the correct models,
i.e. removing the shape prior. As expected, the performance decreases until all models are turned off in which case the
performance is equivalent to the approach with no shape prior [5]. For high number of images, the overall trend is the same
as seen in Fig. 1b.

For varying λb, we present the quantitative results in Fig. 2 and provide visualizations in Fig. 3+4. It can be observed that
for a small number of images (Fig. 3+2a) a small λp leads to artifacts around the object shape, due to the wide likelihood
function. As λp gets larger, i.e. the likelihood gets narrower, the artifacts disappear and the results improve. Note that for
λp > 10 the performance starts to decline slowly since the likelihood function becomes very narrow, which does not allow
precise pose fitting.

A similar trend can be observed for the large number of images (Fig. 4+2b) as well. For this case though, a small λp does
not lead to large artifacts around the object shape, since there’s significant image evidence which overrides these artifacts.



Moreover, the change in accuracy with respect to varying λp is also much smaller compared to the 9 image case.
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(a) 9 images from DOWNTOWN.
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Figure 2: Quantitative evaluation of varying model parameter λp and comparison to the baseline approach with no prior [5].
The evaluation was done using the DOWNTOWN dataset. Higher is better.



(a) Reference image. (b) No prior [5].

(c) Our shape prior with λp = 1. (d) Our shape prior with λp = 5.

(e) Our shape prior with λp = 10. (f) Our shape prior with λp = 20.

Figure 3: (c-f) Visualizations of depth error for varying model parameter λp using 9 images from the DOWNTOWN dataset.
Cooler colors correspond to lower error.



(a) Reference image. (b) No prior [5].

(c) Our shape prior with λp = 1. (d) Our shape prior with λp = 5.

(e) Our shape prior with λp = 10. (f) Our shape prior with λp = 20.

Figure 4: (c-f) Visualizations of depth error for varying model parameter λp using 180 images from the DOWNTOWN dataset.
Cooler colors correspond to lower error.

3. Small number of images – Additional examples
For a small number (∼10) of images, the object shape prior achieves significant improvements over the baseline without

any prior. Fig 5 in the original submission provides an example. We show further visualizations of the depth map errors in
Fig. 5+6+7.

The results are consistent with Fig 5 of the original text. Our approach (Fig. 5d+6d+7d) improves accuracy near building
surfaces but notably also in other parts of the scene with respect to the baseline (Fig. 5b+6b+7b). In particular, our method
exploits the geometric knowledge induced by the prior to refine free-space areas and visibility constraints, leading to higher
accuracy also in regions for which no shape priors are available.

We further demonstrate the power of the proposed joint inference scheme by comparing to a baseline which bootstraps the
reconstruction using [5] and fuses this information with the 3D shape models using one iteration of raylet-to-voxel message
passing. Note that this is similar to the existing approach of fitting a 3D shape model to the reconstruction [1, 2, 4, 6]. As
shown in Fig. 5c+6c+7c, the result is significantly worse compared to our full model Fig. 5d+6d+7d which integrates image
evidence, shape priors and visibility constraints in a principled probabilistic fashion.



(a) Reference image. (b) No prior [5]

(c) Shape prior without joint inference. (d) Proposed shape prior.

Figure 5: Visualizations of depth error for the DOWNTOWN2 dataset. Cooler colors correspond to lower error.

(a) Reference image. (b) No prior [5]

(c) Shape prior without joint inference. (d) Proposed shape prior.

Figure 6: Visualizations of depth error for the DOWNTOWN2 dataset. Cooler colors correspond to lower error.



(a) Reference image. (b) No prior [5]

(c) Shape prior without joint inference. (d) Proposed shape prior.

Figure 7: Visualizations of depth error for the DOWNTOWN2 dataset. Cooler colors correspond to lower error.



(a) Reference image. (b) No prior [5] – using only images

(c) Using only the shape model. (d) Proposed shape prior – combining image and input shape.

Figure 8: Visualizations of depth error for the LIVINGROOM dataset. Cooler colors correspond to lower error.

4. Combining image and shape evidence – Additional examples
Our method is able to combine image evidence and the input shape models to produce detailed reconstructions. This

section presents visualizations that show the benefit of combining image evidence and input shape models.
The scene in Fig. 8 contains a sofa and two pillows on the sofa. Fig. 8b presents the depth errors using images only, i.e. the

method of Ulusoy et al [5]. Input object shape is the sofa as presented in Fig. 6a of the original submission. Fitting this shape
to the 3D reconstruction allows evaluating the reconstruction only using the sofa shape. The depth error is shown in Fig. 8c.
As expected, there are large errors on the pillows which are not part of the sofa shape. Our approach (Fig. 8d) combines the
input shape with image evidence to reconstruct both the sofa and the pillow, improving over both Fig. 8b and Fig. 8c.

An example from the CAPITOL is presented in Fig. 9. Fig. 9b visualizes the errors of the approach using only images [5].
Note that the approach yields errors on the reflective rooftop. The input shape model (see fig 7a in the original submission)
is missing the small tower next to the copula and furthermore, the copula shape is incorrect as can be seen in Fig. 9c. Our
approach (see Fig. 9d) combines the images with the input shape model to improve over both Fig. 9c and Fig. 9b.



(a) Reference image. (b) No prior [5] – using only images

(c) Using only the shape model. (d) Proposed shape prior – combining image and input shape.

Figure 9: Visualizations of depth error for the CAPITOL dataset. Cooler colors correspond to lower error.
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