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Abstract

In this paper, we consider convolutional neural networks
operating on sparse inputs with an application to depth
completion from sparse laser scan data. First, we show that
traditional convolutional networks perform poorly when
applied to sparse data even when the location of miss-
ing data is provided to the network. To overcome this
problem, we propose a simple yet effective sparse convo-
lution layer which explicitly considers the location of miss-
ing data during the convolution operation. We demonstrate
the benefits of the proposed network architecture in syn-
thetic and real experiments with respect to various base-
line approaches. Compared to dense baselines, the pro-
posed sparse convolution network generalizes well to novel
datasets and is invariant to the level of sparsity in the data.
For our evaluation, we derive a novel dataset from the
KITTI benchmark, comprising over 94k depth annotated
RGB images. Our dataset allows for training and evalu-
ating depth completion and depth prediction techniques in
challenging real-world settings and is available online at:
www.cvlibs.net/datasets/kitti.

1. Introduction
Over the last few years, convolutional neural networks

(CNNs) have impacted nearly all areas of computer vi-
sion. In most cases, the input to the CNN is an image or
video, represented by a densely populated matrix or tensor.
By combining convolutional layers with non-linearites and
pooling layers, CNNs are able to learn distributed represen-
tations, extracting low-level features in the first layers, fol-
lowed by successively higher-level features in subsequent
layers. However, when the input to the network is sparse
and irregular (e.g., when only 10% of the pixels carry infor-
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Figure 1: Depth Map Completion. Using sparse, irregu-
lar depth measurements (a) as inputs leads to noisy results
when processed with standard CNNs (c). In contrast, our
method (d) predicts smooth and accurate depth maps by ex-
plicitly considering sparsity during convolution.

mation), it becomes less clear how the convolution opera-
tion should be defined as for each filter location the number
and placement of the inputs varies.

The naı̈ve approach to this problem is to assign a default
value to all non-informative sites [3, 32]. Unfortunately, this
approach leads to suboptimal results as the learned filters
must be invariant to all possible patterns of activation whose
number grows exponentially with the filter size. In this pa-
per, we investigate a simple yet effective solution to this
problem which outperforms the naı̈ve approach and several
other baselines. In particular, we introduce a novel sparse
convolutional layer which weighs the elements of the con-
volution kernel according to the validity of the input pix-
els. Additionally, a second stream stream carries informa-
tion about the validity of pixels to subsequent layers of the
network. This enables our approach to handle large levels
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of sparsity without significantly compromising accuracy.
Importantly, our representation is invariant to the level

of sparsity in the input. As evidenced by our experiments,
training our network at a sparsity level different from the
sparsity level at test time does not significantly deteriorate
the results. This has important applications, e.g., in the con-
text of robotics where algorithms must be robust to changes
in sensor configuration.

One important area of application for the proposed tech-
nique is enhancement of 3D laser scan data, see Fig. 1 for
an illustration. While laser scanners provide valuable in-
formation about depth and reflectance, the resulting point
clouds are typically very sparse, in particular when consid-
ering mobile scanners like the Velodyne HDL-64e1 used in
autonomous driving [13].

Learning models which are able to increase the density
of such scans is thus highly desirable. Unfortunately, pro-
cessing high-resolution data directly in 3D is challenging
without compromising accuracy [44].

An alternative, which we follow in this paper, is to
project the laser scan onto a virtual or real 2D image plane
resulting in a 2.5D representation. Besides modeling depth
prediction as a 2D regression problem, this representation
has the advantage that additional dense information (e.g.,
RGB values from a color camera) can be easily integrated.
However, projected laser scans are typically very sparse and
not guaranteed to align with a regular pixel grid, hence lead-
ing to poor results when processed with standard CNNs. In
contrast, the proposed method produces compelling results
even when the input is sparse and irregularly distributed.

We evaluate our method in ablation studies and against
several state-of-the-art baselines. For our evaluation, we
leverage the synthetic Synthia dataset [45] as well as a
newly proposed real-world dataset with 93k depth anno-
tated images derived from the KITTI raw dataset [12]. Our
dataset is the first to provide a significant number of high-
quality depth annotations for this scenario. Besides attain-
ing higher accuracy in terms of depth and semantics we
demonstrate our method’s ability to generalize across vary-
ing datasets and levels of sparsity. Our code and dataset will
be released upon publication.

2. Related Work
In this section, we discuss methods which operate on

sparse inputs followed by techniques that consider sparsity
within the CNN. We briefly discuss the state-of-the-art in in-
variant representation learning and conclude with a review
on related depth completion techniques.

CNNs with Sparse Inputs: The naı̈ve approach to han-
dling sparse inputs is to either zero the invalid values or to
create an additional input channel for the network which

1http://velodynelidar.com/hdl-64e.html

encodes the validity of each pixel. For detecting objects
in laser scans, Chen et al. [3] and Li et al. [32] project the
3D point clouds from the laser scanner onto a low resolu-
tion image, zero the missing values and run a standard CNN
on this input. For optical flow interpolation and inpainting,
Zweig et al. [59] and Koehler et al. [28] pass an additional
binary validity mask to the network. As evidenced by our
experiments, both strategies are suboptimal compared to ex-
plicitly considering sparsity inside the convolution layers.

Jampani et al. [25] use bilateral filters as layers inside
a CNN and learn the parameters of the corresponding per-
mutohedral convolution kernel. While their layer handles
sparse irregular inputs, it requires guidance information to
construct an effective permutohedral representation and is
computationally expensive for large grids. Compared to
their approach our sparse convolutional networks yield sig-
nificantly better results for depth completion while being as
efficient as regular CNNs.

Graham [15, 16] and Riegler et al. [44] consider sparse
3D inputs. In contrast to our work, their focus is on im-
proving computational efficiency and memory demands by
partitioning the space according to the input. However, reg-
ular convolution layers are employed which suffer from the
same drawbacks as the naı̈ve approach described above.

Sparsity in CNNs: A number of works [17, 33, 41, 54, 10]
also consider sparsity within convolutional neural networks.
Liu et al. [33] show how to reduce the redundancy in the
parameters using a sparse decomposition. Their approach
eliminates more than 90% of parameters, with a drop of ac-
curacy of less than 1% on ILSVRC2012. Wen et al. [54]
propose to regularize the structures (i.e., filters, channels
and layer depth) of deep neural networks to obtain a hard-
ware friendly representation. They report speed-up factors
of 3 to 5 with respect to regular CNNs. While these works
focus on improving efficiency of neural networks by ex-
ploiting sparsity within the network, we consider the prob-
lem of sparse inputs and do not tackle efficiency. A combi-
nation of the two lines of work will be an interesting direc-
tion for future research.

Invariant Representations: Learning models robust to
variations of the input is a long standing goal of computer
vision. The most commonly used solution to ensure ro-
bustness is data augmentation [50, 30, 31]. More recently,
geometric invariances (e.g., rotation, perspective transfor-
mation) have been incorporated directly into the filters of
CNNs [4, 55, 58, 24, 20]. In this paper, we consider the
problem of learning representations invariant to the level of
sparsity in the input. As evidenced by our experiments, our
model performs well even when the sparsity level differs
significantly between the training and the test set. This has
important implications as it allows for replacing the sensor
(e.g., laser scanner) without retraining the network.

http://velodynelidar.com/hdl-64e.html


Depth Completion: We evaluate the effectiveness of our
approach for the task of depth completion, which is an ac-
tive area of research with applications in, e.g., stereo vision,
optical flow and 3D reconstruction from laser scan data.
While some methods operate directly on the depth input,
others require guidance, e.g., from a high resolution image.

Methods for non-guided depth upsampling are closely
related to those for single image superresolution. Early
approaches have leveraged repetitive structures to identify
similar patches across different scales in 2D [14, 36] and 3D
[22]. More recently, deep learning based methods for depth
[43] and image superresolution [56, 7, 8, 27] have surpassed
traditional upsampling techniques in terms of accuracy and
efficiency. However, all aforementioned methods assume
that the data is located on a regular grid and therefore cannot
be applied for completing sparse and irregularly distributed
3D laser scan data as considered in this paper.

Image guided depth completion, on the other hand, uses
the underlying assumption that the target domain shares
commonalities with a high-resolution guidance image, e.g.,
that image edges align with depth discontinuities. A popu-
lar choice for guided depth completion is bilateral filtering
[2, 6, 29, 57, 34]. More advanced approaches are based
on global energy minimization [5, 40, 9, 1, 42], compres-
sive sensing [18], or incorporate semantics for improved
performance [49]. While some of the aforementioned tech-
niques are able to handle sparse inputs, they heavily rely
on the guidance signal. In contrast, here we propose a
learning based solution to the problem, yielding compelling
results even without image guidance. Several approaches
also exploit end-to-end models for guided depth upsam-
pling of regular data [23, 51]. Unlike existing CNN-based
approaches, the proposed convolution layer handles sparse
irregular inputs which occur, e.g., in 3D laser scan data.

3. Method

Let f denote a mapping from input domain X (e.g., in-
tensity, depth) to output domain Y (e.g., depth, semantics),
implemented via a convolutional neural network. In this pa-
per, we consider the case, where the inputs x = {xu,v} ∈
X are only partially observed. Let o = {ou,v} denote corre-
sponding binary variables indicating if an input is observed
(ou,v = 1) or not (ou,v = 0). The output of a standard
convolutional layer in a CNN is computed via

fu,v(x) =

k∑
i,j=−k

xu+i,v+j wi,j + b (1)

with kernel size 2k + 1, weight w and bias b. If the input
comprises multiple features, xu,v and wi,j represent vectors
whose length depends on the number of input channels.

3.1. Naı̈ve Approach

There are two naı̈ve ways to deal with unobserved inputs.
First, invalid inputs xu,v can be encoded using a default
value, e.g., zero. The problem with this approach is that the
network must learn to distinguish between observed inputs
and those being invalid. This is a difficult task as the num-
ber of possible binary patterns grows exponentially with the
kernel size. Alternatively, o can be used as an additional in-
put to the network in the hope that the network learns the
correspondence between the observation mask and the in-
puts. Unfortunately, both variants struggle to learn robust
representations from sparse inputs (see Section 5).

3.2. Sparse Convolutions

To tackle this problem, we propose a convolution opera-
tion which explicitly considers sparsity by evaluating only
observed pixels and normalizing the output appropriately:

fu,v(x,o) =

∑k
i,j=−k ou+i,v+j xu+i,v+j wi,j∑k

i,j=−k ou+i,v+j + ε
+ b (2)

Here, a small ε is added to the denominator to avoid division
by zero at filter locations where none of the input pixels
xu+i,v+j are observed. Note that Equation 2 evaluates to a
(scaled) standard convolution when the input is dense.

The primary motivation behind the proposed sparse con-
volution operation is to render the filter output invariant to
the actual number of observed inputs which varies signif-
icantly between filter locations due to the sparse and ir-
regular input. Note that in contrast to other techniques
[43, 9] which artificially upsample the input (e.g., via inter-
polation), our approach operates directly on the input and
doesn’t introduce additional distractors.

When propagating information to subsequent layers, it is
important to keep track of the visibility state and make it
available to the next layers of the network. In particular, we
like to mark output locations as “unobserved” when none
of the filter’s inputs has been observed. We thus determine
subsequent observation masks in the network fou,v(o) via
the max pooling operation

fou,v(o) = max
i,j=−k,..,k

ou+i,v+j (3)

which evaluates to 1 if at least one observed variable is vis-
ible to the filter and 0 otherwise. In combination with the
output of the convolution this serves as input for the next
sparse convolution layer. The complete architecture of our
network is illustrated in Fig. 2.

3.2.1 Skip Connections

So far we have only considered the convolution operation.
However, state-of-the-art CNNs comprise many different
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Figure 2: Sparse Convolutional Network. (a) The input to our network is a sparse depth map (yellow) and a binary
observation mask (red). It passes through several sparse convolution layers (dashed) with decreasing kernel sizes from 11×11
to 3× 3. (b) Schematic of our sparse convolution operation. Here, � denotes elementwise multiplication, ∗ convolution, 1/x
inversion and “max pool” the max pooling operation. The input feature can be single channel or multi-channel.

types of layers implementing different mathematical opera-
tions. Many of those can be easily generalized to consider
observation masks. Layers that take the outputs of multiple
preceding layers and combine them to a single output, e.g.,
by summation, are used frequently in many different net-
work architectures, e.g., summation in inception modules
[52] or skip connections in ResNets [19] as well as fully
convolutional networks [35]. With additional observation
indicators, the summation of input layers for each channel
c and location (u, v) can be redefined as a normalized sum
over the observed inputs xl

f+(x,o) =

∑n
l=1 o

lxl∑n
l=1 o

l
(4)

where n denotes the number of input layers. If all pixels are
observed, this expression simplifies to the standard opera-
tion

∑n
l=1 x

l.

4. Large-Scale Dataset
Training and evaluating the proposed depth completion

approach requires access to a large annotated dataset. While
evaluation on synthetic datasets [45, 11, 39] is possible, it
remains an open question if the level of realism attained by
such datasets is sufficient to conclude about an algorithm’s
performance in challenging real-world situations.

Unfortunately, all existing real-world datasets with san-
itized depth ground truth are small in scale. The Middle-
bury benchmark [48, 47] provides depth estimates only for
a dozen images and only in controlled laboratory condi-
tions. While the Make3D dataset [46] considers more re-
alistic scenarios, only 500 images of small resolution are
provided. Besides, KITTI [13, 37] provides 400 images of
street scenes with associated depth ground truth. However,
none of these datasets is large enough for end-to-end train-
ing of high-capacity deep neural networks.

For our evaluation, we therefore created a new large-
scale dataset based on the KITTI raw datasets [12] which
comprises over 94k frames with semi-dense depth ground

truth. While the KITTI raw datasets provide depth infor-
mation in the form of raw Velodyne scans, significant man-
ual effort is typically required to remove noise in the laser
scans, artifacts due to occlusions (e.g., due to the different
centers of projection of the laser scanner and the camera) or
reflecting/transparent surfaces in the scene [13]. It is there-
fore highly desirable to automate this task.

In this paper, we propose to remove outliers in the laser
scans by comparing the scanned depth to results from a
stereo reconstruction approach using semi-global matching
(SGM) [21]. While stereo reconstructions typically lead to
depth bleeding artifacts at object boundaries, LiDaR sensors
create streaking artifacts along their direction of motion. To
remove both types of outliers, we enforce consistency be-
tween laser scans and stereo reconstruction and remove all
LiDaR points exhibiting large relative errors. For compar-
ing both measurements, we transform the SGM disparity
maps to depth values using KITTI’s provided calibration
files. We further follow [13] and accumulate 11 laser scans
to increase the density of the generated depth maps. While
the environment is mostly static, some of the KITTI se-
quences comprise dynamic objects, where a laser scan accu-
mulation causes many outliers on dynamic objects. There-
fore, we use the SGM depth maps only once to clean the
accumulated laser scan projection (instead of cleaning each
laser scan separately) in order to remove all outliers in one
step: Occlusions, dynamic motion and measurement arti-
facts. We also observed that most errors due to reflecting
and transparent surfaces can be removed with this simple
technique as SGM and LiDaR rarely agree in those regions.

4.1. Dataset Evaluation

Before using the proposed dataset for evaluation in Sec-
tion 5, we verify its quality. Towards this goal, we ex-
ploit the manually cleaned training set of the KITTI 2015
stereo benchmark as reference data. We compute several
error measures for our generated depth maps using the pro-
vided depth ground truth and compare ourself to the raw
and accumulated LiDaR scans as well as the SGM depth
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Figure 3: Large-scale Dataset. Qualitative results of our depth annotated dataset. From left to right we compare: depth
maps of the manually curated KITTI 2015 dataset, our automatically generated data, raw and accumulated LiDaR scans, and
SGM [21] results. Differences to the KITTI 2015 depth maps are shown in the last row from 0 (green) to 2 (red) meters.

maps in Table 1. The SGM reconstruction is very dense
but also rather inaccurate compared to the raw laser scans.
In terms of mean absolute error (MAE) our dataset reaches
approximately the same accuracy level as the raw LiDaR
scans. However, for the metrics “root mean squared er-
ror (RMSE)”, “KITTI outliers” (disparity error ≥ 3px and
≥ 5%), as well as the δ inlier ratios (maximal mean relative
error of δi = 1.25i for i ∈ {1, 2, 3}), our dataset outper-
forms all baseline results. At the same time, we achieve
four times denser depth maps than raw LiDaR scans. A
qualitative comparison is presented in Fig. 3.

After manually separating the foreground and back-
ground regions on the benchmark depth maps, we evaluate
the errors present on dynamic objects and background in Ta-
ble 2. The result indicates that our proposed accumulation
and clean-up pipeline is able to remove outliers in the raw
LiDaR scans and at the same time significantly increases the
density of the data. Qualitatively, we find only little errors
in our dataset. Most of the remaining errors are located on
dynamic objects or at high distances, cf. Fig. 3 (bottom). In
comparison, SGM results are inaccurate at large distances
and LiDaR scans result in occlusion errors due to the differ-
ent placement of the LiDaR sensor and the virtual camera
used for projection (we use the image plane of the KITTI
reference camera for all our experiments). Note that dy-
namic objects (e.g., car on the left) lead to significant errors
in the accumulated LiDaR scans which are largely reduced
with our technique.

For the experimental evaluation in this work, we split
our dataset into 86k images for training, 3k images for test-
ing and 4k images for validation. For all splits we ensure a
similar distribution over KITTI scene categories (city, road,
residential and campus) while keeping the sequence IDs
unique for each split to avoid overfitting to nearby frames.
To bring forward the tasks of learned depth completion and
single-image depth prediction, we will create a benchmark

Table 1: Evaluation of reference depth maps using the man-
ually curated ground truth depth maps of the KITTI 2015
training set [37]. Note that our dataset is generated fully au-
tomatically and achieves highest accuracy while providing
high density. All metrics are computed in disparity space.

Density MAE RMSE KITTI δi inlier rates
[px] [px] outliers δ1 δ2 δ3

SGM 82.4% 1.07 2.80 4.52 97.00 98.67 99.19
Raw LiDaR 4.0% 0.35 2.62 1.62 98.64 99.00 99.27
Acc. LiDaR 30.2% 1.66 5.80 9.07 93.16 95.88 97.41
Our Dataset 16.1% 0.35 0.84 0.31 99.79 99.92 99.95

Table 2: Evaluation of Table 1 split according to foreground
(car) / background (non-car) regions.

Depth Map MAE RMSE KITTI δi inlier rates
[px] [px] outliers δ1 δ2 δ3

SGM 1.2/1.1 3.0/2.8 5.9/4.4 97.6 /96.9 98.2 /98.7 98.5/99.3
Raw LiDaR 3.7/0.2 10.0/1.9 17.4/0.9 84.3 /99.3 86.1 /99.6 88.6/99.7
Acc. LiDaR 7.7/1.1 12.0/4.8 59.7/4.3 55.7 /96.7 73.7 /98.0 83.0/98.8
Our Dataset 0.9/0.3 2.2/0.8 3.0/0.2 98.6/99.8 99.0/99.9 99.3/99.9

based on our data and an additional set of 1.5k held out test
images. The benchmark paired with an online evaluation
server will be published on the KITTI Vision homepage.

5. Experiments
5.1. Depth Upsampling

We investigate the task of depth map completion to eval-
uate the effect of sparse input data for our Sparse Convolu-
tion Modules. For this task, a sparse, irregularly populated
depth map from a projected laser scan is completed to full
image resolution without any RGB guidance.

We first evaluate the performance of our method with
varying degrees of sparsity in the input. Towards this goal,
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(a) ConvNet (b) ConvNet + mask (c) SparseConvNet

Figure 4: Comparison of three different networks on the Synthia dataset [45] while varying the sparsity level of the training
split (left) and the sparsity of the test split (top). From left-to-right: ConvNet, ConvNet with concatenated validity mask and
the proposed SparseConvNet. All numbers represent mean average errors (MAE).

(a) Input (visually enhanced) (b) ConvNet (c) ConvNet + mask (d) SparseConvNet (ours) (e) Groundtruth

Figure 5: Qualitative comparison of our sparse convolutional network to standard ConvNets on Synthia [45], trained and
evaluated at 5% sparsity. (b) Standard ConvNets suffer from large invalid regions in the input leading to noisy results. (c)
Using a valid mask as input reduces noise slightly. (d) In contrast, our approach predicts smooth and accurate outputs.

(a) ConvNet (b) ConvNet + mask (c) SparseConvNet

Figure 6: Network predictions for scenes in Figs. 1 and 5,
with all networks trained at 5% sparsity and evaluated at
20% sparsity. While ConvNets with and without visibility
mask produce substantially worse results, the results of the
proposed sparsity invariant CNN do not degrade.

we leverage the Synthia dataset of Ros et al. [45] which
gives us full control over the sparsity level. To artificially
adjust the sparsity of the input, we apply random dropout to
the provided dense depth maps during training. The proba-
bility of a pixel to be dropped is set to different levels rang-
ing from 0% to 95%.

We train three different variants of a Fully Convolutional
Network (FCN) with five convolutional layers of kernel size
11, 7, 5, 3, and 3. Each convolution has a stride of one, 16
output channels, and is followed by a ReLU as nonlinear ac-
tivation function. We use the Adam solver with momentum

terms of 0.9 and 0.999 together with a fixed learning rate
of 1 · 10−3 and weight decay of 5 · 10−4. The three vari-
ants we consider are: i) plain convolutions with only sparse
depth as input, ii) plain convolutions with sparse depth and
concatenated valid pixel map as input, and iii) the proposed
Sparse Convolution Layers, cf. Fig. 2. We train separate
networks for various levels of sparsity using the Synthia
Summer sequences, whereas evaluation is performed on the
Synthia Cityscapes dataset. To compare the performance of
the different approaches we first evaluate them on the spar-
sity level they have been trained on. To test the generaliza-
tion ability of the different models we further apply them to
sparsity levels which they have not seen during training.

Fig. 4 shows our results. We observe that plain convo-
lutions perform poorly with very sparse inputs as all pixels
(valid and invalid) are considered in the convolution. This
introduces a large degree of randomness during training and
testing and results in strong variations in performance. Con-
volutions on sparse depth maps with the concatenated valid
mask perform slightly better than using only the depth in-
put. However, in contrast to our Sparse Convolutions they
perform poorly, especially on very sparse input.

Invariance to the level of sparsity is an important prop-
erty for depth completion methods as it increases robust-
ness towards random perturbations in the data. Besides, this
property allows to generalize to different depth sensors such



Table 3: Performance comparison (MAE) of different
methods trained on different sparsity levels on Synthia and
evaluated on our newly proposed KITTI depth dataset.

Sparsity at train: 5% 10% 20% 30% 40% 50% 60% 70%

ConvNet 16.03 13.48 10.97 8.437 10.02 9.73 9.57 9.90
ConvNet+mask 16.18 16.44 16.54 16.16 15.64 15.27 14.62 14.11
SparseConvNet 0.722 0.723 0.732 0.734 0.733 0.731 0.731 0.730

as structured light sensors, PMD cameras or LiDaR scan-
ners. As evidenced by Fig. 4, all methods perform reason-
ably well at the performance level they have been trained
on (diagonal entries) with the sparse convolution variant
performing best. However, both baselines fail completely
in predicting depth estimates on more sparse and, surpris-
ingly, also on more dense inputs. In contrast, our proposed
Sparse Convolution Network performs equally well across
all levels of sparsity no matter which sparsity level has been
observed during training. This highlights the generalization
ability of our approach. Fig. 5 shows a qualitative compari-
son of the generated dense depth maps for the two baselines
and our approach using 5% sparsity during training and test-
ing. Note that the input in Fig. 5 (a) has been visually
enhanced using dilation to improve readability. It thus ap-
pears more dense than the actual input to the networks. For
the same examples, Fig. 6 shows the drastic drop in perfor-
mance when training standard CNNs on 5% and evaluating
on 20%, while our approach performs equally well. While
ConvNets with input masks lead to noisy results, standard
ConvNets even result in a systematic bias as they are un-
aware of the level of sparsity in the input.

5.1.1 Synthetic-to-Real Domain Adaptation

To evaluate the domain adaption capabilities of our method,
we conduct an experiment where we train on the Synthia
dataset and evaluate on our proposed KITTI validation set.
Table 3 shows the performance of our network (SparseC-
onv) as well as the two regular CNN baselines using the
same number of parameters. Our experiments demonstrate
that sparse convolutions perform as well on KITTI as on
Synthia, while the dense baselines are not able to adapt to
the new input modality and fail completely. We show qual-
itative results of this experiment in Fig. 7.

5.2. Comparison to Guided Upsampling

As discussed in the related work section, several ap-
proaches in the literature leverage a high resolution image to
guide the depth map completion task which significantly fa-
cilitates the problem. Dense color information can be very
useful to control the interpolation of sparse depth points,
e.g., to distinguish between object boundaries and smooth
surfaces. However, relying on camera information in multi-

Table 4: Performance comparison of different methods on
our KITTI depth dataset. Our method performs compara-
ble to state-of-the-art methods that incorporate RGB (top),
while outperforming all depth-only variants (bottom).

Method RMSE [m] MAE [m]
val test val test

Bilateral NN [25] 4.19 5.233 1.09 1.09
SGDU [49] 2.5 2.02 0.72 0.57
Fast Bilateral Solver [1] 1.98 1.75 0.65 0.52
TGVL [9] 4.85 4.08 0.59 0.46

Closest Depth Pooling 2.77 2.30 0.94 0.68
Nadaraya Watson[38, 53] 2.99 2.86 0.74 0.66
ConvNet 2.97 2.69 0.78 0.62
ConvNet + mask 2.24 1.94 0.79 0.62
SparseConvNet (ours) 2.01 1.81 0.68 0.54

modal sensor setups, such as used in e.g. autonomous cars,
is not always recommended. Bad weather and night scenes
can diminish the benefit of image data or even worsen the
result. Therefore, we target an approach which leverages
depth as the only input in this paper.

In this section, we show that despite not relying on guid-
ance information, our approach performs on par with the
state-of-the-art in guided depth completion and even out-
performs several methods which use image guidance. Ta-
ble 4 (top) shows a comparison of several state-of-the-art
methods for guided filtering. In particular, we evaluated
the methods of Barron et al. [1], Schneider et al. [49], Fer-
stl et al. [9], and Jampani et al. [25] which all require a
non-sparse RGB image as guidance. For a fair comparison
we added the same amount of convolutional layers as we
use in our sparse convolutional network for Jampani et al.
[26]. For the other baseline methods we optimized the hy-
per parameters via grid search on the validation split.

In addition, we compare our method to several depth-
only algorithms in Table 4 (bottom). We first evaluate a
simple pooling approach that takes the closest (distance to
sensor) valid point to fill in unseen regions within a given
window. Second, we apply the Nadaraya-Watson regres-
sor [38, 53] using a Gaussian kernel on the sparse depth in-
put. We optimized the hyperparameters of both approaches
on the training data. We also compare our method to high-
capacity baselines. In particular, we consider a standard
ConvNet with and without visibility mask as additional fea-
ture channel.

It is notable that our approach performs comparable to
state-of-the-art guided depth completion techniques despite
not using any RGB information. In particular, it performs
second in terms of RMSE on both validation and test split
which we attribute to the Euclidean loss used for training.



(a) ConvNet (b) ConvNet + mask (c) SparseConvNet

Figure 7: Qualitative comparison of the best network variants from Table 3 trained on synthetic Synthia [45] and evaluated
on the proposed real-world KITTI depth dataset. While our SparseConvNet adapts well to the novel domain, standard
convolutional neural networks fail completely in recovering sensible depth information.
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Figure 8: Quantitative results in MAE (meters) on our depth
annotated KITTI subset for varying levels of input density.
We compare our unguided approach to several baselines [1,
49, 9, 25] which leverage RGB guidance for upsampling
and two standard convolutional neural networks with and
without valid mask concatenated to the input.

5.2.1 Sparsity Evaluation on KITTI

In the KITTI dataset, a 64-layer laser scanner with a rota-
tional frequency of 10 Hz was used to acquire ground truth
for various tasks such as stereo vision and flow estimation.
If projected to the image, the depth measurements cover ap-
proximately 5 % of the image. For industrial applications
such as autonomous driving, often scanners with only 32 or
16 layers and higher frequencies are used. This results in
very sparse depth projections. To analyze the impact of ex-
tremely sparse information, we evaluate the Sparse Convo-
lutional Network and several baselines with respect to dif-
ferent levels of sparsity on our newly annotated KITTI sub-
set. In particular, we train all networks using all laser mea-
surements and evaluate the performance when varying the
density of the input using random dropout. Our results in
Fig. 8 demonstrate the generalization ability of our network
for different levels of sparsity. Regular convolutions as well
as several state-of-the-art approaches perform poorly in the
presence of sparse inputs. Note that both Barron et al. [1]
and Ferstl et al. [9] perform slightly better than our method
on very sparse data but require a dense high-resolution RGB
image for guidance.

Table 5: IoU performance of different network variants on
the Synthia Cityscapes subset after training on all Synthia
sequences (mean over all 15 known classes).

Network IoU [%]

VGG - Depth Only 6.4
VGG - Depth + Mask 4.9
VGG - Sparse Convolutions 31.1

5.3. Semantic Labeling from Sparse Depth

To demonstrate an output modality different from depth,
we also trained the well-known VGG16 architecture [35]
for the task of semantic labeling from sparse depth in-
puts. We modify VGG16 by replacing the regular convolu-
tions using our sparse convolution modules. Additionally,
we apply the weighted skip connections presented in Sec-
tion 3.2.1 to generate high-resolution predictions from the
small, spatially downsampled FC7 layer, while incorporat-
ing visibility masks of the respective network stages.

Table 5 shows the mean performance after training on all
Synthia “Sequence” frames (left camera to all directions,
summer only) and evaluating on the Synthia “Cityscapes”
subset. Again, we observe that the proposed sparse convo-
lution module outperforms the two baselines. The compara-
bly small numbers can be explained by the different nature
of the validation set which contains more people and also
very different viewpoints (bird’s eye vs. street-level).

6. Conclusion

We have proposed a novel sparse convolution module
for handling sparse inputs which can replace regular convo-
lution modules and results in improved performance while
generalizing well to novel domains or sparsity levels. Fur-
thermore, we provide a newly annotated dataset with 93k
depth annotated images for training and evaluating depth
prediction and depth completion techniques.

In future work, we plan to combine the proposed sparse
convolution networks with network compression techniques
to handle sparse inputs while at the same time being more
efficient. We further plan to investigate the effect of sparse
irregular inputs for 3D CNNs [44].
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