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Abstract

Motivated by the limitations of existing multi-view stereo
benchmarks, we present a novel dataset for this task. To-
wards this goal, we recorded a variety of indoor and out-
door scenes using a high-precision laser scanner and cap-
tured both high-resolution DSLR imagery as well as syn-
chronized low-resolution stereo videos with varying fields-
of-view. To align the images with the laser scans, we pro-
pose a robust technique which minimizes photometric er-
rors conditioned on the geometry. In contrast to previous
datasets, our benchmark provides novel challenges and cov-
ers a diverse set of viewpoints and scene types, ranging
from natural scenes to man-made indoor and outdoor en-
vironments. Furthermore, we provide data at significantly
higher temporal and spatial resolution. Our benchmark is
the first to cover the important use case of hand-held mobile
devices while also providing high-resolution DSLR camera
images. We make our datasets and an online evaluation
server available at http://www.eth3d.net.

1. Introduction
The problem of reconstructing 3D geometry from two

or more views has received tremendous attention in com-
puter vision for several decades. Applications range from
3D reconstruction of objects [4] and larger scenes [3, 5, 35]
over dense sensing for autonomous vehicles [6–8, 11, 30]
or obstacle detection [10] to 3D reconstruction from mobile
devices [14, 20, 28, 36, 41]. Despite its long history, many
problems in 3D reconstruction remain unsolved to date. To
identify these problems and analyze the strengths and weak-
nesses of the state-of-the-art, access to a large-scale dataset
with 3D ground truth is indispensable.

Indeed, the advent of excellent datasets and benchmarks,
such as [6,12,17,29,32–34,38,40], has greatly advanced the
state of the art of stereo and multi-view stereo (MVS) tech-
niques. However, constructing good benchmark datasets is

a tedious and challenging task. It requires the acquisition
of images and a 3D scene model, e.g., through a laser scan-
ner or structured light sensor, as well as careful registration
between the different modalities. Often, manual work is re-
quired [6] to mask occluded regions, sensor inaccuracies or
image areas with invalid depth estimates, e.g., due to mov-
ing objects. Therefore, existing benchmarks are limited in
their variability and are often also domain specific.

This paper presents a novel benchmark for two- and
multi-view stereo algorithms designed to complement ex-
isting benchmarks across several dimensions (c.f . Fig. 1):
(i) Compared to previous MVS benchmarks, our dataset of-
fers images acquired at a very high resolution. Using a pro-
fessional DSLR camera, we capture images at 24 Megapixel
resolution compared to 6 Megapixels in Strecha et al. [40],
0.5 Megapixels in KITTI [6], and 0.3 Megapixels in Mid-
dlebury [38]. This enables the evaluation of algorithms de-
signed for detailed 3D reconstruction. At the same time, it
encourages the development of memory and computation-
ally efficient methods which can handle very large datasets.
(ii) By now, mobile devices have become powerful enough
for real-time stereo [20,28,30,36,41], creating the need for
benchmark datasets that model the acquisition process typ-
ical for such hand-held devices. In addition to the DSLR
images, we also capture a set of image sequences with four
synchronized cameras forming two stereo pairs that move
freely through the scene. These videos enable algorithms
to exploit the redundancy provided by high frame rates to
improve the reconstruction quality. Again, this scenario re-
wards efficient algorithms which can handle large amounts
of data. To study the effect of field-of-view (FOV) and dis-
tortion, we recorded stereo imagery using different lenses.
(iii) In contrast to the Middlebury benchmarks [33, 38],
our scenes are not carefully staged in a controlled labo-
ratory environment. Instead, they provide the full range
of challenges of real-word photogrammetric measurements.
Rather than moving along a constrained trajectory, e.g., in a
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(a) Scene type (b) View point (c) Camera type (d) Field of view
Figure 1. Examples demonstrating the variety of our dataset in terms of appearance and depth. (a) Colored 3D point cloud renderings of
different natural and man-made scenes. (b) DSLR images taken from different view points. (c) DSLR image (top) and image from our
multi-camera rig (bottom) of the same scene. (d) Camera rig images with different fields-of-view.

circle around an object, our cameras undergo unconstrained
6-DoF motion. As a result, MVS algorithms need to be
able to account for stronger variations in viewpoint. In
contrast to Strecha’s dataset [40], our benchmark covers a
wider spectrum of scenes, ranging from office scenes over
man-made outdoor environments to natural scenes depict-
ing mostly vegetation. The latter type is especially interest-
ing as there exist fewer priors which are applicable to this
scenario. In addition, our scenes comprise fine details (e.g.,
trees, wires) which are challenging for existing techniques.

The contributions of this paper include (i) a benchmark,
which is made publicly available together with a website
for evaluating novel algorithms on a hold out test set, (ii) a
highly accurate alignment strategy that we use to register
images and video sequences against 3D laser scan point
clouds, and (iii) an analysis of existing state-of-the-art algo-
rithms on this benchmark. Our benchmark provides novel
challenges and we believe that it will become an invaluable
resource for future research in dense 3D reconstruction with
a focus on big data and mobile devices.

2. Related Work

In this section, we review existing two- and multi-view
stereo datasets. An overview which compares key aspects
of our dataset to existing benchmarks is provided in Tab. 1.

Two-View Stereo Datasets. One of the first datasets for
two-view stereo evaluation was the Tsukuba image pair [27]
for which 16 levels of disparity have been manually anno-
tated. Unfortunately, manual annotation does not scale to
large realistic datasets due to their complexity [21].

Towards more realism, Scharstein et al. [33] proposed
the Middlebury stereo evaluation, comprising 38 indoor
scenes at VGA resolution with ground truth correspon-
dences obtained via a structured light scanner. A new ver-
sion of the Middlebury dataset [32] has recently been re-
leased, featuring ground truth disparities for 33 novel scenes
at a resolution of 6 Megapixels. Unfortunately, the amount
of human labor involved in staging the scenes and record-
ing the ground truth is considerable. Thus, these datasets
are relatively small in size. Besides, their variability is lim-
ited as the setup requires controlled structured lighting con-
ditions. In contrast, we are interested in general scenes and
introduce a dataset that features both indoor and outdoor
environments.

Geiger et al. [6, 24] recorded the KITTI datasets using
a mobile platform with a laser scanner mounted on a car.
This automated the recording process. However, the bench-
mark images are of low resolution (0.5 Megapixels) and the
ground truth annotations are sparse (< 50% of all image
pixels). Besides, a fixed sensor setup on a car limits the
diversity of the recorded scenes to road-like scenarios.

Rendered images, as used in the MPI Sintel stereo
benchmark [1], provide an alternative to real recordings and
have been used for learning complex models [23]. Yet, cre-
ating realistic 3D models is difficult and the degree of real-
ism required is still not well understood [43].

Multi-View Stereo Datasets. The Middlebury dataset of
Seitz et al. [38] was the first common benchmark for eval-
uating multi-view stereo on equal grounds. They captured
hundreds of images per object using a robot that uniformly
sampled the hemisphere enclosing the scene. Reference



Benchmark Setting Resolution Online Eval. 6DoF Motion MVS Stereo Video Varying FOV
Middlebury MVS [38] Laboratory 0.3 Mpx 3 3

Middlebury [32, 33] Laboratory 6 Mpx 3 3

DTU [17] Laboratory 2 Mpx 3

MPI Sintel [1] Synthetic 0.4 Mpx 3 3 3 3

KITTI [6, 24] Street scenes 0.5 Mpx 3 3 3 3

Strecha [40] Buildings 6 Mpx 3 3

ETH3D (Proposed) Varied 0.4 / 24 Mpx 3 3 3 3 3 3

Table 1. Comparison of existing state-of-the-art benchmarks with our new dataset. Among other factors, we differentiate between different
scene types (e.g., staged scenes captured in a laboratory vs. synthetic scenes), whether the camera undergoes a restricted or a full 6
degrees-of-freedom (DoF) motion, or whether cameras with different fields-of-view (FOV) are used.

data has been created by stitching several line laser scans
together. Unfortunately, this benchmark provides a limited
image resolution (VGA), and its data, captured in a con-
trolled laboratory environment, does not reflect many of
the challenges in real-world scenes. Besides, only two toy
scenes with Lambertian surface properties are provided, re-
sulting in overfitting and performance saturation.

As a consequence, Strecha et al. [40] proposed a new
MVS benchmark comprising 6 outdoor datasets which in-
clude ∼30 images at 6 Megapixel resolution, as well as
ground truth 3D models captured by a laser scanner. While
this dataset fostered the development of efficient methods, it
provides relatively easy (i.e., well-textured) scenes and the
benchmark’s online service is not available anymore.

To compensate for the lack of diversity in [38, 40] and
the well textured, diffuse surfaces of [40], Jensen et al. [17]
captured a multitude of real-world objects using a robotic
arm. Yet, their controlled environment shares several limita-
tions with the original Middlebury benchmark and reduces
the variety of scenes and viewpoints.

Simultaneously to our work, Knapitsch et al. proposed a
new benchmark for challenging indoor and outdoor scenes
[19]. Their benchmark provides high-resolution video
data and uses ground truth measurements obtained with a
laser scanner. While our benchmark focuses on evaluat-
ing both binocular stereo and MVS, theirs jointly evalu-
ates Structure-from-Motion (SfM) and MVS. Knapitsch et
al. captured their video sequences with a high-end camera
and carefully selected camera settings to maximize video
quality. In contrast, our videos were captured with cameras
commonly used for mobile robotics and always use auto-
exposure. Thus, both benchmarks complement each other.

3. Data Acquisition and Registration
We follow [6,24,25,38,40] and capture the ground truth

for our dataset using a highly accurate 3D laser scanner.
This section describes the data acquisition and our approach
to robustly and accurately register images and laser scans.

3.1. Data Acquisition

We recorded the ground truth scene geometry with a Faro
Focus X 330 laser scanner. For each scene, depending on

the occlusions within it, we recorded one or multiple 360◦

scans with up to ∼28 million points each. In addition to
the depth measurements, we recorded the color of each 3D
point provided by the laser scanner’s integrated RGB cam-
era. Recording a single scan took ∼9 minutes.

For the high-resolution image data, we used a profes-
sional Nikon D3X DSLR camera on a tripod. We kept
the focal length and the aperture fixed, such that the intrin-
sic parameters can be shared between all images with the
same settings. The camera captures photos at a resolution
of 6048×4032 Pixels with a 85◦ FOV.

For the mobile scenario, we additionally recorded videos
using the multi-camera setup described in [9]: We use four
global-shutter cameras, forming two stereo pairs, which are
hardware-synchronized via an FPGA and record images at
∼13.6Hz. The cameras of the first stereo pair have a FOV
of 54◦ each, while the other two cameras have a FOV of
83◦. All cameras capture images at a resolution of 752×480
pixels. As common and necessary for mobile devices, we
set the exposure settings to automatic, allowing the device
to adapt to illumination changes.

3.2. Registration

To use the recorded data for our benchmark, we first
remove errors from the laser scans and mask problematic
areas in the images. Next, we align the scans taken from
different positions with each other and register the cam-
era images against the laser scan point clouds. We employ
a fully automatic three-stage alignment procedure for this
task. The first stage estimates a rough initial alignment be-
tween the laser scans and the camera images. We then refine
the registration of the laser scans, followed by a refinement
of the intrinsic and extrinsic calibration of the cameras. In
the following, we describe each of these steps in detail.

Preprocessing. The raw laser scans contain artifacts
caused by beams reflected from both foreground and back-
ground objects, resulting in the interpolation of foreground
and background depths at occlusion boundaries. Further-
more, reflecting objects and glass frequently cause system-
atic outliers. Therefore, we filter the scans with the sta-
tistical outlier removal procedure from [31]. This removes
all points from the cloud whose average distance to their



Figure 2. Left: Illustration of a cube map. One of the 6 virtual
cameras is highlighted in red, coordinate axes are shown in blue.
Right: Sparse color image and depth map (left) and the inpainted
image (right) for one virtual camera.

k nearest neighbors is larger than a threshold. The point
density of our scans differs depending on the distance from
the scanner to the surface. Thus, we compute the threshold
used for outlier removal for each point from its local neigh-
borhood rather than using one single global value. In a fi-
nal step, we manually remove undetected systematic errors.
We also inspect each image and annotate regions which
should not be used. These regions include moving objects,
e.g., moving branches in the wind, objects not represented
correctly in the laser scan such as transparent surfaces, or
regions for which occlusion reasoning (as described later)
fails due to the sparsity of the measured 3D point cloud.

Initial Laser Scan and Image Alignment. We use the
COLMAP SfM pipeline [35,37] to obtain an initial estimate
of the laser scan poses as well as the extrinsics and intrinsics
of the cameras. It is well known [15,39] that rendered views
can be robustly matched against real imagery using classical
descriptors like SIFT [22]. To register the laser scans with
the images, we thus include rendered cube map images for
each scan position into the SfM reconstruction. Cube maps
use the six faces of a cube to create an omnidirectional view
of the environment. The six projection centers of the vir-
tual cube map cameras coincide with the origin of the laser
scanner. We render the colored point cloud of a laser scan
into these cameras, resulting in six sparse color and depth
images per laser scan (c.f . Fig. 2). We fill in missing pix-
els not covered by a laser scan point by using the color of
the nearest neighbor. While more complex rendering meth-
ods [39] could be used, we found that this strategy already
suffices for feature matching in SfM. To obtain an initial es-
timate of the scale of the SfM model, we compare the depth
of SfM points projected into the cube maps to the rendered
depth maps.

Refinement of Laser Scan Alignment. The projection
centers of the cube maps correspond to the origin of each
laser scan. Thus, the SfM reconstruction from the previ-
ous step provides an initial relative alignment of the scans.
We refine this alignment by jointly optimizing the rigid
body poses of all laser scans via point-to-plane ICP [2] on
the point clouds. Visual inspection verified that the result-
ing alignments are virtually perfect, which can be expected

given the high accuracy of the laser scanner and the massive
amount of information per scan. Thus, we fix the scan poses
from here on.

Refinement of Image Alignment. In the last step of the
pipeline, we refine the extrinsic and intrinsic parameters of
the cameras while keeping the laser scan point cloud fixed.
For this step, we use an extended version of the dense image
alignment approach proposed by Zhou & Koltun [47].

Zhou & Koltun first sample a set of pointsP from a mesh
surface and then optimize the camera parameters and the in-
tensity c(p) of each 3D point to minimize the cost function∑

p∈P

∑
i∈I(p)

(Ii(πi(p))− c(p))2 . (1)

Here, I(p) denotes the set of images in which point p ∈ P
is visible, Ii(πi(p)) is the intensity of image i at pixel coor-
dinate πi(p) corresponding to p’s projection. c(p) denotes
the intensity of p, which belongs to the variables that are
optimized. In our case, we use the joint point cloud from all
scans for P . To determine the visibility I(p), we compute
a screened Poisson surface reconstruction [18] for P . Since
thin objects such as wires are often not captured by the
reconstruction, we augment the mesh-based representation
with splats, i.e., oriented discs, generated for all scan points
far away from the Poisson surface. I(p) is then determined
from depth map renderings of the mesh and the splats. All
points whose depth is smaller than that of the depth map
rendering at their projected positions, plus a small tolerance
of 1cm, are assumed to be visible in the image.

Eq. 1 directly compares pixel intensities and thus as-
sumes brightness constancy. However, this assumption is
strongly violated in our setting, since we (1) use multiple
cameras, some of which employ an auto-exposure setting,
and (2) record outdoor scenes where strong lighting changes
require manipulation of shutter time. Rather than directly
comparing pixel intensities, we thus compare intensity gra-
dients g, making our objective robust to brightness changes.
Similar to computing finite difference gradients in an image,
we compute the intensity gradients in the point cloud using
local neighborhoods.

However, due to the different image resolutions and high
laser scan point density in our dataset, the nearest neigh-
bors of a point p might project to the same pixel in one
image and to relatively far away pixels in another image. In
the former case, the points’ intensity differences are nearly
constant and do not provide enough information for the op-
timization. In the latter case, under-sampling of the image
leads to a meaningless intensity gradient. Consequently, we
sample the neighborhoods at appropriate point cloud reso-
lutions. We only add the projection of a point p to an image
as a constraint if all neighbors of p project roughly one pixel
away from it. This avoids the discussed case of over- and
under-sampling. To create enough constraints between all



images and for all points, we efficiently sample the neigh-
borhoods from a pre-calculated multi-resolution point cloud
and we use a multi-resolution scheme over image pyramids.
For each point projection to an image, the image pyramid
level with the most suitable resolution is considered. This
increases the chance that a gradient g is compared against
at least two images and influences the respective camera pa-
rameters. Further, the multi-resolution scheme over images
enlarges the convergence basin of the optimization. We pro-
cess the image pyramid coarse-to-fine while coarser resolu-
tions are kept in the objective function.

More concretely, we associate each point cloud level l
with a point radius rl in 3D. Since the changes made by
the refinement of the image alignment will be small, we use
the initial image alignment to determine the relevant point
cloud levels. For each laser scan point p and each pyramid
level h of each image i ∈ I(p), we determine the radius
r(i, h,p) of a 3D sphere around the 3D point p such that the
projection of the sphere into image i at this pyramid level
has a diameter of ∼1 pixel. To define the radius r0 at the
highest point cloud resolution, we use the minimum radius
among all points and images. The radius of level l + 1 is
defined as 2rl. The minimum and maximum radii r(i, h,p)
of a point p define an interval, and a point is associated
with level l if rl falls into this range. At each level l, we
greedily merge points within 2rl using the mean position as
the position of the resulting 3D point. For each resulting
point, we find its 25 nearest neighbors and randomly select
5 of them to define the point’s neighborhood. If the average
intensity difference between a point and its neighbors is less
than 5, we drop the point as it lies in a homogeneous region
and thus would not contribute to the optimization.

Let pj denote the j-th neighbor of point p. The variables
g(p,pj) are now associated to pairs of points and represent
their gradient. We modify the cost function in Eq. 1 to take
the following form

∑
p∈P

∑
i∈I(p)

ρ

√√√√ 5∑
j=1

(Ii(πi(pj))− Ii(πi(p))− g(p,pj))
2


(2)

where P contains all points of the multi-resolution point
cloud and ρ[·] is the robust Huber loss function. Note that,
in contrast to Eq. 1, we now represent and optimize for the
gradients g of each 3D point rather than the point intensity
c. Details on implementing this cost function can be found
in the supplementary material, which also provides an illus-
tration of the multi-resolution scheme.

For the sequences recorded with the multi-camera rig,
we ensure that the relative poses between the cameras in the
rig remain consistent for all images during optimization by a
rigid parametrization of the relative camera poses. To speed
up the optimization, we optimize g(p,pj) and the camera
parameters alternatingly, as proposed in [47].

L St
Figure 3. Sketch of the accuracy evaluation given a single scan
point, S, measured from the laser scanner position L, with evalua-
tion threshold t. Reconstruction points within the green region are
accurate, points in the red region are inaccurate, and points in the
blue region are unobserved.

In practice, we found this to result in a good relative
alignment between images, but not necessarily in a good
absolute alignment to the laser scans. We thus add an ad-
ditional cost term in analogy to Eq. 2 which minimizes the
intensity differences in the images wrt. the intensity differ-
ences measured by the laser scanner. This term lowers drift
by using the laser scan colors as a global reference. As a
limitation, it creates a dependency on the laser scan col-
ors, which themselves may not be perfectly aligned to the
scan geometry. However, we empirically found the result-
ing alignments to be of satisfying quality for our needs.

4. Tasks and Evaluation Protocols
Our benchmark consists of three scenarios correspond-

ing to different tasks for (multi-view) stereo algorithms:

• High-resolution multi-view stereo with relatively few
images recorded by a DSLR camera.

• Low-resolution multi-view stereo on video data
(“many-view”) recorded with a multi-camera rig.

• Low-resolution two-view stereo on camera pairs of a
multi-camera rig.

Each frame of the two-view stereo evaluation consists of all
4 images taken at the same time by the multi-camera rig.
These 4 cameras form 2 stereo pairs such that both cameras
in each pair have the same FOV. Both multi-view stereo sce-
narios are evaluated in 3D with the same evaluation proto-
col, while the two-view stereo scenario is evaluated in 2D
with a separate protocol, as detailed in the following.

Multi-View Stereo Evaluation Protocol. We compare
the MVS reconstruction, given as a point cloud, against the
laser scan ground truth of the scene. Only laser scan points
visible in at least two images are used for evaluation.

We evaluate the reconstruction in terms of accuracy and
completeness. Both measures are evaluated over a range
of distance thresholds from 1cm to 50cm. To determine
completeness, we measure the distance of each ground truth
3D point to its closest reconstructed point. Completeness is
defined as the amount of ground truth points for which this
distance is below the evaluation threshold.

Accuracy is defined as the fraction of reconstruction
points which are within a distance threshold of the ground



Figure 4. Two examples of laser scan renderings colored by differently aligned images. Top row, from left to right: Original laser scan
colors, initial alignment, 7-DoF ICP alignment, our alignment. Bottom row: Difference of each image to the laser scan image. Note that
the different lighting causes a significant color difference.

truth points. Since our ground truth is incomplete, care
has to be taken to prevent potentially missing ground truth
points from distorting the results. Consequently, we seg-
ment the reconstruction into occupied, free, and unobserved
space using an approximation of the laser scanner beams
(c.f . Fig. 3). We model the shape of the laser beam of each
ground truth point as a truncated cone. We make the as-
sumption that the beam volume from the laser scanner ori-
gin to a scan point contains only free space.

We extend the beam volume beyond each ground truth
point by the intersection of the extended beam cone with a
sphere centered at the observed point. The sphere’s radius
is equal to the evaluation tolerance t. Reconstructed points
outside all extended beam volumes are in unobserved space
and are therefore discarded in the evaluation. Among the re-
maining reconstruction points, points are classified as accu-
rate if they are within the extended beam volume and within
radius t of a ground truth point. Accuracy is then defined as
the ratio of accurate points out of all points while ignoring
unobserved points.

The definitions of accuracy and completeness provided
above are susceptible to the densities of both the recon-
structed and the ground truth point clouds. For instance,
an adversary could uniformly fill the 3D space with points
to achieve high completeness while creating comparatively
many more copies of a single reconstructed point known
to be accurate to also achieve high accuracy. We thus dis-
cretized the space into voxels with small side length. Both
measures are first evaluated for each voxel individually. We
then report the averages over all voxels. To measure a
voxel’s completeness, we use the ground truth points in it
and all reconstructed points, even those outside the voxel.
These roles are reversed to measure accuracy.

Since both accuracy and completeness are important for
measuring the quality of a reconstruction, we use the F1

score as a single measure to rank the results. Given accuracy
(precision) p and completeness (recall) r, the F1 score is
defined as the harmonic mean 2 · (p · r)/(p+ r).

Two-View Stereo Evaluation Protocol. The two-view
stereo evaluation is performed on rectified stereo pairs gen-
erated from the images of the multi-camera rig. The ground

Figure 5. Top row: Overlays of ground truth depth (colored) onto
images recorded by the multi-camera rig, showing the accuracy of
our alignments. Middle & bottom row: Detailed views for rig and
DLSR images, respectively. The ground truth depth is sparse at
full DSLR resolution and not all objects are scanned completely.

truth is given by the laser scan points projected into the rec-
tified image. Occluded points are dropped using the same
occlusion reasoning as in our image alignment procedure.
The left disparity image is used for evaluation.

For this scenario, we evaluate the same metrics used in
the Middlebury benchmark [32]: We measure the percent-
age of pixels having a disparity error larger than a threshold,
for thresholds of 0.5, 1, 2, and 4 disparities (bad 0.5 - bad 4),
the average absolute error in pixels (avgerr), the root-mean-
square disparity error in pixels (rms), and the error quantiles
in pixels for 50%, 90%, 95%, and 99% (A50 - A99).

5. Results
First, we evaluate the accuracy of our image registration

pipeline. Due to lack of more precise measurements, this
evaluation is performed qualitatively. In Sec. 5.2, we then
evaluate state-of-the-art algorithms on our benchmark and
discuss the gained insights.

5.1. Image Registration

We compare our alignment strategy to the initial align-
ment obtained after the laser scan refinement step and to a
baseline method. The latter refines the initial camera poses



through a 7-DoF ICP alignment (optimizing for position,
rotation and scale) between the reconstructed SfM points
and the laser scans. For each alignment result, we project all
images onto the laser scans and compute the average color
for each scan point to create the qualitative evaluations in
Fig. 4. As can be seen, the baseline significantly improves
the initial alignment. In turn, our alignment strategy clearly
improves upon the baseline.

Fig. 5 shows overlays of images with their ground truth
depth map computed from the laser scans. Depth edges are
not used in our alignment procedure, thus they serve as a
good indicator for the quality of the alignment. We observe
that for both the DSLR images as well as the camera rig
images, the alignment is generally pixel accurate.

5.2. Evaluation of Stereo Methods

High-Resolution Multi-View Scenario. For this sce-
nario, we evaluate the popular patch-based PMVS [4],
Gipuma [5], which is a well-performing PatchMatch-based
variant [26], the multi-view stereo method based on pixel-
wise view selection in COLMAP [35], and CMPMVS [16],
which aims at reconstructing weakly supported surfaces.
The results are shown in Fig. 6. We observe that for
most scenes, COLMAP and PMVS outperform Gipuma and
CMPMVS in terms of accuracy. In terms of completeness,
Gipuma achieves a low score for, e.g., courtyard, electro,
and delivery area, since its view selection scheme is tai-
lored to object-centric scenes. For most datasets, CMP-
MVS and COLMAP clearly achieve the best completeness.
COLMAP still struggles for weakly textured surfaces and
thin structures, such as electro (c.f . Fig. 8c), kicker, office,
and pipes. As shown in Fig. 8d, CMPMVS is able to cor-
rectly interpolate some of the weakly textured surfaces, but
also hallucinates structures in other parts.

Fig. 8b shows the cumulative completeness score over
all methods for the office scene, illustrating that all existing
techniques struggle to achieve high completeness for poorly
textured surfaces. We believe that solving this hard but im-
portant problem requires higher-level scene understanding.
Our benchmark provides a variety of scenes that can be used
to evaluate such approaches. In general, we observe that
there is significant room for improvement on our datasets.

Tab. 2a compares the relative performance of the dif-
ferent methods on Strecha [40] and our new benchmark,
ranked based on [35] and using the F1 score, respectively,
with a 2cm evaluation threshold used in both cases. Evi-
dently, good performance on the two datasets is not nec-
essarily correlated. We thus conclude that our benchmark
contains challenges different from the Strecha dataset.

Low-Resolution Multi-View Scenario. For this scenario,
we evaluate the same methods as for the previous one. For
Gipuma, we downsampled the videos to one fifth the frame

Method Strecha Ours
PMVS 3 (68.9) 3 (41.2)
Gipuma 4 (48.8) 4 (33.2)
COLMAP 2 (75.9) 1 (64.7)
CMPMVS 1 (78.2) 2 (48.9)

(a) MVS

Method Middle. KITTI Ours
SPS-Stereo [44] 5 (29.3) 2 (5.3) 1 (3.4)
MeshStereo [46] 2 (14.9) 4 (8.4) 3 (7.1)
SGM+D. [13, 42] 4 (29.2) 3 (6.3) 2 (5.5)
MC-CNN [45] 1 (10.1) 1 (3.9) 4 (8.9)
ELAS [7] 3 (25.7) 5 (9.7) 5 (10.5)

(b) Stereo (% Bad Pixels)
Table 2. Relative rankings on different benchmarks, demonstrating
the difference between ours and existing datasets.

Method Indoor Outdoor Mobile DSLR
CMPMVS 67.2 / 47.3 / 55.5 44.2 / 40.0 / 42.0 14.4 / 7.4 / 9.8 71.6 / 57.6 / 63.8
COLMAP 90.2 / 51.1 / 65.2 80.9 / 53.1 / 64.1 69.5 / 41.2 / 51.8 91.7 / 56.2 / 69.7
Gipuma 74.9 / 24.0 / 36.3 52.8 / 20.8 / 29.9 31.1 / 13.4 / 18.7 76.5 / 25.9 / 38.7
PMVS 85.1 / 28.0 / 42.1 72.2 / 27.8 / 40.1 48.7 / 18.8 / 27.2 90.1 / 31.3 / 46.5

Table 3. Category-based MVS evaluation showing accuracy / com-
pleteness / F1 score (in %) at a 2cm evaluation threshold.

Method bad 0.5 bad 1 bad 2 bad 4 avgerr rms A50 A90 A95 A99
SPS-Stereo [44] 57.42 22.25 4.28 2.00 0.95 2.11 1.08 2.40 3.60 8.77
SGM+D. [13, 42] 58.56 24.02 7.48 4.51 1.34 3.23 2.47 3.61 8.54 12.95
MeshStereo [46] 29.91 13.98 7.57 4.67 0.90 2.21 1.37 2.44 3.65 9.73
MC-CNN [45] 33.79 14.74 9.26 8.46 8.52 17.14 49.81 30.01 30.49 52.19
ELAS [7] 42.26 22.77 11.54 5.05 1.12 3.11 4.87 5.26 4.49 11.31

SPS-Stereo [44] 56.91 21.29 3.43 1.43 0.83 1.61 2.22 1.36 2.11 6.52
SGM+D. [13, 42] 57.79 22.43 5.48 2.65 1.03 2.43 1.14 7.05 6.46 10.69
MeshStereo [46] 28.99 13.23 7.09 4.38 0.87 2.18 1.61 2.55 4.46 10.65
MC-CNN [45] 32.51 13.85 8.92 8.59 8.48 17.03 49.01 27.63 28.79 45.79
ELAS [7] 41.20 21.56 10.50 4.56 1.06 3.03 4.54 3.98 5.24 9.68

Table 4. Results of two-view stereo methods on our dataset. We
show the metric averages over all stereo pairs for all regions (up-
per part) and non-occluded regions (lower part). The tables are
ordered by the bad 2 criterion.

rate since it ran out of memory while using all images. The
results are shown in Fig. 7. As can be seen, these datasets
challenge all algorithms, resulting in lower accuracy scores
compared to the high-quality datasets. PMVS and Gipuma
produce very incomplete and noisy results while CMPMVS
fails completely. This demonstrates the fact that they do not
properly exploit the high view redundancy in the videos.
COLMAP achieves relatively better results, but there is still
significant room for improvement in terms of absolute num-
bers. Furthermore, all methods take in the order of several
minutes to an hour to compute the sequences, underlining
the need for more efficient algorithms that can operate in
real-time on a mobile device.

Dataset Diversity. Tab. 3 provides an analysis of the differ-
ent MVS algorithms for different scenario categorizations.
COLMAP performs best on average as well as best for most
individual categories. We also observe that the performance
of the algorithms can vary significantly between the differ-
ent scenarios, indicating the need for benchmarks such as
ours that cover a wide variety of scenes.

Two-View Scenario. For this scenario, we evaluated five
methods, [7, 44–46] and a version of SGM stereo [13] on
Daisy descriptors [42]. These include methods belonging
to the state-of-the-art on KITTI and Middlebury Stereo. We
did not tune their parameters except for setting the maxi-
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Figure 6. Evaluation of the high-resolution multi-view scenario (indoor and outdoor datasets). Results for CMPMVS, COLMAP, Gipuma,
and PMVS are shown as a solid line for accuracy and as a dashed line for completeness.
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Figure 7. Multi-view evaluation results in the low-resolution scenario. The interpretation of the plots is the same as in Fig. 6.

(a) Electro: Laserscan (b) Office: Completeness

(c) Electro: COLMAP (d) Electro: CMPMVS
Figure 8. Qualitative results. See the text for details.

mum number of disparities. The evaluation results are pre-
sented in Table 4. Table 2b compares the relative rankings
of the different approaches on KITTI, Middlebury, and the
bad 2 non-occluded results of our benchmark. As can be
seen, the rankings differ significantly between ours and pre-
vious datasets, indicating that our benchmark complements
existing ones. In particular, our data requires algorithms to
perform well over a wide variety of scenes. It thus encour-
ages general solutions and prevents overfitting. The latter is
especially important given the popularity of learning-based
methods: As evident from Tabs. 4 and 2b, [45] performs
below average on our benchmark while outperforming all
other methods significantly on both Middlebury and KITTI.

6. Conclusion

In this paper, we proposed an accurate and robust reg-
istration procedure to align images and laser scans. Using
this algorithm, we created a new and diverse dataset for the
evaluation of two-view and multi-view stereo methods. Our
benchmark differs from existing datasets in several key as-
pects: We cover a wide variety of scene types and thus re-
quire general solutions which prevent overfitting. In addi-
tion, we provide the first benchmark for hand-held (multi-
view) stereo with consumer-grade cameras. Experimental
results for state-of-the-art algorithms show that our dataset
poses various challenges not yet covered by existing bench-
marks. One of these challenges is efficient processing of
large amounts of data, in the form of both high spatial and
high temporal sampling. These challenges are far from be-
ing solved and there is significant room for improvement.
As a service to the community, we provide the website
http://www.eth3d.net for online evaluation and comparison
of algorithms.
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