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Fig. 1: (a) Our framework takes as input the RGB images captured from a camera array or a single moving camera. (b) After offline
optimization, our framework can render a novel view and perform temporal interpolation interactively. (c) Our framework is highly
configurable. Adopting TensoRF-CP [9] voxel representation in our framework results in low bitrate streaming of high-quality
rendering.

Abstract—Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially
appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient
framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D
spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to
three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we
propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined
NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or
superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction

in 10 seconds per frame and interactive rendering. Project website: https:/bit.ly/nerfplayer.

Index Terms—Neural rendering, free-viewpoint video, immersive video, NeRF

1 INTRODUCTION

Representing scenes as Neural Radiance Fields (NeRF) has brought a
series of breakthroughs in immersive 3D experiences [45,77]. High-
fidelity real-time rendering of real-world scenes now can be obtained
after a few seconds of training [46, 58]. The rendering system only
requires a few real-world RGB images [43], but can well model scenes
as small as a cell [37] and as large as a city [65].

Despite NeRF’s success in static scenes, extending it to handle dy-
namic scenes remains challenging. Introducing an extra time dimension
t to NeRF’s 5D representation (3D location x,y,z and 2D viewing di-
rection 60, ¢) is non-trivial for the following two reasons. First, the
supervisory signal for a spatiotemporal point (x,y,z,?) is sparser than
a static point (x,y,z). Multi-view images of static scenes are easy to
access as we can move the camera around, but an extra view in dy-
namic scenes requires an extra recording camera, leading to sparse
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input views. Second, the appearance and geometry frequency of the
scene are different along the spatial axis and temporal axis. The content
usually changes a lot when moving from one location to another loca-
tion, but the background scene is unlikely to completely change from
one timestamp to another. An inappropriate frequency modeling for the
time ¢ dimension results in poor temporal interpolation performance.

A lot of progress has been made in addressing the aforementioned
two challenges. Existing solutions include adopting motion models
for matching the points (e.g., [15,35,51,52, 55, 66]) and leveraging
data-driven priors like depth and optical flow (e.g., [13, 32, 69, 76]).
Different from existing works, we are motivated by the observation
that in dynamic scenes different spatial areas have different temporal
characteristics. We assume that there are three kinds of temporal
patterns in a dynamic scene (Figs. 2 and 3): static, deforming, and new
areas. We thus propose to decompose the dynamic scene into these
categories, which is achieved by a decomposition field that predicts
the point-wise probabilities of being static, deforming, and new. The
decomposition field is self-supervised and regularized by a manually
assigned global parsimony regularization (e.g., suppressing the global
probabilities of being new).

The proposed decomposition can address both of the aforementioned
challenges. First, different temporal regularizations are introduced for
each decomposed area, thus alleviating the ambiguity in reconstruction
from sparse observations. For instance, the static area decomposition
simplifies the dynamic modeling to a static scene modeling problem.
The deforming areas enforce the foreground object to be consistent
in the dynamic scene. Second, the scene is split into different areas
according to their temporal characteristics, thus resulting in consistent
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frequency in the time dimension in each of the areas.

In response to the discrepancy between spatial and temporal fre-
quency, we further decouple spatial and temporal dimensions based
on the recent developed hybrid representations [9,46,58,62]. Hybrid
representations maintain a grid of (x,y,z) feature volumes for fast ren-
dering. Instead of designing a grid of (x,y,z,t) feature volumes, we
treat the channels of (x,y,z) feature volumes as temporally dependent.
To support streamable dynamic scene representation, we propose a
sliding window scheme on the feature channels to introduce ¢ into the
representation (Fig. 4). Sliding window not only supports streaming of
the feature volumes, but also implicitly encourages the representation
to be compact by leveraging the overlapped channels in adjacent frames.
For validation, we conduct experiments on datasets captured under both
single-camera and multi-camera settings. To sum up, our contributions
are as follows:

* We propose to decompose the dynamic scene according to their
temporal characteristics. The decomposition is achieved by a
decomposition field that takes as input each (x,y,z,¢) point and
outputs probabilities belonging to three categories: static, deform-
ing, and new.

* We design a self-supervised scheme for optimizing the decompo-
sition field and regularizing the decomposition field with a global
parsimony loss.

* We design a sliding window scheme on recently developed hybrid
representations for efficiently modeling spatiotemporal fields.

* We present extensive experiments and interactive rendering demos
on both single-camera and multi-camera datasets. Our ablation
studies validate the implied regularization behind the proposed
three temporal patterns.

2 RELATED WORK
2.1 Neural Fields

Neural fields are neural networks that take in the coordinates and
output the properties of that point [77]. 3D representations based on
neural fields have made tremendous advancements in recent years. The
pioneering work Occupancy Networks [42] represents the geometry
of 3D objects with a continuous decision boundary modeled by a
neural network. Occupancy Networks are further improved to model
dynamic objects [48]. Concurrently, DeepSDF [50] represents the
geometry with signed distance function with a network. Chibane et
al. [10] predicts the unsigned distance field for 3D shapes from point
clouds. NeRF [45], a milestone work, proposes to represent the scene
with a 5D function modeled by MLP. NeRF significantly improves the
performance of novel view synthesis (i.e., image-based rendering). The
scene representation in NeRF inspired a number of works focusing
on 3D modeling, such as relighting [4,5,61], 3D content generation
[8,21,27] and AR/VR systems [12].

Hybrid Representation Scenes are implicitly represented by
MLPs in vanilla NeRF and forwarding with the MLPs is time-
consuming. Some methods like DONeRF [47] accelerate the sampling
step [14, 28,33, 34, 54] and HyperReel [1] has adapted this idea in
dynamic scenes. Another set of insightful methods [18,20,36,57,73,
74,80] are designed by adopting explicit data structures to efficiently
query from the fields. Further, hybrid representations are developed
by leveraging both explicit and implicit representations to improve
the differentiability of the framework. DVGO [62] uses two feature
voxels to represent occupancy and appearance. The feature vectors
queried from the voxels are decoded by small MLPs. Plenoxels [58]
prune empty spaces and save the sphere harmonic coefficients. Instant-
NGP [46] proposes a hash encoding of the saved feature grids and
solves hashing collision by multi-scale encoding and small MLP decod-
ing. TensoRF [9] leverages tensor decomposition to reduce the model
size of the voxels. Hybrid representations are further leveraged for effi-
cient dynamic scene modeling. Recent concurrent works [15,16,35,70]
propose to model canonical spaces with voxels and motion with defor-
mation fields. Li ef al. [30] propose to stream the difference of voxels
in dynamic scenes. Different from the above methods, our method

decomposes the scene into different areas and models them separately.
A straightforward InstantNGP based dynamic representation is adding
extra input dimension of time, but such a baseline requires the full
representation of a dynamic sequence to be completely loaded into the
GPU memory before rendering. For TensoRF based dynamic modeling,
D-TensoRF [23] uses a 5D tensor to represent a 4D spatiotemporal grid.
Our method can be widely applicable, as long as the representation
adopts feature vectors for modeling points in the space.

Scene Decomposition Neural fields have been adopted for de-
composing scenes. Yang et al. [78] and Zhang et al. [82] decompose
the scene by objects for editing. DeRF [56] spatially decomposes the
scene and uses small networks for each area for efficiency. Kobayashi
et al. [25] and Tschernezki et al. [67] semantically decompose the scene
with pre-trained models. Ost et al. [49] decompose scenes into semantic
scene graphs. Objects are decomposed by motion in NeuralDiff [68]
and STaR [81]. More recently, a decomposition between static and
dynamic areas is studied in D?NeRF [75] and Sharma et al. [60]. Our
decomposition is different from existing works, since we decompose
areas according to the temporal changing patterns.

2.2 4D Modeling of Dynamic Scenes

Free viewpoint rendering from video captures has been widely studied
over the decades. The idea of viewing an event from multiple per-
spectives dates back to Multiple Perspective Interactive Video [22],
in which 3D environments are generated with dynamic motion mod-
els. Virtualized Reality [24] design 3D dome and recovered 3D struc-
ture based on multi-camera stereo methods. Inspired by image-based
rendering [19, 29], some video-based rendering methods are devel-
oped [7,59,79], which requires dense capturing of the scene. Zitnick
et al. [84] propose a layered depth image representation for the high-
quality video-based rendering of dynamic scenes. More recently, a
milestone work developed by Collet ef al. [11] utilizes tracked textured
meshes for free-viewpoint video streaming. With RGB, infrared (IR),
and silhouette information as the input, their system can output accurate
geometric, detailed texture, and efficient streaming. Another impressive
system developed by Broxton et al. [6] proposes multi-sphere image
based Layered Meshes. The capturing setting is a low-cost hemispher-
ical array with 46 synchronized cameras, and Layered Meshes are
validated to be efficient and can well-handle non-Lambertian surfaces
with view-dependent or semi-transparent effects. Bansal ez al. [2] use
convolutional neural nets to compose static and dynamic parts of the
event and then adopt U-Net to render images from intermediate results
composited from depth-based re-projected images. Neural Volumes
(NV) [38] leverages differentiable volume rendering for optimizing
a 3D volume representation, which can be transformed from 2D in-
put RGB images using an encoder-decoder network. NV is further
strengthened in [39] with volumetric primitives. X-Fields [3] consider
input images from different view, time or illumination conditions in
structured captures. DyNeRF [31] assign observation frames with a
set of compact latent codes and then use time-conditioned neural ra-
diance fields to represent dynamic scenes. Fourier PlenOctrees [71]
extend the real-time rendering framework PlenOctrees [80] to dynamic
scenes. DeVRF [35] proposes a voxel-based representation that first
reconstructs a canonical object from multi-view dense supervisions and
then reconstructs deformation from few-view observations.

Another thread of research aims at modeling dynamic scenes with-
out the requirements of multiple synchronized cameras. Multi-view
information is collected by moving the camera around in the dynamic
space. The setting of single-camera input is much more challenging
than the multi-camera setting mentioned above. Data-driven solutions
like video depth estimation [26,40] are developed. Based on the pri-
ors and motivated by the success of NeRF, motions are modeled by
neural fields. Some methods first define a canonical space that is mod-
eled by a NeREF, then align the following frames from the canonical
space. Representative methods include D-NeRF [55], Nerfies [51] and
NR-NeRF [66]. The trajectory of points is modeled by a neural field
in DCT-NeRF [69]. Directly modeling the 4D field by introducing
an extra time dimension into the original radiance field is adopted in
NSFF [32], VideoNeRF [76], and NeRFlow [13]. HyperNeRF [52]
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Fig. 2: First row: We categorize the areas in a dynamic scene into three
groups: deforming, new and static areas. Second row: Visualization
of the self-supervised decomposition obtained from our framework.
Red and blue areas indicate estimated high and low probabilities of a
category.
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Fig. 3: A toy example of 2D dynamic sequence interpolation. The
first row shows the 2D input sequence with missing frames. Without
modeling deformation d(-), the second row fails to interpolate the rigid
motion of 2022°. Without modeling newness n(-), the third row fails to
interpolate the gradually appearing effect. Full decomposition handles
both phenomena well.

points out the issue of motion inconsistency in topologically varying
scenes and proposes a hyperspace representation, which is inspired by
the level-set methods, for optimizing motion in a more smooth solution
space. Gao et al. [17] demonstrate the discrepancy between the casual
monocular video and the above existing monocular testing videos.

The above methods are able to generate impressive results under
various settings. However, rendering with both single- and multi-
camera inputs can be further studied, such as the effectiveness of motion
modeling with multi-camera inputs. Moreover, a tradeoff still exists
among model size, training and rendering speed, and rendering quality.
Our method studies both single- and multi-camera inputs and focuses
on efficient and high-quality free-viewpoint video rendering.

3 PRELIMINARIES

Our method leverages the rendering scheme proposed by NeRF [45]
and hybrid representation for static scenes [9,36,46,58,62-64,74, 83].
We first briefly review the rendering framework in NeRF, then we
introduce the recently developed hybrid representation for efficient
neural fields.

For each point p = (x,y,z) in NeRF, we denote its volume density as
o (p) and its color as ¢(p, d), where d = (0, ¢) is the viewing direction.
The pixel color C of a camera ray r is computed by accumulating a set
of samples on the ray with volume rendering. Let the optical origin and
direction of the camera be o and d, then a set of points are sampled by
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Fig. 4: The proposed streamable hybrid representation. A time-
dependent sliding window is adopted for streaming the feature channels.

p; = o+ id and the expected color C(7) is computed by

i/ i .
)= [ o io(p)c(pi.d)di n
In

where ip,iy are near and far bounds. Numerical approximation by
summing up a set of sample points on the ray is used for computing the
integration in Eq. (1). In vanilla NeRF, the radiance field is implicitly
represented by an MLP that takes in the point p as input and outputs its
density and color. The MLP is then trained with a reconstruction loss
between the reconstructed color and ground-truth color Cg(7), i.e.,

Lic = Y, [C(r) = Cu(r)]3, )

rEXR

where & is a batch of ray samples.

The implicit representation in NeRF is highly compact but compu-
tationally expensive, resulting in slow training and rendering speed.
Hybrid representations, in which both explicit and implicit represen-
tations can be adopted, are developed for efficiently reconstructing
and rendering with a radiance field. Though these methods have their
unique standouts, all these hybrid representations follow a common
framework. First, we have some explicitly stored features V', which can
be in the form of a voxel grid [36,58, 62, 64,74, 83], a hash table [46]
or a set of basis vectors/matrices [9]. For any point p in the 3D space,
a feature vector vp = V(p) can be efficiently obtained with cheap
operations (e.g., tri-linear interpolation for a voxel). Next, a decoder
D is adopted to get properties like the density ¢ and color c of the
point from vy. The decoder D can be an MLP [9, 46, 62] or spherical
harmonics [58].

4 OUuR METHOD

Our method is built on the assumption that different areas in a dynamic
scene can have different temporal changing patterns. Modeling differ-
ent areas with different temporal regularizations not only helps keep
temporal consistency, but also saves computation. For example, some
objects in the background may have a static geometry in the dynamic
sequence, which allows us to reduce the capacity and complexity of
their representation. We begin our method with a decomposed spa-
tiotemporal representation, which aims to first categorize and then
model different dynamic areas using different representations based on
their categories.

4.1 Decomposed Spatiotemporal Representation

As illustrated in Fig. 2, we assume three kinds of areas in a dynamic
scene and model these areas with separate fields:

« Static areas have a constant geometry and location in the dynamic
scene, such as the table. Besides, we assume the appearance
of the static areas will not change frequently over time, i.e., is
temporally low-frequency. This is based on the observation that
the appearance change is mainly caused by lighting conditions
and the albedo is time-invariant. Hence, a stationary field s(-) is
used for representing static points.
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Fig. 5: An overview of our framework. The newness field and decomposition field are implemented with the channel streaming technique
proposed in Fig. 4. A small MLP is adopted in the decomposition field for predicting the probabilities. The stationary field consists of a static
feature volume for modeling time-invariant areas and a tiny MLP with time ¢ input for modeling low-frequency time-varying appearance. The

deformation field and radiance field are two small MLPs.

* Deforming areas model objects with deforming surfaces, such as
the hand and the cup in Fig. 2. Deforming areas may comprise
rigid or non-rigid motion, but they are always presented in the
sequence of interest. Deforming points are represented by a
deformation field d(-) : (p,7) — (Ap). Then the deformed point
p+ Ap is sent as the query point into a predefined canonical
space (e.g., the static field s).

* New areas model new content emerging at some point in the
sequence, such as the new fluid after pouring espresso into water.
A newness feature field n(-) with inputs (p,?) is adopted for
representing new areas.

To decompose the scene, we design a decomposition field f(-) : (p,t) —
(Pslalicvpdeformv Pnew), where Pytatic, Pdeform, Fnew denotes the probabil—
ity of being static, deforming and new. Next, we consider the out-
put of the fields mentioned above (s,n) to be feature vectors rather
than properties like the density of the point and denote the output fea-
ture vector as Vgatic , Vdeform, Unew, respectively. Finally, given a query
point p, we first collect the outputs from the above fields and then
compute the expected feature vector v of this point by v =}, P, v,
where * € {static, deform,new}. Then v is sent to a lightweight view-
conditioned network for density and color prediction.

In Fig. 3, we demonstrate our approach using a simple 2D toy exam-
ple. The task studied in the figure is a temporal interpolation from the
given 2D images. The fields mentioned above take (x,y) locations as
the input. The string “2022” undergoes rigid motion, while the string
‘VR’ gradually appears. The different interpolation performance demon-
strates the necessity of modeling dynamic scenes with both deforming
and new fields. Note that we do not manually annotate the probability
when performing decomposition. Instead, the decomposition field f
is only supervised by the reconstruction loss and generic parsimony
priors, which penalize objects being modeled as new. More details
about training will be introduced in Sec. 4.4.

Hybrid representations, which enable fast training and real-time ren-
dering, are adopted for implementing the above neural fields. However,
most of existing static scene targeted hybrid representations implement
the mapping p — (0, c). Adapting to inputs with an extra dimension
time 7 (i.e., dynamic scenes) is not straightforward, since modeling 4D
inputs with the explicit representation V may significantly increase the
model size. A streamable hybrid representation for efficient spatiotem-
poral mapping is introduced in the next section.

4.2 Streamable Hybrid Representation

We observe that the explicit representation V commonly consists of
array entries with a predefined feature dimension. For example, each
entry in the hash table in InstantNGP [46] and each basis vector/matrix
in TensoRF [9] both have a fixed feature dimension. Thus, we propose
to stream the feature channels so that V can be a mapping from a
spatiotemporal point (p,?) to the fixed-length feature vector vp.

We propose to select feature channels with a sliding window along
with the time dimension ¢, as demonstrated in Fig. 4. Assume that for
each frame the feature vector vy is of dimension F and k channels
are newly needed for a new frame, then for a T frame sequence the
array entry v in V is of dimension F + k(T — 1). For a single frame
t, the channels [k, kf + F] in V will be used for computing vp;, such
as trilinear interpolation in InstantNGP or tensor multiplication in
TensoRF.

To ensure vy, smoothly translates along with ¢, a rearrangement
of feature channels is conducted to match the shared channels. For
example, let = 0,k = 2, and F = 4, then channels [0, 1,2,3] of V are
used for vy, 9. Next, we use channels [4,5,2,3] for # = 1 and channels
[4,5,6,7] for t = 2. The principle behind the rearrangement is that
shared feature channels are always aligned to be with the same index
in the vector. Otherwise, a smooth translation between frames is not
guaranteed.

The streaming channels readily enable us to temporally interpolate
a frame ¢ between two observed frames f; and £, 1 by linearly inter-
polating the feature vectors: vp; = ﬁ"’p,t\- ot f:}‘%tivpvts. Note
that our proposed method can be applied to any hybrid representation
V that contains entries of feature vectors. The implementation of V
employed will be referred to as backbone in the following text. The
sliding window scheme brings two benefits: First, overlapping feature
channels are forced to be shared in adjacent frames, thus reducing
the model size; Second, after rendering one frame, only new feature
channels need to be loaded when moving to the subsequent frames,
thus being streaming friendly.

4.3 Overall Framework.

Now we introduce the details of implementing the decomposed spa-
tiotemporal representation (Sec. 4.1) with the streamable hybrid rep-
resentation (Sec. 4.2). An illustration is presented in Fig. 5. The
decomposition field f consists of explicitly cached features (denoted
by Vy) and a small MLP decoder Dy. The deformation field d is an
MLP since the deformation is sparse and of low-frequency, where a
small MLP is enough. The stationary field consists of explicitly cached
features (denoted by V;) and a tiny MLP decoder. Time ¢ and feature
obtained from V; will be the input to the tiny MLP. The reason for using
a tiny MLP is for modeling time-dependent appearance changes caused
by time-varying illumination, which is assumed to be of low-frequency.
The newness field 7 is explicitly saved features V,,. Note that in the
above explicit representations, both V and V), take in a 4D input (p, 1),
hence streaming channels are used here. The final expected feature
vector v is then decoded by a radiance field r. Viewing direction (6, ¢)
is also sent to r as in NeRF.

4.4 Optimization

Training. Our training process follows the practice of NeRF. A
batch of camera rays Z is first randomly sampled from the observed
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Fig. 6: Qualitative comparisons on the Plenoptic Video (multi-camera
setting) dataset.

data and then points on those rays, denoted by %, are sampled for
training.

In practical reconstruction and rendering tasks, a precise supervisory
signal to the decomposition field is inaccessible. Instead, we supervise
the output probabilities with a global parsimony regularization. There-
fore, besides the reconstruction loss defined in Eq. (2), a regularization
loss Lyeg is introduced in our method. We use the average probability of
all points in the batch for this loss, denoted as P, = @ Ypea, P(P).

where | %y | is the number of points. In our implementation, assuming
the existence of static background, we propose to minimize the proba-
bility of not being a static point, thus the regularization loss is chosen
as

Lreg = aneform + Pnew, (3)

where « is a tunable parameter for weighting the ratio of being deform-
ing and new. Minimizing the probability of being new points in Eq. (3)
relies on the assumption that most of the points in the dynamic scene
are either static or deforming. Overall, our training loss is

L=Lrec+ /’LLrega (4)

where A is a balancing hyperparameter.

Rendering. When rendering an image with a given camera pose,
we first forward the sampled points using the decomposition field. After
knowing the probabilities, we can skip the forwarding process of some
fields for efficiency. With a predefined threshold 7, if P, < 7 then
we directly set v, = 0 and skip the field. We set 7 as 0.001 in our
implementation.

5 EXPERIMENTS

We first quantitatively and qualitatively compare our method with prior
works, then extensive ablation studies are presented to validate our
proposed components. We urge the reader to watch our video to better
appreciate the efficiency and rendering quality of our system.

DyNeRF [31] Ours-TensoRF-VM

Fig. 7: Comparisons of rendering performance on fast moving objects.

Datasets. Our method requires only RGB observations of the dy-
namic scene for reconstruction. Unlike most existing methods, our
framework does not require special capturing settings or prior knowl-
edge, and detailed comparisons of the framework’s requirements against
competitive methods are attached in the supplementary. Two multi-
camera datasets and one single-camera dataset are used:

* Immersive Video [6] includes synchronized videos from 46 4K
fisheye cameras. For the raw video data provided by the authors,
each camera has different imaging parameters like exposure and
white balance. We select 7 dynamic scenes with relatively similar
imaging parameters. We downsample the images to 1280 x 960
in our experiments. The camera with ID 0 (the central camera) is
used for validation, and the other cameras are used for training.

Plenoptic Video [31] is captured with 21 cameras at a resolution
of 2704 x 2028. Difterent from Immersive Video, which mostly
focuses on outdoor scenes, Plenoptic Video consists of indoor
activities in various lighting conditions. We downsample images
to 1352 x 1014 in our experiments. We follow the training and
validation camera split provided by [31]. Six scenes are publically
available.

HyperNeRF [51, 52] provides only one view for each times-
tamp in a dynamic scene. The dataset is challenging due to the
single-camera setting. We adopt the same training and validation
settings as in [52]: images of 960 x 540 are used for quantitative
evaluation and images of 1920 x 1080 are used for qualitative
comparisons. There are two capturing settings in HyperNeRF:
“vrig” captures the scene with stereo cameras and training with
one camera and validating with the other; “interp” is a monocular
video from a moving camera capturing dynamic scenes.

Implementation details. Our framework, as demonstrated by
Fig. 5, is implemented with PyTorch [53]. As highlighted in Sec. 4.3,
our framework is general and any hybrid representation adopting ex-
plicit features can be used. We implement our framework with two
backbones: InstantNGP [46] and TensoRF [9]. In both of the imple-
mentations, the deformation network is a 4-layer MLP with a width of
256. The stationary field s uses a 2-layer MLP with a width of 64. The
radiance field r is a 4-layer MLP with a width of 64 and has the same
structure as the decoder in the backbone. For InstantNGP based model,
the number of levels is 8 and the number of feature dimensions per
entry is 4. TensoRF based model follows the same setting as in their
experiments on the real forward-facing datasets (i.e., LLFF [44]). For
both of the two backbones, we set the number of channels for streaming
k to be 1, and loss hyperparameters A = 0.1, @ = 0.01. We follow the
default optimization schedule and settings as in the static-scene tar-
geted backbone methods. We validate the effectiveness of deformation
decomposition (Figs. 9 and 10) and further found that our framework
remains effective and becomes more efficient if we skip deformation
modeling on multi-camera datasets with dense temporal sampling. Due
to the limitation of model sizes, we split a long video into 90-frame
clips and trained on these clips separately. PSNR and SSIM [72] are
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Fig. 8: Qualitative comparisons on the HyperNeRF-vrig dataset. An error map is demonstrated beside each rendered image.

Table 1: Quantitative comparisons on Plenoptic Video [31] for multi-
camera dynamic scenes.

Training Time  Rendering Time

Method PSNR? )
(GPU Hours) (s/img)
Neural Volumes [38]  22.797 - -
LLFF [44] 23.238 - -
NeRF-T [31] 28.448 - 90
DyNeRF [31] 29.580 1344 90
Ours-InstantNGP 30.293 5.5 10.8
Ours-TensoRF-VM 30.692 6 22.1

reported for evaluating the rendering performance. We report training
time with RTX A6000 and rendering time with RTX 2080Ti.

5.1 Comparison with State-of-The-Art Methods

DyNeRF [31] and HyperNeRF [52] are considered for multi- and single-
camera settings. Besides the two methods, we also quote the results of
other baseline methods reported in their paper.

5.1.1 On multi-camera dataset

In Tab. 1, we report our results with both InstantNGP and TensoRF
backbones. Training time and rendering time of DyNeRF are quoted
from their paper. Our method reaches a higher PSNR while significantly
reducing the training and rendering time. We further compare the
rendered images in Fig. 6. Images of comparison methods are again
quoted from the result images in DyNeRF’s paper. Our method with
InstantNGP renders images with 12% of the time required by DyNeRF
while being comparable. Besides, our method with TensoRF-VM
achieves better performance on fast-moving objects. As demonstrated
in Fig. 7, we compare our rendered results with extracted frames from
DyNeRF’s result video. Since the code and rendering parameters
of DyNeRF are not publically available, we manually select similar
camera poses and timestamp for comparison. We can observe that the
knife in DyNeRF’s results is blurry, while our method yields clearer
results.

On Immersive Video, unfortunately, we are not able to directly our
method against [6] as their evaluation data are not publically available.
While [6] may have better performance and work in real-time on a
laptop, our paper offers several unique benefits such as accepting single-
camera inputs, enabling temporal interpolation, and significantly faster
training speed.

5.1.2 On single-camera dataset

A challenging and practical appealing setting is reconstructing and ren-
dering without per-frame multi-view observations, i.e., capturing with a
single camera. Our method with TensoRF backbone is not reported on
this dataset, since we find that the GPU memory required for training is
too large with the default model setting. We compare our method with
SoTA single-camera reconstruction methods in Tab. 2. Note that NSFF

requires data-driven depth and optical flow priors. We can observe
that our method outperforms HyperNeRF in terms of PSNR, but is
slightly worse than HyperNeRF on SSIM. We presume the reason is
that our method generates more accurate, but less sharp images com-
pared to HyperNeRF. Visual comparisons can be found at Fig. 8. We
can observe that HyperNeRF sometimes has misalignment between the
rendered and real images regarding moving objects, such as the wire in
the second row. We attribute the misalignment problem to not correctly
modeling the deformation. The incorrect modeling is partially caused
by treating all pointing as deforming in their representation. Lacking
decomposing static and dynamic areas also leads to a flickering back-
ground (demonstrated in our video). In our method, by decomposing
static and dynamic areas, the deformation field is regularized to only
model dynamic areas.

5.2 Ablation Studies
5.2.1

We first study the necessity of the proposed three categories for decom-
position. Visual comparisons of different decomposition variants are
demonstrated in Fig. 9 and quantitative results are reported in Tab. 3.
First, we study the impact of decomposing deforming and new areas on
a single-camera dataset. We can observe from Fig. 9(a) that removing
new area decomposition leads to failure of modeling the newly poured
out espresso, and removing deforming area decomposition leads to a
blurred hand and cup. Second, we study the impact of our decomposi-
tion on the multi-camera dataset. Fig. 9(b) demonstrates that the static
area becomes sharper after decomposing static areas. Besides, without
static area decomposition, we observe that the background is flickering
as we render images with novel time and view.

Finally, we study the impact of deforming area decomposition on
the multi-camera dataset. This ablation study is motivated by the obser-
vation that rendering with and without deformation modeling leads to
little difference (PSNR difference less than 0.1). We presume that this
is because the motion of objects between frames is small from cameras
with a high FPS recording rate. Therefore, modeling all dynamic ar-
eas with a newness field can still produce a smooth interpolation. We
manually downsample the frame sampling rate for training in Fig. 9(c)
to enlarge the motion between frames. We can observe that without
deformation modeling, the moving helmet becomes first disappeared
and then reappeared when interpolating between two training times-
tamps. As a comparison, the content of the helmet is well-preserved
if the deformation is modeled. To further validate the effectiveness
of the deformation decomposition, we study the impact of the size of
deformation network (i.e., num of layers and hidden dimensions) w.r.t.
to different temporal sampling rate in Fig. 10. We can observe that the
deformation decomposition becomes important if we consider a sparser
temporal sampling rate. The results support our claimed contribution
that deformation module is for regularizing temporal behaviors. There-
fore, if the temporal resolution is high in the input videos, we can safely
skip the deformation modeling, which validates the flexibility of our
framework.

Impact of Decomposition



Ground Truth w/o deforming area decomposition w/0 new area decomposition full decomposition

(a) Results after removing deforming and new area decomposition on the single-camera dataset (HyperNeRF).

A
Ground Truth

1 i _
w/o static area decomposition with static area decomposition
(b) Ablation of static area decomposition on the multi-camera dataset (Immersive Video). Second row: novel time and view rendering.

input time novel time input time

w/o deforming

with deforming

(c) Ablation of deforming area decomposition on the multi-camera dataset (Immersive Video). Every 8 frames are used for training.

Fig. 9: Ablation of scene decompositions with InstantNGP as the backbone. (a) For the single-camera dataset (HyperNeRF), the full decomposition
can well reconstruct the newly generated fluid and moving cup. (b) For multi-camera dataset (Immersive Video), static area decomposition
leads to a clearer background and suppress flickering background. (c) When the recording frame rate is low (~4 FPS) and objects move faster,
deformation decomposition can help generate smoother temporal interpolation results.



Table 2: Per-scene quantitative comparisons on HyperNeRF-vrig [52] for single-camera dynamic scenes.

Method Rendering Time Broom 3D Printer Chicken Peel Banana \ Mean

(s/img) PSNRT SSIMtT PSNRT SSIMtT PSNRtT SSIMt PSNRt SSIMt | PSNRT  SSIMt
NeRF [45] ~75 19.9 0.653 20.7 0.780 19.9 0.777 20.0 0.769 20.1 0.745
NV [38] <0.03 17.7 0.623 16.2 0.665 17.6 0.615 159 0.380 16.9 0.571
NSFF [32]* ~90 26.1 0.871 27.7 0.947 26.9 0.944 24.6 0.902 26.3 0.916
Nerfies [51] ~90 19.2 0.567 20.6 0.830 26.7 0.943 224 0.872 222 0.803
HyperNeRF [52] ~90 19.3 0.591 20.0 0.821 26.9 0.948 23.3 0.896 22.4 0.814
Ours-InstantNGP | 4.8 | 217 0.635 229 0.810 26.3 0.905 24.0 0.863 | 23.7 0.803

—— cvery 1 frame Table 4: Quantitative results of rendering with different bitrate budgets
every 2 frames

== every 4 frames
—— —&— every 8 frames

full deformation
20.9sec/frame

no deformation
10.8sec/frame

1 deformation

! 4 deformation
15.1sec/frame

16.8sec/frame

Fig. 10: Ablation of the deformation decomposition on Immersive
Video. We test the relative performance under different temporal resolu-
tion settings. The results demonstrate the effectiveness of the deforma-
tion modeling with a sparse temporal sampling rate for multi-camera
inputs.

Table 3: Quantitative results of different decomposition variants with
InstantNGP as the backbone.

for streaming.

Bitrates
Method PSNRT SSIM?T  LPIPSygg 4 (MB/frame)
Immersive [6] - - - ~0.5
Ours-TensoRF-CP
k=0.50 25.200 0.754 0.284 0.041
k=1.00 25.798 0.846 0.264 0.058
k=4.00 25.870 0.835 0.266 0.114
k=16.00 25.885 0.857 0.244 0.333
Ours-TensoRF-VM
k=0.05 26.093 0.866 0.184 3.423
k=0.25 26.032 0.865 0.188 6.357
k=0.50 26.187 0.872 0.192 9.942
k=1.00 26.203 0.878 0.173 17.112

Method PSNR*

on HyperNeRF-interp

SSIM{ LPIPSyGg . LPIPSajex |

w/o deforming 28.2 0.820 0.358 0.220
w/0 new 28.2 0.837 0.323 0.188
full 29.2 0.858 0.294 0.163
on Immersive Video (“Horse”)

w/o static 27.0 0.860 0.423 0.255
w/ static 27.4 0.871 0.425 0.295
on Immersive Video (“Welder” with every 8 frames)

w/o deforming 26.1 0.826 0.366 0.195
w/ deforming 25.2 0.800 0.327 0.168

The ablation studies validate our proposed method in three aspects:
1) the necessity of modeling all of the three areas on single-camera
datasets, 2) the necessity of decomposing static areas on multi-camera
datasets, and 3) the necessity of deforming decomposition on inputs
with large frame-wise motion even for multi-camera datasets.

5.2.2 Scene Decomposition Regularizing

In our method, we use o to balance the ratio of being deforming and
new in Eq. (3). A larger o encourages the scene to contain fewer
deforming areas. As introduced in the previous section, single-camera
datasets are more sensitive to the deformation field, thus we study the
impact of ¢ in Fig. 12 on a scene from HyperNeRF. We can observe

29.04 0.1875

— T=17

T=18 0.1667
—- T=19
0.1458
0.1250
0.1042
0.0833
0.0625
0.0417

0.0208

25.51 T T T T T 0.0000
5 10 15 20 25

Fig. 11: Rendering speed and (iplslality tradeoff with InstantNGP back-
bone. The color of the marker demonstrates the value of exponential
stepping during ray marching.

that over-suppressing deforming areas (o = 1) lead to blurry moving
objects, and under-suppressing deforming areas (¢ = 0.005) leads to a
noisy scene. The reason behind the blur from large « is the same as the
second row in Fig. 3 and Fig. 9(c): falsely modeling a moving object
as first-disappear-then-reappear. A good practice is that we can start
with a relatively large o to penalize deforming areas and then gradually
allow areas to deform by decreasing . Note that in practice, we can
reduce the number of frames when tuning ¢ since our representation is
streamable. The fewer number of frames, the smaller model size. Thus
tuning o can be efficient in our framework.

5.2.3 Streaming Bitrates

An important metric for a streaming service is the bitrate. To render
a new frame, the user is usually sensitive to the new data needed to
download. We can easily tune the bitrate requirements in our method
by setting the value of k. In Tab. 4, we report the bitrate for streaming a
new frame with different k£ values. The testing data is a sequence from
Immersive Video with 90 frames. Note that k denotes new channels
needed for rendering a new frame and rendering the first frame still
follows the channels required for static scenes (96 for TensoRF-CP and
4 for TensoRF-VM). For fair comparisons, bitrate is computed by the
total model size over the number of frames.

The TensoRF-CP based model achieves low bitrate and reasonable
performance, while the cost of TensoRF-VM is higher, but the perfor-
mance gain is obvious. We further present rendering results in Fig. 13.
We can observe clearer details of the background (i.e., car) and the
moving objects (i.e., person) with increased bitrate budgets. The above
results validate the extensibility of our framework.

5.2.4 Rendering Speed and Quality

The performance of our framework is highly correlated with the cho-
sen backbones. Thus, in our method, there exists a tradeoff between
rendering speed and quality, mainly affected by predefined model size
and rendering hyperparameters. In Fig. 11, we present the rendering
FPS and PSNR with different hyperparameter settings. We consider
two parameters: 7" for the hash table size and the stepping value during
ray marching. Scenes from the Immersive Video dataset are considered.
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Fig. 12: Visualization of the decomposition and rendering results on
HyperNeRF under different scene regularization settings.
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We can observe that our method inherits the flexibility of the backbone,
and we can easily tune the parameters to obtain the desired speed and
quality.

6 LIMITATION AND FAILURE CASES

Our method models each frame in the scene with local feature channels,
which enables streaming but limits the representation of long-range
repeated activities. For example, the activity of pouring espresso in
Fig. 2 may repeat several times in a scene. Further modeling the repeat-
ing activities can reduce redundancy and improve the reconstruction
quality by leveraging all the views of the same object. Moreover, our
method assumes input multi-view images are with the same camera
imaging configuration (e.g., exposure). A failure example from Immer-
sive Video is demonstrated in Fig. 14. Though view dependency can
still be modeled in the framework, the model tends to generate floating
points to overfit the training views. Recent progress that considers the
photography process [41,43] may help solve the issue. Our method
is still computational expensive for real-time VR applications. Fur-
ther baking and caching the decomposition results may help make the

Fig. 13: Comparison of results with different bitrate budgets for stream-
ing. On each image, we report the model name followed by the value
of k and the bitrate respectively.

Input images Novel view

Fig. 14: Our method fails when inputs are with different imaging
configurations (e.g., exposure).

framework more efficient.

7 CONCLUSION

We present a framework for representing dynamic scenes from both
multi- and single-camera captured images. The key components of
our framework are the decomposition module and the feature stream-
ing module. The decomposition module decomposes the scene into
static, deforming, and new areas. A sliding window based hybrid rep-
resentation is then designed for efficiently modeling the decomposed
neural fields. Experiments on multi- and single-camera datasets validate
our method’s efficiency and effectiveness. Extensive ablation studies
further provide insight into the model design, such as the necessity
of modeling deformation in large-motion scenes captured by camera
arrays.
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