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Abstract

In this supplementary document, we first provide implementation details on
the testbeds for the generator and the discriminator in Section 1. In Section 2
and Section 3 we include additional analyses for the generator and discriminator,
respectively. Section 4 comprises additional results for full GAN training. Lastly,
we provide details on the datasets in Section 5. The supplementary video shows
additional visualizations for the experiment in Fig. 1 of the main paper.

1 Implementation

1.1 Generator

The generator architecture is specified in Table 1 and is the same as the PGAN [8] generator
except for a reduced number of channels. For the model, we base our implementation on https:
//github.com/rosinality/progressive-gan-pytorch. Following [8], we use a slope of 0.2 for the
LeakyRelu and apply pixel normalization after every convolution. The first convolution uses a
padding of 3, while the remaining convolutions retain the input resolution.
Note that upsampling by reshaping reduces the channel dimension by a factor of 4. Therefore,
in this case, we multiply the output channels cout, cf. Table 1, of each convolutional layer before
the upsampling by 4. To keep a similar amount of total parameters, we further divide all channel
dimensions by 1.5.
We train the model end-to-end using Adam optimizer [12] with a learning rate of 0.0001 and a
batch size of 10. When training with both an L2-loss in image space and an L2-loss on the reduced
spectrum, we weigh both losses equally. We train on a single NVIDIA Tesla V100-SXM2-32GB.
Teaser: For the experiment in Fig. 1b of the main paper, we train on a single image of resolution
128. We use the settings mentioned before but use a batch size of 1.

1.2 Discriminator

The discriminator architecture is specified in Table 2 and is the same as the PGAN [8] discriminator
except for a reduced number of channels. For the model, we base our implementation on https://github.
com/rosinality/progressive-gan-pytorch. Following [8], we use a slope of 0.2 for the LeakyRelu, and
append the minibatch standard deviation after the last downsampling operation which increases cin
in Table 2 from 64 to 65. The last convolution uses no padding to reduce the spatial size from 4× 4
to 1× 1 before the linear layer, while the remaining convolutions retain the spatial size.
For the reconstruction task, we train a class-conditional discriminator with a single sample per
class. Hence, the linear layer outputs nc logits, where nc is the number of classes, i.e., samples.
In our experiments, we use nc = 10. The generator is replaced by nc learnable tensors which we
optimize jointly with the discriminator. We train the model end-to-end using Adam optimizer [12]
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Layer Type Kernel Size cin cout Activation Normalization Repetitions

Conv 4 64 64 LeakyRelu PixelNorm 1
Conv 3 64 64 LeakyRelu PixelNorm 1
Upsample – 64 64 – PixelNorm

× nConv 3 64 64 LeakyRelu PixelNorm
Conv 3 64 64 LeakyRelu PixelNorm
Upsample – 64 64 – PixelNorm

× 1Conv 3 64 32 LeakyRelu PixelNorm
Conv 3 32 32 LeakyRelu PixelNorm
Upsample – 32 32 – PixelNorm

× 1Conv 3 32 16 LeakyRelu PixelNorm
Conv 3 16 16 LeakyRelu PixelNorm
Conv 1 16 3 – PixelNorm 1

Table 1: Architecture of the PGAN [8] Generator with Reduced Channels. The value of n
depends on the resolution of the data, e.g., n = 2 and n = 3 for resolution 642 and 1282 pixels,
respectively.

Layer Type Kernel Size cin cout Activation Repetitions

Conv 1 3 16 LeakyRelu 1
Conv 3 16 32 LeakyRelu 1
Conv 3 32 32 LeakyRelu 1
Downsample – 32 32 –

× 1Conv 3 32 64 LeakyRelu
Conv 3 64 64 LeakyRelu
Downsample – 64 64 –

× nConv 3 64 64 LeakyRelu
Conv 3 64 64 LeakyRelu
Downsample – 64 64 –

× 1Conv 3 65 64 LeakyRelu
Conv 4 64 64 LeakyRelu
Linear – 64 nc – 1

Table 2: Architecture of the PGAN [8] Discriminator with Reduced Channels. nc denotes the
number of classes. The value of n depends on the resolution of the data, e.g., n = 2 and n = 3 for
resolution 642 and 1282 pixels, respectively.

with a learning rate of 0.0001 for both the tensors and the discriminator, and a batch size of 10. To
stabilize training we train with R1-regularization using a regularization strength of 10 and use an
exponential moving average with decay 0.999 for the learnable tensors to produce the images. For all
of our experiments, we ensure that training is stable by verifying that the discriminator converges to
equilibrium, i.e., that the logits of the discriminator approach zero during training. For our testbed, we
build on the framework from https://github.com/LMescheder/GAN_stability.git because it is intuitive
and straightforward to work with. We train on a single NVIDIA Tesla V100-SXM2-32GB.
Teaser: For the experiment in Fig. 1c of the main paper, we train on a single image of resolution
128. We use the settings mentioned before but use a batch size of 1.

1.3 GAN

Our code framework for training the full GAN setting is based on the publicly available code for
StyleGAN2-ada [9]: https://github.com/NVlabs/stylegan2-ada-pytorch.git because it is optimized for
large-scale multi-GPU GAN training. We train PGAN on two NVIDIA Tesla V100-SXM2-32GB
GPUs with a batch size of 256 and a learning rate of 0.002 for both the generator and the discriminator.
The strength of the R1-regularizer is 10 and we use a minibatch size of 4 to compute the standard
deviation within the batches. We do not train PGAN with adaptive discriminator augmentation and
adhere to the training protocol from [11].
For finetuning StyleGAN2 we follow the training process of [11] using four V100-SXM2-32GB or
four GEFORCE GTX 1080 Ti.
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Figure 1: Spectrum Error Evolution for Gen-
erators with Different Number of Training
Samples on the Toyset. Regardless of the
number of training images, interpolation-based
upsampling results in too little high-frequency
content while zero insertion and reshaping strug-
gle with checkerboard artifacts. The color cor-
responds to the relative error of the average pre-
dicted reduced spectrum wrt. the ground truth
and is clipped at 1, i.e. when the relative error
exceeds 100%.

Figure 2: Spectrum Error Evolution for Dis-
criminators with Different Number of Train-
ing Samples on the Toyset. Regardless of the
number of training images, the discriminator
shows no significant bias towards any frequency
range. Instead, it generally struggles with fre-
quencies of low magnitude. The color corre-
sponds to the relative error of the average pre-
dicted reduced spectrum wrt. the ground truth
and is clipped at 1, i.e. when the relative error
exceeds 100%.

2 Additional Analysis of the Generator Testbed

2.1 Number of Images

We ablate how the number of training images impacts our generator testbed. Fig. 1 shows that the
findings from the main paper remain consistent with a varying number of training images.

2.2 Low Magnitude Errors

In this section, we derive that an L2-loss penalizes errors with low magnitudes in the frequency
domain less than errors with high magnitudes. Let us first consider a 1D-signal with discrete values
xn, n = 0, . . . , N − 1. According to Parseval’s theorem, for the discrete Fourier transform F it holds
that

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|F [x]k|2 (1)

where |F [x]k|2 is the magnitude at frequency k. For an L2-loss on a predicted signal with values
xpred
n and a target signal with values xtgt

n we obtain

N−1∑
n=0

∣∣xpred
n − xtgt

n

∣∣2 =

N−1∑
n=0

∣∣[xpred − xtgt
]
n

∣∣2 (2)

=
1

N

N−1∑
k=0

∣∣F [xpred − xtgt
]
k

∣∣2 (3)

Let us now consider some frequency k0. When the error at k0 has a low magnitude, then
|F
[
xpred − xtgt

]
k0
|2 is small and therefore contributes only slightly to the sum in Eq. (3).

For a gray scale image with pixel values xij , i = 0, . . . ,H − 1, j = 0, . . . ,W − 1, this follows
similarly from Parseval’s theorem in 2D

H−1∑
i=0

W−1∑
j=0

|xij |2 =
1

HW

H−1∑
k=0

W−1∑
l=0

|F [x]kl|2 (4)
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AvgPool BlurPool Stride

SD 31.6 26.2 27.7
SD-FT 53.9 53.0 46.3
SD-CNN-FT 27.5 24.9 26.0

Table 3: PSNR for different spectral discrimi-
nators on CelebA at resolution 642 pixels.

Original Wavelet F-Mining SD
Acc FID Acc FID Acc FID Acc FID

SNGAN 75 78.0 59 59.2 65 80.6 58 63.0

Table 4: Spectral Classification Accuracy
and FID for SNGAN on Cats128 with dis-
criminators on different input domains.

(a) GT (b) SD (c) SD-FT (d) SD-CNN-FT

Figure 3: Reconstruction Guided by the Discriminator with BlurPool downsampling for different
spectral discriminators on CelebA at resolution 642 pixels.

3 Additional Analysis of the Discriminator Testbed

3.1 Number of Images

We ablate how the number of training images impacts our discriminator testbed. Fig. 2 shows that the
findings from the main paper remain consistent with a varying number of training images.

3.2 Penalizing the Spectrum

Jung et al. [7] propose an additional discriminator on the reduced spectrum (SD). However, penalizing
the reduced spectrum might not be sufficient for improving the training signal alone because the
spectrum computation and the azimuthal integration discard information, see Section 4 of the main
paper. Therefore, we investigate if using the full Fourier transform instead of the reduced spectrum
can improve performance. We compare two different additional discriminators to the version from [7]:
The first is an MLP that operates on the flattened 2D Fourier transform of the image and therefore
uses neither convolutions nor downsampling (SD-FT). Since this is only feasible for images with
a small resolution, we also investigate a convolutional spectral discriminator (SD-CNN-FT) with
the same architecture as the spatial discriminator. We weigh the spatial and spectral discriminator
equally as done in [7]. Further, we ensure that the models of all approaches have a similar number of
parameters. Note that using an MLP on the flattened 2D Fourier transform increases the number of
parameters from ∼ 300k to ∼ 900k. Hence, we increase the channel dimensions of the discriminator
for both SD and SD-CNN-FT to obtain models of comparable size.
The PSNR values in Table 3 show a significant improvement for all downsampling techniques for
SD-FT. However, with the convolutional variant, SD-CNN-FT, the PSNR does not improve wrt.
SD. This is consistent with the qualitative results for BlurPool downsampling in Fig. 3. Even with
the increased amount of parameters, SD cannot remove the downsampling artifacts. While SD-FT
closely reconstructs the ground truth, it can only be used with low-resolution images due to its fully
connected architecture. Unfortunately, naïvely applying a convolutional architecture on the full
spectrum also suffers from artifacts in the reconstructions due to downsampling. These observations
suggest that integrating frequency domain supervision effectively and efficiently remains an open
question in a GAN setting.

4 Additional Analysis of Full GAN Training

4.1 PGAN

Discriminators on Different Input Domains: For our ablation on different input domains for the
discriminator, Fig. 4 shows spectrum plots corresponding to Table 3 in the main paper. In agreement
with the observations in [2], F-mining alters the spectral statistics at the highest frequencies only
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(a) FFHQ64 (b) Cats128

Figure 4: Reduced Spectrum for PGAN with Discriminators on Different Input Domains. We
plot the mean and standard deviation of the reduced spectrum above 0.75fnyq.

(a) FFHQ64 (b) Cats128

Figure 5: Random Samples from PGAN with Reduced Channels.

slightly. Wavelets reduce the peak at the highest frequencies but also predict too few frequencies
below 0.88fnyq. Similar to wavelets, the additional spectral discriminator (SD) reduces the peak
at the highest frequencies but matches the spectral statistics below 0.88fnyq more closely. These
observations are consistent across both datasets and support the reported classification accuracy in
Table 3 of the main paper.

Qualitative Results for PGAN: In Fig. 5, we include some qualitative results for our smaller version
of PGAN in the original setting. While not completely photo-realistic, the model can still reproduce
characteristic features of the ground truth data. For our analysis, this is sufficient because the focus of
these experiments is not on image fidelity but to study the spectral properties of both the generator
and the discriminator in combination.

4.2 SNGAN

In this section, we consider different discriminators for SNGAN [14] to investigate if our analysis
from Section 4 in the main paper is consistent across architectures. We base our framework on the
official implementation of [3], https://github.com/cyq373/SSD-GAN.git. Similar to Section 4 in the
main paper, we compare an additional spectral discriminator (SD) [7], hard example mining in the
frequency domain (F-Mining) [3], and training in wavelet space (Wavelet) [6]. Consistent with our
analysis on PGAN [8], Fig. 6 shows that the additional spectral discriminator is the most effective to
reduce the spectral discrepancies. However, interestingly, the corresponding classification accuracies
on the reduced spectra in Table 4 are similar for wavelets and the additional spectral discriminator.
This suggests that training the spectral classifier on the fitted decay parameters, as proposed in [5], can
occasionally produce overly optimistic results with an accuracy closer to chance, i.e., 50%. However,
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Figure 6: Reduced Spectrum for SNGAN with Discriminators on Different Input Domains on
Cats128. We plot the mean and standard deviation of the reduced spectrum above 0.75fnyq .

(a) Cats256 (b) AFHQ Dog (c) FFHQ

Figure 7: Reduced Spectrum for StyleGAN2. We plot the mean and standard deviation of the
reduced spectrum above 0.75fnyq . While the spectral discriminator removes the high-frequency peak
on AFHQ Dog, the spectra for the remaining datasets retain an elevated amount of high frequencies.

for all results in the main paper the classification accuracy is consistent with the qualitative alignment
of the reduced spectra, see Fig. 4, Fig. 7, and Fig. 7 in the main paper. To adhere to the same metric
as [1, 5], we hence decide to report the classification accuracy on the fitted decay parameters.
While the FID in Table 4 is mixed for the different approaches, all values are lower than the
corresponding values for PGAN in Table 3 of the main paper. This is expected, as our version of
PGAN with the reduced channels has significantly fewer parameters than the original SNGAN.

4.3 StyleGAN2

For finetuning StyleGAN2 [11] with the spectral discriminator [7], Fig. 7 shows spectrum plots
corresponding to Table 5 in the main paper. While the spectral discriminator largely improves the
spectral statistics on AFHQ Dog, it cannot fully resolve the peak at the highest frequencies for the
remaining datasets. This also reflects in the high accuracy of the spectral classifier on these datasets in
Table 5 of the main paper. Fig. 8 shows qualitative results before and after finetuning on AFHQ dog
and FFHQ. For AFHQ dog, finetuning prevailingly changes the background to correct the spectral
statistics but qualitatively this reduces the image fidelity. This supports the results in Table 5 in the
main paper, where the accuracy of the spectral classifier is reduced but FID becomes worse. The
finetuned images on FFHQ have no background artifacts and have a similar FID as the original
images. However, the spectral statistics improve only slightly, see Fig. 7. This again suggests that the
reduced spectrum might not contain enough information to correct both the spectral statistics and
image fidelity.

5 Datasets

Toyset: We will include the scripts for generating our Toyset in our code release upon acceptance.
Licenses: The datasets used in this paper, CelebA [13], FFHQ [10] (Creative Commons BY-
NC-SA 4.0), LSUN Cats [15], and AFHQ [4] (Creative Commons BY-NC 4.0) are available for
non-commercial research purposes and are therefore suitable for our work.
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(a) AFHQ Dog

Before After Reduced Spectrum
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