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Abstract We address the problem of 3D shape com-

pletion from sparse and noisy point clouds, a fundamen-

tal problem in computer vision and robotics. Recent ap-

proaches are either data-driven or learning-based: Data-

driven approaches rely on a shape model whose param-

eters are optimized to fit the observations; Learning-

based approaches, in contrast, avoid the expensive op-

timization step by learning to directly predict com-

plete shapes from incomplete observations in a fully-

supervised setting. However, full supervision is often

not available in practice. In this work, we propose a

weakly-supervised learning-based approach to 3D shape

completion which neither requires slow optimization nor

direct supervision. While we also learn a shape prior on

synthetic data, we amortize, i.e., learn, maximum like-

lihood fitting using deep neural networks resulting in
efficient shape completion without sacrificing accuracy.

On synthetic benchmarks based on ShapeNet (Chang

et al, 2015) and ModelNet (Wu et al, 2015) as well as

on real robotics data from KITTI (Geiger et al, 2012)

and Kinect (Yang et al, 2018), we demonstrate that

the proposed amortized maximum likelihood approach

is able to compete with the fully supervised baseline of

Dai et al (2017) and outperforms the data-driven ap-

proach of Engelmann et al (2016), while requiring less

supervision and being significantly faster.
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(a) ShapeNet (Synthetic) (b) KITTI (Real)
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Fig. 1: 3D Shape Completion. Results for cars on

ShapeNet (Chang et al, 2015) and KITTI (Geiger et al,

2012) and for chairs and tables on ModelNet (Wu

et al, 2015) and Kinect (Yang et al, 2018). Learning

shape completion on real-world data is challenging due

to sparse and noisy observations and missing ground
truth. Occupancy grids (bottom) or meshes from signed

distance functions (SDFs, top) at various resolutions in

beige and point cloud observations in red.
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1 Introduction

3D shape perception is a long-standing and fundamen-

tal problem both in human and computer vision (Pi-

zlo, 2007, 2010; Furukawa and Hernandez, 2013) with

many applications to robotics. A large body of work

focuses on 3D reconstruction, e.g., reconstructing ob-

jects or scenes from one or multiple views, which is an

inherently ill-posed inverse problem where many con-

figurations of shape, color, texture and lighting may
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Maximum Likelihood Loss

Fig. 2: Amortized Maximum Likelihood (AML) for 3D Shape Completion on KITTI. (1) We train a

denoising variational auto-encoder (DVAE) (Kingma and Welling, 2014; Im et al, 2017) as shape prior on ShapeNet

using occupancy grids and signed distance functions (SDFs) to represent shapes. (2) The fixed generative model,

i.e., decoder, then allows to learn shape completion using an unsupervised maximum likelihood (ML) loss by

training a new recognition model, i.e., encoder. The retained generative model constraints the space of possible

shapes while the ML loss aligns the predicted shape with the observations.

result in the very same image. While the primary goal

of human vision is to understand how the human visual

system accomplishes such tasks, research in computer

vision and robotics is focused on the task of devising

3D reconstruction systems. Generally, work by Pizlo

(2010) suggests that the constraints and priors used for

3D perception are innate and not learned. Similarly, in

computer vision, cues and priors are commonly built

into 3D reconstruction pipelines through explicit as-

sumptions. Recently, however – leveraging the success

of deep learning – researchers started to learn shape

models from large collections of data, as for example

ShapeNet (Chang et al, 2015). Predominantly genera-

tive models have been used to learn how to generate,

manipulate and reason about 3D shapes (Girdhar et al,

2016; Brock et al, 2016; Sharma et al, 2016; Wu et al,

2016b, 2015).

In this paper, we focus on the specific problem of in-

ferring and completing 3D shapes based on sparse and

noisy 3D point observations as illustrated in Fig. 1. This

problem occurs when only a single view of an individ-

ual object is provided or large parts of the object are

occluded as common in robotic applications. For exam-

ple, autonomous vehicles are commonly equipped with

LiDAR scanners providing a 360 degree point cloud of

the surrounding environment in real-time. This point

cloud is inherently incomplete: back and bottom of ob-

jects are typically occluded and – depending on mate-

rial properties – the observations are sparse and noisy,

see Fig. 1 (top-right) for an illustration. Similarly, in-

door robots are generally equipped with low-cost, real-

time RGB-D sensors providing noisy point clouds of

the observed scene. In order to make informed decisions

(e.g., for path planning and navigation), it is of utmost

importance to efficiently establish a representation of

the environment which is as complete as possible.

Existing approaches to 3D shape completion can be

categorized into data-driven and learning-based meth-

ods. The former usually rely on learned shape priors

and formulate shape completion as an optimization prob-

lem over the corresponding (lower-dimensional) latent

space (Rock et al, 2015; Haene et al, 2014; Li et al,

2015; Engelmann et al, 2016; Nan et al, 2012; Bao et al,

2013; Dame et al, 2013; Nguyen et al, 2016). These ap-

proaches have demonstrated good performance on real

data, e.g., on KITTI (Geiger et al, 2012), but are often

slow in practice.

Learning-based approaches, in contrast, assume a

fully supervised setting in order to directly learn shape

completion on synthetic data (Riegler et al, 2017a; Smith

and Meger, 2017; Dai et al, 2017; Sharma et al, 2016;

Fan et al, 2017; Rezende et al, 2016; Yang et al, 2018;

Wang et al, 2017; Varley et al, 2017; Han et al, 2017).

They offer advantages in terms of efficiency as predic-

tion can be performed in a single forward pass, however,

require full supervision during training. Unfortunately,

even multiple, aggregated observations (e.g., from mul-

tiple views) will not be fully complete due to occlusion,

sparse sampling of views and noise, see Fig. 14 (right

column) for an example.

In this paper, we propose an amortized maximum

likelihood approach for 3D shape completion (cf. Fig. 2)

avoiding the slow optimization problem of data-driven

approaches and the required supervision of learning-
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based approaches. Specifically, we first learn a shape

prior on synthetic shapes using a (denoising) variational

auto-encoder (Im et al, 2017; Kingma and Welling, 2014).

Subsequently, 3D shape completion can be formulated

as a maximum likelihood problem. However, instead

of maximizing the likelihood independently for distinct

observations, we follow the idea of amortized inference

(Gershman and Goodman, 2014) and learn to predict

the maximum likelihood solutions directly. Towards this

goal, we train a new encoder which embeds the ob-

servations in the same latent space using an unsuper-

vised maximum likelihood loss. This allows us to learn

3D shape completion in challenging real-world situa-

tions, e.g., on KITTI, and obtain sub-voxel accurate

results using signed distance functions at resolutions

up to 643 voxels. For experimental evaluation, we in-

troduce two novel, synthetic shape completion bench-

marks based on ShapeNet and ModelNet (Wu et al,

2015). We compare our approach to the data-driven

approach by Engelmann et al (2016), a baseline in-

spired by Gupta et al (2015) and the fully-supervised

learning-based approach by Dai et al (2017); we addi-

tionally present experiments on real data from KITTI

and Kinect (Yang et al, 2018). Experiments show that

our approach outperforms data-driven techniques and

rivals learning-based techniques while significantly re-

ducing inference time and using only a fraction of su-

pervision.

A preliminary version of this work has been pub-

lished at CVPR’18 (Stutz and Geiger, 2018). However,

we improved the proposed shape completion method,

the constructed datasets and present more extensive

experiments. In particular, we extended our weakly-

supervised amortized maximum likelihood approach to

enforce more variety and increase visual quality signif-

icantly. On ShapeNet and ModelNet, we use volumet-

ric fusion to obtain more detailed, watertight meshes

and manually selected – per object-category – 220 high-

quality models to synthesize challenging observations.

We additionally increased the spatial resolution and

consider two additional baselines (Dai et al, 2017; Gupta

et al, 2015). Our code and datasets will be made pub-

licly available1.

The paper is structured as follows: We discuss re-

lated work in Section 2. In Section 3 we introduce the

weakly-supervised shape completion problem and de-

scribe the proposed amortized maximum likelihood ap-

proach. Subsequently, we introduce our synthetic shape

completion benchmarks and discuss the data prepara-

tion for KITTI and Kinect in Section 4.1. Next, we dis-

cuss evaluation in Section 4.2, our training procedure in

1 https://avg.is.tuebingen.mpg.de/research_

projects/3d-shape-completion.

Section 4.3, and the evaluated baselines in Section 4.4.

Finally, we present experimental results in Section 4.5

and conclude in Section 5.

2 Related Work

2.1 3D Shape Completion and Single-View 3D

Reconstruction

In general, 3D shape completion is a special case of

single-view 3D reconstruction where we assume point

cloud observations to be available, e.g. from laser-based

sensors as on KITTI (Geiger et al, 2012).

3D Shape Completion: Following Sung et al (2015),

classical shape completion approaches can roughly be

categorized into symmetry-based methods and data-

driven methods. The former leverage observed symme-

try to complete shapes; representative works include

(Thrun and Wegbreit, 2005; Pauly et al, 2008; Zheng

et al, 2010; Kroemer et al, 2012; Law and Aliaga, 2011).

Data-driven approaches, in contrast, as pioneered by

Pauly et al (2005), pose shape completion as retrieval

and alignment problem. While Pauly et al (2005) allow

shape deformations, Gupta et al (2015), use the itera-

tive closest point (ICP) algorithm (Besl and McKay,

1992) for fitting rigid shapes. Subsequent work usu-

ally avoids explicit shape retrieval by learning a latent

space of shapes (Rock et al, 2015; Haene et al, 2014;

Li et al, 2015; Engelmann et al, 2016; Nan et al, 2012;

Bao et al, 2013; Dame et al, 2013; Nguyen et al, 2016).

Alignment is then formulated as optimization problem

over the learned, low-dimensional latent space. For ex-

ample, Bao et al (2013) parameterize the shape prior

through anchor points with respect to a mean shape,

while Engelmann et al (2016) and Dame et al (2013) di-

rectly learn the latent space using principal component

analysis and Gaussian process latent variable models

(Prisacariu and Reid, 2011), respectively. In these cases,

shapes are usually represented by signed distance func-

tions (SDFs). Nguyen et al (2016) use 3DShapeNets

(Wu et al, 2015), a deep belief network trained on oc-

cupancy grids, as shape prior. In general, data-driven

approaches are applicable to real data assuming knowl-

edge about the object category. However, inference in-

volves a possibly complex optimization problem, which

we avoid by amortizing, i.e., learning, the inference pro-

cedure. Additionally, we also consider multiple object

categories.

With the recent success of deep learning, several

learning-based approaches have been proposed (Firman

et al, 2016; Smith and Meger, 2017; Dai et al, 2017;

Sharma et al, 2016; Rezende et al, 2016; Fan et al, 2017;



4 David Stutz, Andreas Geiger

Riegler et al, 2017a; Han et al, 2017; Yang et al, 2017,

2018). Strictly speaking, these are data-driven, as well;

however, shape retrieval and fitting are both avoided by

directly learning shape completion end-to-end, under

full supervision – usually on synthetic data from Shape-

Net (Chang et al, 2015) or ModelNet (Wu et al, 2015).

Riegler et al (2017a) additionally leverage octrees to

predict higher-resolution shapes; most other approaches

use low resolution occupancy grids (e.g., 323 voxels). In-

stead, Han et al (2017) use a patch-based approach to

obtain high-resolution results. In practice, however, full

supervision is often not available; thus, existing models

are primarily evaluated on synthetic datasets. In order

to learn shape completion without full supervision, we

utilize a learned shape prior to constrain the space of

possible shapes. In addition, we use SDFs to obtain sub-

voxel accuracy at higher resolutions (up to 48×108×48

or 643 voxels) without using patch-based refinement or

octrees. We also consider significantly sparser observa-

tions.

Single-View 3D Reconstruction: Single-view 3D

reconstruction has received considerable attention over

the last years; we refer to (Oswald et al, 2013) for an

overview and focus on recent deep learning approaches,

instead. Following Tulsiani et al (2018), these can be

categorized by the level of supervision. For example,

(Girdhar et al, 2016; Choy et al, 2016; Wu et al, 2016b;

Häne et al, 2017) require full supervision, i.e., pairs of

images and ground truth 3D shapes. These are gener-

ally derived synthetically. More recent work (Yan et al,

2016; Tulsiani et al, 2017, 2018; Kato et al, 2017; Lin

et al, 2017; Fan et al, 2017; Tatarchenko et al, 2017; Wu

et al, 2016a), in contrast, self-supervise the problem by

enforcing consistency across multiple input views. Tul-

siani et al (2018), for example, use a differentiable ray

consistency loss; and in (Yan et al, 2016; Kato et al,

2017; Lin et al, 2017), differentiable rendering allows

to define reconstruction losses on the images directly.

While most of these approaches utilize occupancy grids,

Fan et al (2017) and Lin et al (2017) predict point

clouds instead. Tatarchenko et al (2017) use octrees to

predict higher-resolution shapes. Instead of employing

multiple views as weak supervision, however, we do not

assume any additional views in our approach. Instead,

knowledge about the object category is sufficient. In

this context, concurrent work by Gwak et al (2017) is

more related to ours: a set of reference shapes implicitly

defines a prior of shapes which is enforced using an ad-

versarial loss. In contrast, we use a denoising variational

auto-encoder (DVAE) (Kingma and Welling, 2014; Im

et al, 2017) to explicitly learn a prior for 3D shapes.

2.2 Shape Models

Shape models and priors found application in a wide va-

riety of different tasks. In 3D reconstruction, in general,

shape priors are commonly used to resolve ambiguities

or specularities (Dame et al, 2013; Gney and Geiger,

2015; Kar et al, 2015). Furthermore, pose estimation

(Sandhu et al, 2011, 2009; Prisacariu et al, 2013; Aubry

et al, 2014), tracking (Ma and Sibley, 2014; Leotta and

Mundy, 2009), segmentation (Sandhu et al, 2011, 2009;

Prisacariu et al, 2013), object detection (Zia et al, 2013,

2014; Pepik et al, 2015; Song and Xiao, 2014; Zheng

et al, 2015) or recognition (Lin et al, 2014) – to name

just a few – have been shown to benefit from shape mod-

els. While most of these works use hand-crafted shape

models, for example based on anchor points or part

annotations (Zia et al, 2013, 2014; Pepik et al, 2015;

Lin et al, 2014), recent work (Liu et al, 2017; Sharma

et al, 2016; Girdhar et al, 2016; Wu et al, 2016b, 2015;

Smith and Meger, 2017; Nash and Williams, 2017; Liu

et al, 2017) has shown that generative models such as

VAEs (Kingma and Welling, 2014) or generative adver-

sarial networks (GANs) (Goodfellow et al, 2014) allow

to efficiently generate, manipulate and reason about 3D

shapes. We use these more expressive models to obtain

high-quality shape priors for various object categories.

2.3 Amortized Inference

To the best of our knowledge, the notion of amortized

inference was introduced by Gershman and Goodman

(2014) and picked up repeatedly in different contexts

(Rezende and Mohamed, 2015; Wang et al, 2016; Ritchie

et al, 2016). Generally, it describes the idea of learning

to infer (or learning to sample). We refer to (Wang

et al, 2016) for a broader discussion of related work.

In our context, a VAE can be seen as specific example

of learned variational inference (Kingma and Welling,

2014; Rezende and Mohamed, 2015). Besides using a

VAE as shape prior, we also amortize the maximum

likelihood problem corresponding to our 3D shape com-

pletion task.

3 Method

In the following, we introduce the mathematical for-

mulation of the weakly-supervised 3D shape comple-

tion problem. Subsequently, we briefly discuss denois-

ing variational auto-encoders (DVAEs) (Kingma and

Welling, 2014; Im et al, 2017) which we use to learn

a strong shape prior that embeds a set of reference



Learning 3D Shape Completion under Weak Supervision 5

(a) Reference Shapes Y

(b) Observation xn (c) Ground Truth y∗n

Fig. 3: Weakly-Supervised Shape Completion.

Given reference shapes Y and incomplete observations

X , we want to learn a mapping xn 7→ ỹ(xn) such that

ỹ(xn) matches the unknown ground truth shape y∗n as

close as possible. The observations xn are split into free

space (i.e., xn,i = 0, right) and point observations (i.e.,

xn,i = 1, left). Shapes are shown in beige and observa-

tions in red.

shapes in a low-dimensional latent space. Then, we for-

mally derive our proposed amortized maximum likeli-

hood (AML) approach. Here, we use maximum likeli-

hood to learn an embedding of the observations within

the same latent space – thereby allowing to perform

shape completion. The overall approach is also illus-

trated in Fig. 2.

3.1 Problem Formulation

In a supervised setting, the task of 3D shape comple-

tion can be described as follows: Given a set of incom-

plete observations X = {xn}Nn=1 ⊆ RR and correspond-

ing ground truth shapes Y∗ = {y∗n}Nn=1 ⊆ RR, learn

a mapping xn 7→ y∗n that is able to generalize to pre-

viously unseen observations and possibly across object

categories. We assume RR to be a suitable representa-

tion of observations and shapes; in practice, we resort to

occupancy grids and signed distance functions (SDFs)

defined on regular grids, i.e., xn, y
∗
n ∈ RH×W×D ' RR.

Specifically, occupancy grids indicate occupied space,

i.e., voxel y∗n,i = 1 if and only if the voxel lies on or in-

side the shape’s surface. To represent shapes with sub-

voxel accuracy, SDFs hold the distance of each voxel’s

center to the surface; for voxels inside the shape’s sur-

face, we use negative sign. Finally, for the (incomplete)

observations, we write xn ∈ {0, 1,⊥}R to make miss-

ing information explicit; in particular, xn,i = ⊥ corre-

sponds to unobserved voxels, while xn,i = 1 and xn,i =

0 correspond to occupied and unoccupied voxels, re-

spectively.

On real data, e.g., KITTI (Geiger et al, 2012), super-

vised learning is often not possible as obtaining ground

truth annotations is labor intensive, cf. (Menze and

Geiger, 2015; Xie et al, 2016). Therefore, we target a

weakly-supervised variant of the problem instead: Given

observations X and reference shapes Y = {ym}Mm=1 ⊆
RR both of the same, known object category, learn a

mapping xn 7→ ỹ(xn) such that the predicted shape

ỹ(xn) matches the unknown ground truth shape y∗n as

close as possible – or, in practice, the sparse observation

xn while being plausible considering the set of reference

shapes, cf. Fig. 3. Here, supervision is provided in the

form of the known object category. Alternatively, the

reference shapes Y can also include multiple object cat-

egories resulting in an even weaker notion of supervision

as the correspondence between observations and object

categories is unknown. Except for the object categories,

however, the set of reference shapes Y, and its size M ,

is completely independent of the set of observations X ,

and its size N , as also highlighted in Fig. 2. On real

data, e.g., KITTI, we additionally assume the object

locations to be given in the form of 3D bounding boxes

in order to extract the corresponding observations X .

In practice, the reference shapes Y are derived from wa-

tertight, triangular meshes, e.g., from ShapeNet (Chang

et al, 2015) or ModelNet (Wu et al, 2015).

3.2 Shape Prior

We approach the weakly-supervised shape completion

problem by first learning a shape prior using a denois-

ing variational auto-encoder (DVAE). Later, this prior

constrains shape inference (see Section 3.3) to predict

reasonable shapes. In the following, we briefly discuss

the standard variational auto-encoder (VAE), as intro-

duced by Kingma and Welling (2014), as well as its

denoising extension, as proposed by Im et al (2017).

Variational Auto-Encoder (VAE): We propose to

use the provided reference shapes Y to learn a genera-

tive model of possible 3D shapes over a low-dimensional

latent space Z = RQ, i.e., Q� R. In the framework of

VAEs, the joint distribution p(y, z) of shapes y and la-

tent codes z decomposes into p(y|z)p(z) with p(z) being

a unit Gaussian, i.e., N (z; 0, IQ) and IQ ∈ RR×R being

the identity matrix. This decomposition allows to sam-

ple z ∼ p(z) and y ∼ p(y|z) to generate random shapes.

For training, however, we additionally need to approx-

imate the posterior p(z|y). To this end, the so-called

recognition model q(z|y) ≈ p(z|y) takes the form

q(z|y) = N (z;µ(y),diag(σ2(y))) (1)
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where µ(y), σ2(y) ∈ RQ are predicted using the en-

coder neural network. The generative model p(y|z) de-

composes over voxels yi; the corresponding probabilities

p(yi|z) are represented using Bernoulli distributions for

occupancy grids or Gaussian distributions for SDFs:

p(yi|z) = Ber(yi; θi(z)) or

p(yi|z) = N (yi;µi(z), σ
2).

(2)

In both cases, the parameters, i.e., θi(z) or µi(z), are

predicted using the decoder neural network. For SDFs,

we explicitly set σ2 to be constant (see Section 4.3).

Then, σ2 merely scales the corresponding loss, thereby

implicitly defining the importance of accurate SDFs rel-

ative to occupancy grids as described below.

In the framework of variational inference, the pa-

rameters of the encoder and the decoder neural net-

works are found by maximizing the likelihood p(y). In

practice, the likelihood is usually intractable and the ev-

idence lower bound is maximized instead, see (Kingma

and Welling, 2014; Blei et al, 2016). This results in the

following loss to be minimized:

LVAE(w) = −Eq(z|y)[ln p(y|z)] + KL(q(z|y)|p(z)). (3)

Here, w are the weights of the encoder and decoder hid-

den in the recognition model q(z|y) and the generative

model p(y|z), respectively. The Kullback-Leibler diver-

gence KL can be computed analytically as described in

the appendix of (Kingma and Welling, 2014). The neg-

ative log-likelihood − ln p(y|z) corresponds to a binary

cross-entropy error for occupancy grids and a scaled

sum-of-squared error for SDFs. The loss LVAE is min-

imized using stochastic gradient descent (SGD) by ap-

proximating the expectation using samples:

−Eq(z|y)[ln p(y|z)] ≈ −
L∑

l=1

ln p(y|z(l)) (4)

The required samples z(l) ∼ q(z|y) are computed using

the so-called reparameterization trick,

z(l) = µ(y) + ε(l)σ(y) with ε(l) ∼ N (ε; 0, IQ), (5)

in order to make LVAE, specifically the sampling pro-

cess, differentiable. In practice, we found L = 1 sam-

ples to be sufficient – which conforms with results by

Kingma and Welling (2014). At test time, the sampling

process z ∼ q(z|y) is replaced by the predicted mean

µ(y). Overall, the standard VAE allows us to embed

the reference shapes in a low-dimensional latent space.

In practice, however, the learned prior might still in-

clude unreasonable shapes.

Denoising VAE (DVAE): In order to avoid inappro-

priate shapes to be included in our shape prior, we con-

sider a denoising variant of the VAE allowing to obtain

a tighter bound on the likelihood p(y). More specifi-

cally, a corruption process y′ ∼ p(y′|y) is considered

and the corresponding evidence lower bound results in

the following loss:

LDVAE(w) =− Eq(z|y′)[ln p(y|z)]
+ KL(q(z|y′)|p(z)). (6)

Note that the reconstruction error − ln p(y|z) is still

computed with respect to the uncorrupted shape y while

z, in contrast to Eq. (3), is sampled conditioned on the

corrupted shape y′. In practice, the corruption process

p(y′|y) is modeled using Bernoulli noise for occupancy

grids and Gaussian noise for SDFs. In experiments,

we found DVAEs to learn more robust latent spaces

– meaning the prior is less likely to contain unreason-

able shapes. In the following, we always use DVAEs as

shape priors.

3.3 Shape Inference

After learning the shape prior, defining the joint distri-

bution p(y, z) of shapes y and latent codes z as prod-

uct of generative model p(y|z) and prior p(z), shape

completion can be formulated as a maximum likelihood

(ML) problem for p(y, z) over the lower-dimensional la-

tent space Z = RQ. The corresponding negative log-

likelihood − ln p(y, z) to be minimized can be written

as

LML(z) = −
∑
xi 6=⊥

ln p(yi = xi|z)− ln p(z). (7)

As the prior p(z) is Gaussian, the negative log-probability

− ln p(z) is proportional to ‖z‖22 and constrains the prob-

lem to likely, i.e., reasonable, shapes with respect to

the shape prior. As before, the generative model p(y|z)
decomposes over voxels; here, we can only consider ac-

tually observed voxels xi 6= ⊥. We assume that the

learned shape prior can complete the remaining, unob-

served voxels xi = ⊥. Instead of solving Eq. (7) for each

observation x ∈ X independently, however, we follow

the idea of amortized inference (Gershman and Good-

man, 2014) and train a new encoder z(x;w) to learn

ML. To this end, we keep the generative model p(y|z)
fixed and train only the weights w of the new encoder

z(x;w) using the ML objective as loss:

LdAML(w) =−
∑
xi 6=⊥

ln p(yi = xi|z(x;w))

− λ ln p(z(x;w)).

(8)

Here, λ controls the importance of the shape prior. The

exact form of the probabilities p(yi = xi|z) depends on
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the used shape representation. For occupancy grids, this

term results in a cross-entropy error as both the pre-

dicted voxels yi and the observations xi are, for xi 6= ⊥,

binary. For SDFs, however, the term is not well-defined

as p(yi|z) is modeled with a continuous Gaussian dis-

tribution, while the observations xi are binary. As solu-

tion, we could compute (signed) distance values along

the rays corresponding to observed points (e.g., follow-

ing (Steinbrucker et al, 2013)) in order to obtain con-

tinuous observations xi ∈ R for xi 6= ⊥. However, as

illustrated in Fig. 4, noisy observations cause the dis-

tance values along the whole ray to be invalid. This can

partly be avoided when relying only on occupancy to

represent the observations; in this case, free space (cf.

Fig. 3) observations are partly correct even though ob-

served points may lie within the corresponding shapes.

For making SDFs tractable (i.e., to predict sub-

voxel accurate, visually smooth and appealing shapes,

see Section 4.5) while using binary observations, we pro-

pose to define p(yi = xi|z) through a simple trans-

formation. In particular, as p(yi|z) is modeled using

a Gaussian distribution N (yi;µi(z), σ
2) where µi(z) is

predicted using the fixed decoder (σ2 is constant), and

xi is binary (for xi 6= ⊥), we introduce a mapping

θi(µi(z)) transforming the predicted mean SDF value

to an occupancy probability θi(µi(z)):

p(yi = xi|z) = Ber(yi = xi; θi(µi(z))) (9)

As, by construction (see Section 3.1), occupied voxels

have negative sign or value zero in the SDF, we can

derive the occupancy probability θi(µi(z)) as the prob-

ability of a non-positive distance:

θi(µi(z)) = N (yi ≤ 0;µi(z), σ
2) (10)

=
1

2

(
1 + erf

(−µi(z)

σ
√
π

))
. (11)

Here, erf is the error function which, in practice, can be

approximated following (Abramowitz, 1974). Eq. (11)

is illustrated in Fig. 4 where the occupancy probability

θi(µi(z)) is computed as the area under the Gaussian

bell curve for yi ≤ 0. This per-voxel transformation

can easily be implemented as non-linear layer and its

derivative wrt. µi(z) is, by construction, a Gaussian.

Note that the transformation is correct, not approxi-

mate, based on our model assumptions and the defini-

tions in Section 3.1. Overall, this transformation allows

us to easily minimize Eq. (8) for both occupancy grids

and SDFs using binary observations. The obtained en-

coder embeds the observations in the latent shape space

to perform shape completion.
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1
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p(yi)

p(y′
i
≤ yi)

p(yi ≤ 0)

Fig. 4: Left: Problem with SDF Observations. Il-

lustration of a ray (red line) correctly hitting a sur-

face (blue line) causing the (signed) distance values

and occupancy values computed for voxels along the

ray to be correct (cf. (a)). A noisy ray, however, causes

all voxels along the ray to be assigned incorrect dis-

tance values (marked red ) wrt. to the true surface

(blue line) because the ray ends far behind the actual

surface (cf. (b)). When using occupancy only, in con-

trast, only the voxels behind the surface are assigned

invalid occupancy states (marked red ); the remaining

voxels are labeled correctly (marked green ; cf. (c)).

Right: Proposed Gaussian-to-Bernoulli Trans-

formation. For p(yi) := p(yi|z) = N (yi;µi(z), σ
2)

(blue), we illustrate the transformation discussed in

Section 3.3 allowing to use the binary observations xi
(for xi 6= ⊥) to supervise the SDF predictions. This is

achieved by transforming the predicted Gaussian distri-

bution to a Bernoulli distribution with occupancy prob-

ability θi(µi(z)) = p(yi ≤ 0) (blue area).

3.4 Practical Considerations

Encouraging Variety: So far, our AML formulation

assumes a deterministic encoder z(x,w) which predicts,

given the observation x, a single code z corresponding

to a completed shape. A closer look at Eq. (8), however,

reveals an unwanted problem: the data term scales with

the number of observations, i.e., |{xi 6= ⊥}|, while the

regularization term stays constant – with less obser-

vations, the regularizer gains in importance leading to

limited variety in the predicted shapes because z(x;w)

tends towards zero.

In order to encourage variety, we draw inspiration

from the VAE shape prior. Specifically, we use a prob-

abilistic recognition model

q(z|x) = N (z;µ(x),diag(σ2(x))) (12)

(cf. see Eq. (1)) and replace the negative log-likelihood

− ln p(z) with the corresponding Kullback-Leibler di-

vergence KL(q(z|x)|p(z)) with p(z) = N (z; 0, IQ). In-

tuitively, this makes sure that the encoder’s predictions
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(a) Original (b) TSDF Fusion, 2563 (c) Simplification, 5k Faces

(d) Reconstruction, 24×54×24/323 (e) Observations (f) Voxelization, 24×54×24/323

Fig. 5: ShapeNet and ModelNet Data Generation Pipeline. On ShapeNet and ModelNet we illustrate:

(a) samples from the original datasets; (b) fused watertight meshes from TSDF fusion at 2563 voxels resolution

using (Riegler et al, 2017a); (c) simplified meshes (5k faces); (d) marching cubes (Lorensen and Cline, 1987)

reconstructions from the SDFs computed from (c) (resolutions 24×54×24 and 323 voxels; note that steps (b)

and (c) are necessary to derive exact SDFs); (e) observations obtained by projection into a single view; and (f)

voxelized observations and shapes. Shapes (meshes and occupancy grids) in beige and observations in red.

“cover” the prior distribution – thereby enforcing vari-

ety. Mathematically, the resulting loss, i.e.,

LAML(w) =− Eq(z|x)

∑
xi 6=⊥

ln p(yi = xi|z)


+ λKL(q(z|x)p(z)),

(13)

can be interpreted as the result of maximizing the evi-

dence lower bound of a model with observation process

p(x|y) (analogously to the corruption process p(y′|y)

for DVAEs in (Im et al, 2017) and Section 3.2). The ex-

pectation is approximated using samples (following the

reparameterization trick in Eq. (5)) and, during test-

ing, the sampling process z ∼ q(z|x) is replaced by the

mean prediction µ(x). In practice, we find that Eq. (13)

improves visual quality of the completed shapes. We

compare this AML model to its deterministic variant

dAML in Section 4.5.

Handling Noise: Another problem of our AML for-

mulation concerns noise. On KITTI, for example, spec-

ular or transparent surfaces cause invalid observations

– laser rays traversing through these surfaces cause ob-

servations to lie within shapes or not get reflected. How-

ever, our AML framework assumes deterministic, i.e.,

trustworthy, observations – as can be seen in the recon-

struction error in Eq. (13). Therefore, we introduce per-

voxel weights κi computed using the reference shapes

Y = {ym}Mm=1:

κi = 1−
(

1

M

M∑
m=1

ym,i

)
∈ [0, 1] (14)

where ym,i = 1 if and only if the corresponding voxel

is occupied. Applied to observations xi = 0, these are

trusted less if they are unlikely under the shape prior.

Note that for point observations, i.e., xi = 1, this is not

necessary as we explicitly consider “filled” shapes (see

Section 4.1). This can also be interpreted as imposing

an additional mean shape prior on the predicted shapes

with respect to the observed free space. In addition, we

use a corruption process p(x′|x) consisting of Bernoulli

and Gaussian noise during training (analogously to the

DVAE shape prior).

4 Experiments

4.1 Data

We briefly introduce our synthetic shape completion

benchmarks, derived from ShapeNet (Chang et al, 2015)

and ModelNet (Wu et al, 2015) (cf. Fig. 5), and our data

preparation for KITTI (Geiger et al, 2012) and Kinect

(Yang et al, 2018) (cf. Fig. 6); Table 1 summarizes key

statistics including the level of supervision computed

as the fraction of observed voxels, i.e. |{xn,i 6=⊥}|/HWD,

averaged over observations xn.

ShapeNet: We utilize the truncated SDF (TSDF) fu-

sion approach of Riegler et al (2017a) to obtain water-

tight versions of the provided car shapes allowing to

reliably and efficiently compute occupancy grids and

SDFs. Specifically, we use 100 depth maps of 640×640

pixels resolution, distributed uniformly on the sphere

around the shape, and perform TSDF fusion at a resolu-

tion of 2563 voxels. Detailed watertight meshes, without

inner structures, can then be extracted using march-

ing cubes (Lorensen and Cline, 1987) and simplified to

5k faces using MeshLab’s quadratic simplification algo-

rithm (Cignoni et al, 2008), see Fig. 5a to c. Finally, we

manually selected 220 shapes from this collection, re-
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(a) KITTI, Point Clouds (b) Kinect, Occupancy Grids

Fig. 6: Extracted KITTI and Kinect Data. For

KITTI, we show observed points in red and the accu-

mulated, partial ground truth in green. Note that for

the first example ground truth is not available due to

missing past/future observations. For Kinect, we show

observations in red and ElasticFusion (Whelan et al,

2015) ground truth in beige. Note that the objects are

rotated and not aligned as in ModelNet (cf. Fig. 5).

moving exotic cars, unwanted configurations, or shapes

with large holes (e.g., missing floors or open windows).

The shapes are splitted into |Y| = 100 reference

shapes, |Y∗| = 100 shapes for training the inference

model, and 20 test shapes. We randomly perturb rota-

tion and scaling to obtain 5 variants of each shape, vox-

elize them using triangle-voxel intersections and subse-

quently “fill” the obtained volumes using a connected

components algorithm (Jones et al, 2001). For com-

puting SDFs we use SDFGen2. We use three different

resolutions: H×W×D = 24×54×24, 32×72×32 and

48×108×48 voxels. Examples are shown in Fig. 5d to f.

Finally, we use the OpenGL renderer of Gney and

Geiger (2015) to obtain 10 depth maps per shape. The

incomplete observations X are obtained by re-projecting

them into 3D and marking voxels with at least one point

as occupied and voxels between occupied voxels and the

camera center as free space. We obtain more dense point

clouds at 48×64 pixels resolution and sparser point

clouds using depth maps of 24×32 pixels resolution. For

the latter, more challenging case we also add exponen-

tially distributed noise (with rate parameter 70) to the

depth values, or randomly (with probability 0.075) set

them to the maximum depth to simulate the deficien-

cies of point clouds captured with real sensors, e.g., on

KITTI. These two variants are denoted SN-clean and

SN-noisy. The obtained observations are illustrated in

Fig. 5e.

KITTI: We extract observations from KITTI’s Velo-

dyne point clouds using the provided ground truth 3D

bounding boxes to avoid the inaccuracies of 3D object

detectors (train/test split by Chen et al (2016)). As the

3D bounding boxes in KITTI fit very tightly, we first

2 https://github.com/christopherbatty/SDFGen.

Synthetic Real
SN-clean/-noisy ModelNet KITTI Kinect

Training/Test Sets
#Shapes for Shape Prior, #Views for Shape Inference

#Shapes 500/100 1000/200 – –
#Views 5000/1000 10000/2000 8442/9194 30/10

Observed Voxels in % (< 5%) & Resolutions
Low = 24×54×24/323; Medium = 32×72×32/483; High = 48×108×48/643

Low 7.66/3.86 9.71 6.79 0.87
Medium 6.1/2.13 8.74 5.24 –
High 2.78/0.93 8.28 3.44 –

Table 1: Dataset Statistics. We report the number of

(rotated and scaled) meshes, used as reference shapes,

and the resulting number of observations (i.e., views,

10 per shape). We also report the average fraction of

observed voxels, i.e., |{xi 6=⊥}|/HWD. For ModelNet, we

exemplarily report statistics for chairs; and for Kinect,

we report statistics for tables.

padded them by factor 0.25 on all sides; afterwards, the

observed points are voxelized into voxel grids of size

H×W×D = 24×54×24, 32×72×32 and 48×108×48

voxels. To avoid taking points from the street, nearby

walls, vegetation or other objects into account, we only

consider those points lying within the original (i.e., not

padded) bounding box. Finally, free space is computed

using ray tracing as described above. We filter all ob-

servations to ensure that each observation contains a

minimum of 50 observations. For the bounding boxes in

the test set, we additionally generated partial ground

truth by accumulating the 3D point clouds of 10 future

and 10 past frames around each observation. Examples

are shown in Fig. 6.

ModelNet: We use ModelNet10, comprising 10 popu-

lar object categories (bathtub, bed, chair, desk, dresser,

monitor, night stand, table, toilet) and select, for each

category, the first 200 and 20 shapes from the provided

training and test sets. Then, we follow the pipeline out-

lined in Fig. 5, as on ShapeNet, using 10 random vari-

ants per shape. Due to thin structures, however, SDF

computation does not work well (especially for low reso-

lution, e.g., 323 voxels). Therefore, we approximate the

SDFs using a 3D distance transform on the occupancy

grids. Our experiments are conducted at a resolution

of H×W×D = 323, 483 and 643 voxels. Given the in-

creased difficulty, we use a resolution of 642, 962 and

1282 pixels for the observation generating depth maps.

In our experiments, we consider bathtubs, chairs, desks

and tables individually, as well as all 10 categories to-

gether (resulting in 100k views overall). For Kinect, we

additionally used a dataset of rotated chairs and tables

aligned with Kinect’s ground plane.
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ShapeNet, KITTI
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Fig. 7: Network Architectures. We use different res-

olutions for ShapeNet and KITTI as well as Model-

Net and Kinect (bottom and top, respectively). In both

cases, architectures for higher resolutions employ one

additional stage in the en- and decoder (in gray). Each

convolutional layer is followed by ReLU activations and

batch normalization (Ioffe and Szegedy, 2015); the win-

dow sizes for max pooling and nearest-neighbor upsam-

pling can be derived from the context; the number of

channels are given in parentheses.

Kinect: Yang et al. provide Kinect scans of various

chairs and tables. They provide both single-view ob-

servations as well as ground truth from ElasticFusion

(Whelan et al, 2015) as occupancy grids. However, the

ground truth is not fully accurate, and only 40 views

are provided per object category. Still, the objects have

been segmented to remove clutter and are appropriate

for experiments in conjunction with ModelNet10. Un-

fortunately, Yang et al. do not provide SDFs; again,

we use 3D distance transforms as approximation. Ad-

ditionally, the observations do not indicate free space

and we were required to guess an appropriate ground

plane. For our experiments, we use 30 views for training

and 10 views for testing, see Fig. 6 for examples.

4.2 Evaluation

For occupancy grids, we use Hamming distance (Ham)

and intersection-over-union (IoU) between the (thresh-

olded) predictions and the ground truth; note that lower

Ham is better, while lower IoU is worse. For SDFs, we

consider a mesh-to-mesh distance on ShapeNet and a

mesh-to-point distance on KITTI. We follow (Jensen

et al, 2014) and consider accuracy (Acc) and complete-

ness (Comp). To measure Acc, we uniformly sample

roughly 10k points on the reconstructed mesh and av-

erage their distance to the target mesh. Analogously,

Comp is the distance from the target mesh (or the

ground truth points on KITTI) to the reconstructed

mesh. Note that for both Acc and Comp, lower is bet-

GT,
High

GT DVAE,
Low

DVAE,
High

DVAE,
Low

DVAE,
High

(a) Reconstructions, Low and High Resolution (cf. Table 1)

Low Low Low High High High

(b) Random Samples, Low and High Resolution (cf. Table 1)

Fig. 8: DVAE Shape Prior. Reconstructions and ran-

dom samples on ShapeNet and ModelNet at multiple

resolutions (cf. Table 1); false negative and false pos-

itive voxels in green and red. Our DVAE shape prior

provides high-quality reconstructions and meaningful

random samples across resolutions.

ter. On ShapeNet and ModelNet, we report both Acc

and Comp in voxels, i.e., in multiples of the voxel edge

length (i.e., in [vx], as we do not know the absolute scale

of the models); on KITTI, we report Comp in meters

(i.e., in [m]).

4.3 Architectures and Training

As depicted in Fig. 7, our network architectures are

kept simple and shallow. Considering a resolution of

24×54×24 voxels on ShapeNet and KITTI, the encoder

comprises three stages, each consisting of two convolu-

tional layers (followed by ReLU activations and batch

normalization (Ioffe and Szegedy, 2015)) and max pool-

ing; the decoder mirrors the encoder, replacing max

pooling by nearest neighbor upsampling. We consis-

tently use 33 convolutional kernels. We use a latent

space of size Q = 10 and predict occupancy using Sig-

moid activations.

We found that the shape representation has a sig-

nificant impact on training. Specifically, learning both

occupancy grids and SDFs works better compared to

training on SDFs only. Additionally, following prior art

in single image depth prediction (Eigen and Fergus,

2015; Eigen et al, 2014; Laina et al, 2016), we consider

log-transformed, truncated SDFs (logTSDFs) for train-

ing: given a signed distance yi, we compute sign(yi) log(1+

min(5, |yi|)) as the corresponding log-transformed, trun-
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Fig. 9: Comparison of AML and dAML. Our de-

terministic variant, dAML, suffers from inferior results.

Predicted shapes in beige and observations in red at

low resolution (24×54×24 voxels).

cated signed distance. TSDFs are commonly used in the

literature (Newcombe et al, 2011; Riegler et al, 2017a;

Dai et al, 2017; Engelmann et al, 2016; Curless and

Levoy, 1996) and the logarithmic transformation ad-

ditionally increases the relative importance of values

around the surfaces (i.e., around the zero crossing).

For training, we combine occupancy grids and logTS-

DFs in separate feature channels and randomly trans-

late both by up to 3 voxels per axis. Additionally, we

use Bernoulli noise (probability 0.1) and Gaussian noise

(variance 0.05). We use Adam (Kingma and Ba, 2015),

a batch size of 16 and the initialization scheme by Glo-

rot and Bengio (2010). The shape prior is trained for

3000 to 4000 epochs with an initial learning rate of

10−4 which is decayed by 0.925 every 215 iterations

until a minimum of 10−16 has been reached. In ad-

dition, weight decay (10−4) is applied. For shape in-

ference, training takes 30 to 50 epochs, and an initial

learning rate of 10−4 is decayed by 0.9 every 215 itera-

tions. For our learning-based baselines (see Section 4.4)

we require between 300 and 400 epochs using the same

training procedure as for the shape prior. On the Kinect

dataset, where only 30 training examples are available,

we used 5000 epochs. We use log σ2 = −2 as an em-

pirically found trade-off between accuracy of the recon-

structed SDFs and ease of training – significantly lower

log σ2 may lead to difficulties during training, includ-

ing divergence. On ShapeNet, ModelNet and Kinect,

the weight λ of the Kullback-Leibler divergence KL (for

both DVAE and (d)AML) was empirically determined

to be λ = 2, 2.5, 3 for low, medium and high resolution,

respectively. On KITTI, we use λ = 1 for all resolutions.

In practice, λ controls the trade-off between diversity

(low λ) and quality (high λ) of the completed shapes.

In addition, we reduce the weight in free space areas to

one fourth on SN-noisy and KITTI to balance between

occupied and free space. We implemented our networks

in Torch (Collobert et al, 2011).

(a) DVAE t-SNE (b) DVAE Projection

(c) AML t-SNE (d) AML Projection

Fig. 10: Learned Latent Spaces. In (a) and (b), we

show a t-SNE (van der Maaten and Hinton, 2008) visu-

alization and a two-dimensional projection of the DVAE

latent space on ModelNet10. The plots illustrate that

the DVAE is able to separate the ten object categories.

In (c) and (d), we show a t-SNE visualization and

a projection of the latent space corresponding to our

learned AML model on SN-clean. We randomly picked

10 ground truth shapes, “x”, and the corresponding

observations (10 per shape), points (gray pixels indi-

cate remaining shapes/observations). The plots illus-

trate that AML is able to associate observations with

the corresponding ground truth shapes under weak su-

pervision.

4.4 Baselines

Data-Driven Approaches: We consider the works

by Engelmann et al (2016) and Gupta et al (2015) as

data-driven baselines. Additionally, we consider regu-

lar maximum likelihood (ML). Engelmann et al (2016)

– referred to as Eng16 – use a principal component

analysis shape prior trained on a manually selected set

of car models3. Shape completion is posed as optimiza-

tion problem considering both shape and pose. The pre-

trained shape prior provided by Engelmann et al. as-

sumes a ground plane which is, according to KITTI’s

LiDAR data, fixed at 1m height. Thus, we don’t need

to optimize pose on KITTI as we use the ground truth

bounding boxes; on ShapeNet, in contrast, we need to

optimize both pose and shape to deal with the random

rotations in SN-clean and SN-noisy.

3 https://github.com/VisualComputingInstitute/

ShapePriors_GCPR16
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Supervision Method SN-clean SN-noisy KITTI
in % Ham↓ IoU↑ Acc [vx] ↓ Comp [vx] ↓ Ham↓ IoU↑ Acc [vx] ↓ Comp [vx] ↓ Comp [m] ↓

Low Resolution: 24× 54× 24 voxels; * independent of resolution

(shape prior) DVAE 0.019 0.885 0.283 0.527 (same shape prior as on SN-clean)

100
Dai et al (2017) (Dai17) 0.021 0.872 0.321 0.564 0.027 0.836 0.391 0.633 0.128
Sup 0.026 0.841 0.409 0.607 0.028 0.833 0.407 0.637 0.091

< 7.7

Näıve 0.067 0.596 0.999 1.335 0.064 0.609 0.941 1.29 –
Mean 0.052 0.697 0.79 0.938 0.052 0.696 0.79 0.938 –
ML 0.04 0.756 0.637 0.8 0.041 0.755 0.625 0.829 (too slow)
*Gupta et al (2015) (ICP) (mesh only) 0.534 0.503 (mesh only) 7.551 6.372 (too slow)
*Engelmann et al (2016) (Eng16) (mesh only) 1.235 1.237 (mesh only) 1.974 1.312 0.13
dAML 0.034 0.784 0.532 0.741 0.036 0.772 0.557 0.76 (see AML)
AML 0.034 0.779 0.549 0.753 0.036 0.771 0.57 0.761 0.12

Low Resolution: 24× 54× 24 voxels; Multiple, k > 1 Fused Views

100
Dai et al (2017) (Dai17), k = 5 0.012 0.924 0.214 0.436 0.018 0.887 0.278 0.491

n/a
Sup, k = 5 0.022 0.866 0.336 0.566 0.024 0.86 0.331 0.573

< 16 AML, k = 2 0.032 0.794 0.489 0.695 0.034 0.79 0.52 0.725
n/a< 24 AML, k = 3 0.031 0.809 0.471 0.667 0.031 0.81 0.493 0.67

< 40 AML, k = 5 0.031 0.804 0.502 0.686 0.035 0.799 0.523 0.7

Medium Resolution: 32× 72× 32 voxels

(shape prior) DVAE 0.019 0.877 0.24 0.47 (same shape prior as on SN-clean)

100
Dai et al (2017) (Dai17) 0.02 0.869 0.399 0.674 0.026 0.83 0.51 0.767 0.074
Sup 0.027 0.834 0.498 0.789 0.029 0.815 0.571 0.843 0.09

≤ 6.1 AML 0.031 0.788 0.415 0.584 0.036 0.766 0.721 0.953 0.083

High Resolution: 48× 108× 48 voxels

(shape prior) DVAE 0.018 0.87 0.272 0.434 (same shape prior as on SN-clean)

100
Dai17 0.017 0.88 0.517 0.827 0.054 0.664 1.559 2.067 0.066
Sup 0.023 0.843 0.677 1.032 0.052 0.674 1.52 1.981 0.091

< 3.5 AML 0.028 0.796 0.433 0.579 0.045 0.659 1.4 1.957 0.078

Table 2: Quantitative Results on ShapeNet and KITTI. We consider Hamming distance (Ham) and inter-

section over union (IoU) for occupancy grids as well as accuracy (Acc) and completeness (Comp) for meshes on

SN-clean, SN-noisy and KITTI. For Ham, Acc and Comp, lower is better; for IoU, higher is better. The unit of

Acc and Comp is voxels (voxel length at 24×54×48 voxels) or meters. Note that the DVAE shape prior (in gray)

is only reported as reference (i.e., bound on (d)AML). We indicate the level of supervision in percentage, relative

to the corresponding resolution (see Table 1) and mark the best results under full supervision in red and under

weak supervision in green.

Inspired by the work by Gupta et al (2015) we also

consider a shape retrieval and fitting baseline. Specif-

ically, we perform iterative closest point (ICP) (Besl

and McKay, 1992) fitting on all training shapes and

subsequently select the best-fitting one. To this end, we

uniformly sample 1Mio points on the training shapes,

and perform point-to-point ICP4 for a maximum of 100

iterations using
[
R t
]

=
[
I3 0

]
as initialization. On the

training set, we verified that this approach is always

able to retrieve the perfect shape.

Finally, we consider a simple ML baseline iteratively

minimizing Eq. (7) using stochastic gradient descent

(SGD). This baseline is similar to the work by Engel-

mann et al., however, like ours it is bound to the voxel

grid. Per example, we allow a maximum of 5000 itera-

tions, starting with latent code z = 0, learning rate 0.05

and momentum 0.5 (decayed every 50 iterations at rate

0.85 and 1.0 until 10−5 and 0.9 have been reached).

Learning-Based Approaches: Learning-based ap-

proaches usually employ an encoder-decoder architec-

ture to directly learn a mapping from observations xn

4 http://www.cvlibs.net/software/libicp/.

to ground truth shapes y∗n in a fully supervised setting

(Wang et al, 2017; Varley et al, 2017; Yang et al, 2018,

2017; Dai et al, 2017). While existing architectures dif-

fer slightly, they usually rely on a U-net architecture

(Ronneberger et al, 2015; zgn Cicek et al, 2016). In this

paper, we use the approach of Dai et al (2017)5 – re-

ferred to as Dai17 – as a representative baseline for this

class of approaches. In addition, we consider a custom

learning-based baseline which uses the architecture of

our DVAE shape prior, cf. Fig. 7. In contrast to (Dai

et al, 2017), this baseline is also limited by the low-

dimensional (Q = 10) bottleneck as it does not use

skip connections.

4.5 Experimental Evaluation

Quantitative results are summarized in Table 2 (Shape-

Net and KITTI) and 3 (ModelNet). Qualitative results

5 We use https://github.com/angeladai/cnncomplete.
On ModelNet we added one convolutional stage in the en-
and decoder for larger resolutions; on ShapeNet and KITTI,
we needed to adapt the convolutional strides to fit the corre-
sponding resolutions.
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Obs Dai17 Dai17 Eng16 ML ML AML AML GT GT

(a) SN-clean (Top) and SN-noisy (Bottom), Low Resolution (24×54×24)

Obs Dai17 Dai17 ICP ML ML AML AML GT GT

(b) ModelNet Bathtubs, Chairs, Desks and Tables, Low Resolution (323)

Fig. 11: Qualitative Results on ShapeNet and ModelNet. Results for AML, Dai17, Eng16, ICP and ML on
SN-clean, SN-noisy and ModelNet’s bathtubs, chairs, desks and tables. AML outperforms data-driven approaches

(ML, Eng16, ICP) and rivals Dai17 while requiring significantly less supervision. Occupancy grids and meshes in

beige, observations in red.

for the shape prior are shown in Fig. 9 and 10; shape

completion results are shown in Fig. 11 (ShapeNet and

ModelNet) and 14 (KITTI and Kinect).

Latent Space Dimensionality: Regarding our DVAE

shape prior, we found the dimensionality Q to be of cru-

cial importance as it defines the trade-off between re-

construction accuracy and random sample quality (i.e.,

the quality of the generative model). A higher-dimension-

al latent space usually results in higher-quality recon-

structions but also imposes the difficulty of randomly

generating meaningful shapes. Across all datasets, we

found Q = 10 to be suitable – which is significantly

smaller compared to related work: 35 in (Liu et al,

2017), 6912 in (Sharma et al, 2016), 200 for (Wu et al,

2016b; Smith and Meger, 2017) or 64 in (Girdhar et al,

2016). Still, we are able to obtain visually appealing

results. Finally, in Fig. 9 we show qualitative results,

illustrating good reconstruction performance and rea-

sonable random samples across resolutions.

Fig. 10 shows a t-SNE (van der Maaten and Hinton,

2008) visualization as well as a projection of the Q = 10

dimensional latent space, color coding the 10 object cat-

egories of ModelNet10. The DVAE clusters the object

categories within the support region of the unit Gaus-

sian. In the t-SNE visualization, we additionally see

ambiguities arising in ModelNet10, e.g., night stands

and dressers often look indistinguishable while moni-

tors are very dissimilar to all other categories. Overall,
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Supervision Method bathtub chair desk table ModelNet10
in % Ham↓ IoU↑ Ham↓ IoU↑ Acc [vx]↓ Comp [vx]↓ Ham↓ IoU↑ Ham↓ IoU↑ Ham↓ IoU↑

Low Resolution: 323 voxels; * independent of resolution

(shape prior) DVAE 0.015 0.699 0.025 0.517 0.884 0.72 0.028 0.555 011 0.608 0.023 0.714

100
Dai et al (2017) (Dai17) 0.022 0.59 0.019 0.61 0.663 0.671 0.027 0.568 0.011 0.648 0.03 0.646
Sup 0.023 0.618 0.03 0.478 0.873 0.813 0.036 0.458 0.017 0.497 0.038 0.589

< 10
* Gupta et al (2015) (ICP) (mesh only) (mesh only) 1.483 0.89 (mesh only) (mesh only) (mesh only)
ML 0.028 0.503 0.033 0.414 1.489 1.065 0.048 0.323 0.029 0.318 (too slow)
AML 0.026 0.503 0.033 0.373 1.088 0.785 0.041 0.389 0.018 0.423 0.04 0.509

Medium Resolution: 483 voxels

(shape prior) DVAE 0.014 0.671 0.021 0.491 0.748 0.697 0.025 0.525 0.01 0.548

100 Dai et al (2017) (Dai17) 0.018 0.609 0.016 0.576 0.513 0.508 0.023 0.532 0.008 0.65
< 9 AML 0.024 0.459 0.029 0.347 1.025 0.805 0.034 0.361 0.015 0.384

High Resolution: 643 voxels

(shape prior) DVAE 0.014 0.644 0.02 0.474 0.702 0.705 0.024 0.506 0.009 0.548
100 Dai et al (2017) (Dai17) 0.018 0.54 0.016 0.548 0.47 0.53 0.021 0.525 0.007 0.673

< 9 AML 0.023 0.46 0.026 0.333 0.893 0.852 0.042 0.31 0.012 0.407

Table 3: Quantitative Results on ModelNet. Results for bathtubs, chairs, desks, tables and all ten categories

combined (ModelNet10). As the ground truth SDFs are merely approximations (cf. Section 4.1), we concentrate

on Hamming distance (Ham; lower is better) and intersection-over-union (IoU; higher is better). Only for chairs,

we report accuracy Acc and completeness Comp in voxels (voxel length at 323 voxels). We also indicate the level of

supervision (see Table 1). Again, we report the DVAE shape prior as reference and color the best weakly-supervised

approach using green and the best fully-supervised approach in red.

these findings support our decision to use a DVAE with

Q = 10 as shape prior.

Ablation Study: In Table 2, we show quantitative re-

sults of our model on SN-clean and SN-noisy. First, we

report the reconstruction quality of the DVAE shape

prior as reference. Then, we consider the DVAE shape

prior (Näıve), and its mean prediction (Mean) as sim-

ple baselines. The poor performance of both illustrates

the difficulty of the benchmark. For AML, we also con-

sider its deterministic variant, dAML (see Section 3).

Quantitatively, there is essentially no difference; how-

ever, Fig. 9 demonstrates that AML is able to predict

more detailed shapes. We also found that using both

occupancy and SDFs is necessary to obtain good per-

formance – as is using both point observations and free

space.

Considering Fig. 10, we additionally demonstrate

that the embedding learned by AML, i.e., the embed-

ding of incomplete observations within the latent shape

space, is able to associate observations with correspond-

ing shapes even under weak supervision. In particular,

we show a t-SNE visualization and a projection of the

latent space for AML trained on SN-clean. We color-

code 10 randomly chosen ground truth shapes, resulting

in 100 observations (10 views per shape). AML is usu-

ally able to embed observations near the corresponding

ground truth shapes, without explicit supervision (e.g.,

for violet, pink, blue or teal, the observations – points

– are close to the corresponding ground truth shapes –

“x”). Additionally, AML also matches the unit Gaus-

sian prior distribution reasonably well.

Comparison to Baselines on Synthetic Data: For

ShapeNet, Table 2 demonstrates that AML outperforms

data-driven approaches such as Eng16, ICP and ML

and is able to compete with fully-supervised approaches,

Dai17 and Sup, while using only 8% or less supervi-

sion. We also note that AML outperforms ML, illus-

trating that amortized inference is beneficial. Further-

more, Dai17 outperforms Sup, illustrating the advan-

tage of propagating low-level information (through skip

connections) without bottleneck. Most importantly, the

performance gap between AML and Dai17 is rather

small considering the difference in supervision (more

than 92%) and on SN-noisy, the drop in performance

for Dai17 and Sup is larger than for AML suggesting

that AML handles noise and sparsity more robustly.

Fig. 11 shows that these conclusions also apply visually

where AML performs en par with Dai17.

For ModelNet, in Table 3, we mostly focus on oc-

cupancy grids (as the derived SDFs are approximate,

cf. Section 4.1) and show that chairs, desks or tables

are more difficult. However, AML is still able to pre-

dict high-quality shapes, outperforming data-driven ap-

proaches. Additionally, in comparison to ShapeNet, the

gap between AML and fully-supervised approaches (Dai17

and Sup) is surprisingly small – not reflecting the dif-

ference in supervision. This means that even under full

supervision, these object categories are difficult to com-

plete. In terms of accuracy (Acc) and completeness (Comp),

e.g., for chairs, AML outperforms ICP and ML; Dai17

and Sup, on the other hand, outperform AML. Still,

considering Fig. 11, AML predicts visually appealing

meshes although the reference shape SDFs on Model-
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k = 3 AML GT k = 5 AML GT

(a) SN-clean and -noisy, k Views, Low Resolution (24×54×24)

Dai17 AML GT Dai17 AML GT

(b) SN-clean and -noisy, Medium (32×72×32) and High
(48×108×48) Resolution

Dai17 AML GT Dai17 AML GT

(c) ModelNet desks and chairs, Medium (483) and High (643)
Resolution

Fig. 12: Multi-View and Higher-Resolution Re-

sults on ShapeNet and ModelNet. While AML is

designed for especially sparse observations, it also per-

forms well in a multi-view setting. Additionally, higher

resolutions allow to predict more detailed shapes.

Shapes, occupancy grids or meshes, in beige and ob-

servations in red.

Net are merely approximate. Qualitatively, AML also

outperforms its data-driven rivals; only Dai17 predicts

shapes slightly closer to the ground truth.

Multiple Views and Higher Resolutions: In Ta-

ble 2, we consider multiple, k ∈ {2, 3, 5}, randomly

fused observations (from the 10 views per shape). Gen-

erally, additional observations are beneficial (also cf.

Fig. 12); however, fully-supervised approaches such as

Dai17 benefit more significantly than AML. Intuitively,

especially on SN-noisy, k = 5 noisy observations seem

to impose contradictory constraints that cannot be re-

solved under weak supervision. We also show that higher

resolution allows both AML and Dai17 to predict more

detailed shapes, see Fig. 12; for AML this is significant

as, e.g., on SN-noisy, the level of supervision reduces

to less than 1%. Also note that AML is able to han-

dle the slightly asymmetric desks in Fig. 12 due to the

Dai17 AML GT Dai17 AML GT

Fig. 13: Category-Agnostic Results on Model-

Net10. AML is able to recover detailed shapes of the

correct object category even without category supervi-

sion (as provided to Dai17). Shapes (occupancy grids

and meshes) in beige and observations in red at low

resolution (323 voxels).

strong shape prior which itself includes symmetric and

less symmetric shapes.

Multiple Object Categories: We also investigate

the category-agnostic case, considering all ten Model-

Net10 object categories; here, we train a single DVAE

shape prior (as well as a single model for Dai17 and

Sup) across all ten object categories. As can be seen

in Table 3, the gap between AML and fully-supervised

approaches, Dai17 and Sup, further shrinks; even fully-

supervised methods have difficulties distinguishing ob-

ject categories based on sparse observations. Fig. 12

shows that AML is able to not only predict reasonable

shapes, but also identify the correct object category. In

contrast to Dai17, which predicts slightly more detailed

shapes, this is significant as AML does not have access

to object category information during training.

Comparison on Real Data: On KITTI, considering

Fig. 14, we illustrate that AML consistently predicts de-

tailed shapes regardless of the noise and sparsity in the

inputs. Our qualitative results suggest that AML is able

to predict more detailed shapes compared to Dai17 and

Eng16; additionally, Eng16 is distracted by sparse and

noisy observations. Quantitatively, instead, Dai17 and

Sup outperform AML. However, this is mainly due to

two factors: first, the ground truth collected on KITTI

does rarely cover the full car; and second, we put signifi-

cant effort into faithfully modeling KITTI’s noise statis-

tics in SN-noisy, allowing Dai17 and Sup to generalize

very well. The latter effort, especially, can be avoided

by using our weakly-supervised approach, AML.
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Obs Dai17 Eng16 AML AML GT

(a) KITTI, Medium Resolution (32×72×32)

O
b
s

A
M

L

(b) Kinect, Low Resolution (323)

Fig. 14: Qualitative Results on KITTI and

Kinect. On KITTI, AML visually outperforms both

Dai17 and Eng16 while being faster and requiring less

supervision. On Kinect, AML demonstrates that it is

able to generalize from as few as 30 training samples.

Predicted shapes (occupancy grids or meshes) in beige

and observations in red; additionally, partial ground

truth in green.

On Kinect, also considering Fig. 14, only 30 obser-

vations are available for training. It can be seen that

AML predicts reasonable shapes for tables. We find it

interesting that AML is able to generalize from only 30

training examples. In this sense, AML functions simi-

lar to ML, in that the objective is trained to overfit to

few samples. This, however, cannot work in all cases,

as demonstrated by the chairs where AML tries to pre-

dict a suitable chair, but does not fit the observations

as well. Another problem witnessed on Kinect, is that

the shape prior training samples need to be aligned to

the observations (with respect to the viewing angles).

For the chairs, we were not able to guess the viewing

trajectory correctly (cf. (Yang et al, 2018)).

Failure Cases: AML and Dai17 often face similar

problems, as illustrated in Fig. 15, suggesting that these

problems are inherent to the used shape representations

or the learning approach independent of the level of

supervision. For example, both AML and Dai17 have

AML GT AML GT AML Dai17 Dai17

(a) Difficulties with Exotic Shapes and Fine Structures

Dai17 AML GT Dai17 AML GT

(b) Difficulties with Multiple Object Categories

Fig. 15: Failures Cases. On the top, we show that

AML has difficulties with exotic shapes, not represented

in the latent space; and both AML and Dai17 have

difficulties with fine details. The bottom row demon-

strates that it is difficult to infer the correct object cat-

egory from sparse observations, even under full supervi-

sion as required by Dai17. Shapes (occupancy grids and

mehses) in beige and observations in red from various

resolutions.

problems with fine, thin structures that are hard to

reconstruct properly at any resolution. Furthermore,

identifying the correct object category on ModelNet10

from sparse observations is difficult for both AML and

Sup. Finally, AML additionally has difficulties with ex-

otic objects that are not well represented in the latent

shape space as, e.g., designed chairs.

Runtime: At low resolution, AML as well as the fully-

supervised approaches Dai17 and Sup, are particular

fast, requiring up to 2ms on a NVIDIATM GeForce R©
GTX TITAN using Torch (Collobert et al, 2011). Data-

driven approaches (e.g., Eng16, ICP and ML), on the

other hand, take considerably longer. Eng16, for in-

stance requires 168ms on average for completing the

shape of a sparse LIDAR observation from KITTI us-

ing an Intel R© Xeon R© E5-2690 @2.6Ghz and the multi-

threaded Ceres solver (Agarwal et al, 2012). ICP and

ML take longest, requiring up to 38s and 75s (not tak-

ing into account the point sampling process for the

shapes), respectively. Except for Eng16 and ICP, all

approaches scale with the used resolution and the em-

ployed architecture.

5 Conclusion

In this paper, we presented a novel, weakly-supervised

learning-based approach to 3D shape completion from

sparse and noisy point cloud observations. We used a

(denoising) variational auto-encoder (Im et al, 2017;

Kingma and Welling, 2014) to learn a latent space of

shapes for one or multiple object categories using syn-
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thetic data from ShapeNet (Chang et al, 2015) or Model-

Net (Wu et al, 2015). Based on the learned generative

model, i.e., decoder, we formulated 3D shape comple-

tion as a maximum likelihood problem. In a second

step, we then fixed the learned generative model and

trained a new recognition model, i.e. encoder, to amor-

tize, i.e. learn, the maximum likelihood problem. Thus,

our Amortized Maximum Likelihood (AML) ap-

proach to 3D shape completion can be trained in a

weakly-supervised fashion. Compared to related data-

driven approaches, e.g., (Rock et al, 2015; Haene et al,

2014; Li et al, 2015; Engelmann et al, 2016, 2017; Nan

et al, 2012; Bao et al, 2013; Dame et al, 2013; Nguyen

et al, 2016), our approach offers fast inference at test

time; in contrast to other learning-based approaches,

e.g., (Riegler et al, 2017a; Smith and Meger, 2017; Dai

et al, 2017; Sharma et al, 2016; Fan et al, 2017; Rezende

et al, 2016; Yang et al, 2018; Wang et al, 2017; Varley

et al, 2017; Han et al, 2017), we do not require full su-

pervision during training. Both characteristics render

our approach useful for robotic scenarios where full su-

pervision is often not available such as in autonomous

driving, e.g., on KITTI (Geiger et al, 2012), or indoor

robotics, e.g., on Kinect (Yang et al, 2018).

On two newly created synthetic shape completion

benchmarks, derived from ShapeNet’s cars and Model-

Net10, as well as on real data from KITTI and, we

demonstrated that AML outperforms related data-driven

approaches (Engelmann et al, 2016; Gupta et al, 2015)

while being significantly faster. We further showed that

AML is able to compete with fully-supervised approaches

(Dai et al, 2017), both quantitatively and qualitatively,

while using only 3 − 10% supervision or less. In con-

trast to (Rock et al, 2015; Haene et al, 2014; Li et al,

2015; Engelmann et al, 2016, 2017; Nan et al, 2012;

Bao et al, 2013; Dame et al, 2013), we additionally

showed that AML is able to generalize across object

categories without category supervision during train-

ing. On Kinect, we also demonstrated that our AML

approach is able to generalize from very few training

examples. In contrast to (Girdhar et al, 2016; Liu et al,

2017; Sharma et al, 2016; Wu et al, 2015; Dai et al,

2017; Firman et al, 2016; Han et al, 2017; Fan et al,

2017), we considered resolutions up to 48×108×48 and

643 voxels as well as significantly sparser observations.

Overall, our experiments demonstrate two key advan-

tages of the proposed approach: significantly reduced

runtime and increased performance compared to data-

driven approaches showing that amortizing inference is

highly effective.

In future work, we would like to address several

aspects of our AML approach. First, the shape prior

is essential for weakly-supervised shape completion, as

also noted by Gwak et al (2017). However, training ex-

pressive generative models in 3D is still difficult. Sec-

ond, larger resolutions imply significantly longer train-

ing times; alternative shape representations and data

structures such as point clouds (Qi et al, 2017a,b; Fan

et al, 2017) or octrees (Riegler et al, 2017b,a; Häne et al,

2017) might be beneficial. Finally, jointly tackling pose

estimation and shape completion seems promising (En-

gelmann et al, 2016).
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