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3Autonomous Vision Group, MPI for Intelligent Systems, Tübingen 4Microsoft, Redmond

In this supplementary document, we first show all initial datasets of our benchmark. We then give a description of the
technical details of our image alignment technique. Finally, we show an experiment demonstrating the necessity of the newly
proposed components of our image alignment technique.

1. Datasets
We show images of all 14 initial scenes in our benchmark in Fig. 1. They consist of 7 outdoor and 7 indoor scenes.

Numerous scenes contain thin structures such as the trees in forest, or a rope in playground. Several scenes also contain large
homogeneous or reflective surfaces such as the floor in pipes and terrains, the walls in office, or some doors in electro. These
elements make the scenes challenging for stereo algorithms. All DSLR and multi-camera rig datasets were recorded within
those scenes. Fig. 2 and Fig. 3 show example images of the high-resolution multi-view stereo datasets, while Fig. 4 shows
the two-view stereo datasets. We plan to extend the benchmark with additional datasets over time.

2. Image Alignment - Technical Details
In this section, we give additional details on the image alignment process described in Section 3.2, “Refinement of Image

Alignment”, in the paper. We repeat some points from the paper where necessary to improve readability.
The input to the algorithm are the previously aligned colored point clouds, the images whose alignment shall be refined,

and the initial values for the intrinsic and extrinsic parameters of all images. To robustify the optimization process, we
leverage a multi-resolution scheme. We start from a low resolution for all images and then gradually increase it. In our
implementation, we create as many image pyramid levels as is necessary for the smallest resolution to have an image area
not larger than 200 ∗ 160 pixels. We half the image resolution in each downsampling step.

Before the optimization starts, a multi-resolution point cloud is created as described in Sec. 3.2 in the paper. Fig. 6 shows
an example result for one of our datasets. Each level of the resulting multi-resolution point cloud has an associated point
radius, applying to all points of this level.

As described in the paper, the optimization uses a cost function consisting of a sum of two terms: One of them rates the
alignment of the images against the laser scan colors, while the other rates the alignment of the images against each other.
The cost term can thus be stated as:

C(gfixed) + C(gvariable) , (1)

where g denotes point pair gradients and C(g) is Eq. 2 from the paper:

C(g) =
∑
p∈P

∑
i∈I(p)

ρ

√√√√ 5∑
j=1

(Ii(πi(pj))− Ii(πi(p))− g(p,pj))
2

 . (2)

The values of gvariable(p,pj) are optimized, while gfixed(p,pj) are pre-calculated at the beginning from the colors of the laser
scan, denoted as L(p), and remain fixed thereafter. For a point p, the values of gfixed are given by:
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gfixed(p,pj) = L(pj)− L(p) . (3)

In each iteration of the multi-resolution scheme, the current image pyramid level, but also all levels with smaller image
resolution, are used in the cost function. The set P always includes all points from all levels of the multi-resolution point
cloud. However, point observations are dropped if there is no suitable image pyramid level for them given the point radius,
as described below.

For accessing image intensities at the projected position of points in the optimization process, we determine the scale
at which a point is observed and use tri-linear interpolation: In addition to projecting a point’s center to the image, the
point’s radius is also projected. It is used to compute the diameter d (in pixels on the highest-resolution pyramid level) of an
approximate disc that would result from projecting a sphere with this radius at the point position. Then, the two pyramid levels
h and h + 1 whose pixel sizes are closest to the disc diameter are selected, i.e., 2h ≤ d < 2h+1 (if no such pyramid levels
are available at the current iteration of the multi-resolution scheme, the point observation is dropped). Each of these images
is sampled at the projected point center position using bilinear interpolation. The results Ih(πh(p)) and Ih+1(πh+1(p)) are
then linearly interpolated according to the point’s scale as (1 − f) ∗ Ih(πh(p)) + f ∗ Ih+1(πh+1(p)), with f = d−2h

2h+1−2h .
Thus, in the first iteration of the multi-resolution scheme the two pyramid levels with the smallest image resolutions are used.
An illustration of this process is shown in Fig. 5.

Note that the point radius as well as the image resolution differ by a factor of two between adjacent point cloud levels
and between adjacent image pyramid levels, respectively. Thus, a point will be observed at an initial image pyramid level
with the highest available image resolution suiting this point. If a corresponding point exists on the next point cloud level, its
observation will also be on the next image pyramid level. Two images observing a point from a different distance will thus
observe the same point neighborhoods from a minimum point cloud level on. Point cloud levels with a higher point radius
are naturally weighted lower than levels with smaller radius since there are less points on these levels.

The optimization scheme proceeds as described in the following, and specified in Algorithm 1. For each step in the multi-
resolution scheme, we run a number of optimization iterations until convergence or a maximum number of 300 iterations
has been reached. We use the alternating optimization scheme proposed by [1]. In every iteration except the first, we first
optimize all image intrinsics and poses using a Levenberg-Marquardt step, while keeping gvariable(p,pj) fixed. In a second
step, we determine which of the points p are visible in which of the images, using the occlusion reasoning described in the
paper. We then optimize the gvariable(p,pj) while keeping the image intrinsics and poses fixed. Afterwards, the new value
of the cost function Eq. 1 is computed. If the cost did not improve over several iterations, the process converged and we
continue to the next level of the multi-resolution image pyramid. Otherwise, we proceed with another iteration.

Algorithm 1 High-level specification of the optimization process.
for each step in the image multi-resolution scheme do

for i := 0..max iterations do
if i > 0 then

Optimize intrinsics and poses while fixing gvariable(p,pj)

Use intrinsics, poses and occlusion reasoning to determine observed points
Optimize gvariable(p,pj) while fixing intrinsics and poses
Compute cost (Eq. 1)
if convergence then

break

3. Image Alignment Component Evaluation
Here, we complement the image alignment evaluations in the paper with an evaluation of two algorithmic components

proposed in the paper:
• We verify the necessity of the gradient-based cost term by modeling constant brightness as in [1]. We therefore modify

Eq. 2 to read:
C(c) =

∑
p∈P

∑
i∈I(p)

ρ [ Ii(πi(p))− c(p) ] . (4)

• We verify the usefulness of the multi-resolution scheme by modifying our algorithm to operate directly on the highest
resolution. In other words, we determine point neighbors within the original, full point cloud, and do not assign radii



to the points. All image accesses are performed with bilinear interpolation at the highest image resolution available in
the multi-resolution scheme at a given point in time.

For simplicity, we use a single image of the multi-camera rig for this experiment, which is aligned against a laser scan. The
results are shown in Fig. 7. We note that the variant using the brightness constancy assumption diverged completely due
to the discrepancy of colors across modalities (i.e., laser scan colors and image colors). Moreover, without the use of the
multi-resolution scheme, the optimization gets stuck close to the initial state.
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Figure 1: Colored 3D point cloud renderings of laser scans from our benchmark, with depth maps shown below.
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Figure 2: Overview of the high-resolution multi-view stereo datasets, showing all images for each dataset (part 1).
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Figure 3: Overview of the high-resolution multi-view stereo datasets, showing all images for each dataset (part 2).



Figure 4: Low-resolution two-view stereo images, captured by two stereo pairs whose cameras have different fields-of-view.
The images have been rectified.
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Figure 5: Sketch showing the concept of point observations in the multi-resolution point cloud for multiple point cloud
levels, and their relation to image pyramid levels. Shown are 3 point cloud levels numbered 0 (left), 1 (middle), and 2 (right).
Bottom: Points on a surface. The neighboring points of the red points are depicted in blue (using 3 neighbors). Two images
taken by the same camera observe the red points, with the orange image having twice the distance to the point than the yellow
image. Top: Image pyramids for the two images with 3 image pyramid levels. In the image pyramid levels, the red point and
its neighbors are shown in color if the red point’s observation scale is among the two closest ones to having a point diameter
of 1 pixel, and in gray otherwise. If both of these colored scales are observed, sufficient data for tri-linear interpolation is
present and the point is used for the optimization process. In these cases, the two involved image scales are framed green. In
this example, the two images both observe the red point at cloud level 1 but at different image pyramid levels.

Figure 6: Example splat renderings of the multi-resolution point cloud point centers for the kicker dataset. From top left to
bottom right: Point cloud levels 3 to 8.
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Figure 7: Comparison of different alignments for one image in the relief 2 scene. The laser scan is shown on the top left
with its original colors, while the image to be aligned is shown below it. To the right of them, the laser scan is shown in the
top row with the image projected onto it in different alignments. The middle row shows the difference image to the top left
image, computed on grayscale images. In the bottom row, a cutout from the middle row is displayed with increased contrast.
From left to right: Original laser scan colors and image, initial state (set manually for this example), alignment assuming
brightness constancy, alignment with a single-resolution point cloud only, alignment using our complete method. Since the
colors of the laser scan and the image differ strongly, a darker difference image does not necessarily mean that the alignment
is better. Instead, the difference image being homogeneous is an indication for a good alignment. Note that when assuming
brightness constancy, the camera intrinsics drift off such that only a small patch remains visible in the image.


