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Abstract
Text-to-image synthesis has recently seen signifi-
cant progress thanks to large pretrained language
models, large-scale training data, and the intro-
duction of scalable model families such as dif-
fusion and autoregressive models. However, the
best-performing models require iterative evalua-
tion to generate a single sample. In contrast, gen-
erative adversarial networks (GANs) only need a
single forward pass. They are thus much faster,
but they currently remain far behind the state-
of-the-art in large-scale text-to-image synthesis.
This paper aims to identify the necessary steps
to regain competitiveness. Our proposed model,
StyleGAN-T, addresses the specific requirements
of large-scale text-to-image synthesis, such as
large capacity, stable training on diverse datasets,
strong text alignment, and controllable variation
vs. text alignment tradeoff. StyleGAN-T signifi-
cantly improves over previous GANs and outper-
forms distilled diffusion models — the previous
state-of-the-art in fast text-to-image synthesis —
in terms of sample quality and speed.

1. Introduction
In text-to-image synthesis, novel images are generated based
on text prompts. The state-of-the-art in this task has re-
cently taken dramatic leaps forward thanks to two key ideas.
First, using a large pretrained language model as an encoder
for the prompts makes it possible to condition the synthe-
sis based on general language understanding (Ramesh et al.,
2022; Saharia et al., 2022). Second, using large-scale train-
ing data consisting of hundreds of millions of image-caption
pairs (Schuhmann et al., 2022) allows the models to synthe-
size almost anything imaginable.

Training datasets continue to increase rapidly in size and
coverage. Consequently, text-to-image models must be scal-
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Figure 1. Quality vs. speed in large-scale text-to-image synthesis.
StyleGAN-T greatly narrows the quality gap between GANs and
other model families while generating samples at a rate of 10 FPS
on an NVIDIA A100. The y-axis corresponds to zero-shot FID on
MS COCO at 256×256 resolution; lower is better.

able to a large capacity to absorb the training data. Recent
successes in large-scale text-to-image generation have been
driven by diffusion models (DM) (Ramesh et al., 2022; Sa-
haria et al., 2022; Rombach et al., 2022) and autoregressive
models (ARM) (Zhang et al., 2021; Yu et al., 2022; Gafni
et al., 2022) that seem to have this property built in, along
with the ability to deal with highly multi-modal data.

Interestingly, generative adversarial networks (GAN) (Good-
fellow et al., 2014) — the dominant family of generative
models in smaller and less diverse datasets — have not been
particularly successful in this task (Zhou et al., 2022). Our
goal is to show that they can regain competitiveness.

The primary benefits offered by GANs are inference speed
and control of the synthesized result via latent space ma-
nipulations. StyleGAN (Karras et al., 2019; 2020; 2021)
in particular has a thoroughly studied latent space, which
allows principled control of generated images (Bermano
et al., 2022; Härkönen et al., 2020; Shen et al., 2020; Abdal
et al., 2021; Kafri et al., 2022). While there has been no-
table progress in speeding up DMs (Salimans & Ho, 2022;
Karras et al., 2022; Lu et al., 2022), they are still far behind
GANs that require only a single forward pass.

We draw motivation from the observation that GANs lagged
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similarly behind diffusion models in ImageNet (Deng et al.,
2009; Dhariwal & Nichol, 2021) synthesis until the discrim-
inator architecture was redesigned in StyleGAN-XL (Sauer
et al., 2021; 2022), which allowed GANs to close the gap.
In Section 3, we start from StyleGAN-XL and revisit the
generator and discriminator architectures, considering the
requirements specific to the large-scale text-to-image task:
large capacity, extremely diverse datasets, strong text align-
ment, and controllable variation vs. text alignment tradeoff.

We have a fixed training budget of 4 weeks on 64 NVIDIA
A100s available for training our final model at scale. This
constraint forces us to set priorities because the budget is
likely insufficient for state-of-the-art, high-resolution results
(CompVis, 2022). While the ability of GANs to scale to
high resolutions is well known (Wang et al., 2018; Karras
et al., 2020), successful scaling to the large-scale text-to-
image task remains undocumented. We thus focus primarily
on solving this task in lower resolutions, dedicating only a
limited budget to the super-resolution stages.

Our StyleGAN-T achieves a better zero-shot MS COCO
FID (Lin et al., 2014; Heusel et al., 2017) than current state-
of-the-art diffusion models at a resolution of 64×64. At
256×256, StyleGAN-T halves the zero-shot FID previously
achieved by a GAN but continues to trail SOTA diffusion
models. The key benefits of StyleGAN-T include its fast
inference speed and smooth latent space interpolation in
the context of text-to-image synthesis, illustrated in Fig. 1
and Fig. 2, respectively. We will make our implementation
available at https://github.com/autonomousvision/stylegan-t

2. StyleGAN-XL
Our architecture design is based on StyleGAN-XL (Sauer
et al., 2022) that — similar to the original StyleGAN (Kar-
ras et al., 2019) — first processes the normally distributed
input latent code z by a mapping network to produce an in-
termediate latent code w. This intermediate latent is then
used to modulate the convolution layers in a synthesis net-
work using the weight demodulation technique introduced
in StyleGAN2 (Karras et al., 2020). The synthesis network
of StyleGAN-XL uses the alias-free primitive operations
of StyleGAN3 (Karras et al., 2021) to achieve translation
equivariance, i.e., to enforce the synthesis network to have
no preferred positions for the generated features.

StyleGAN-XL has a unique discriminator design where
multiple discriminator heads operate on feature projec-
tions (Sauer et al., 2021) from two frozen, pretrained fea-
ture extraction networks: DeiT-M (Touvron et al., 2021a)
and EfficientNet (Tan & Le, 2019). Their outputs are fed
through randomized cross-channel and cross-scale mixing
modules. This results in two feature pyramids with four res-
olution levels each that are then processed by eight discrim-

Zero-shot FID30k ↓ CLIP score ↑
StyleGAN-XL 51.88 5.58
New generator 45.10 6.02
New discriminator 26.77 9.78
LCLIP 20.52 11.72

Table 1. Architecture ablation. Our architectural changes no-
tably improve sample quality and text alignment. Here, we use the
lightweight training configuration described in Appendix A.

inator heads. An additional pretrained classifier network is
used to provide guidance during training.

The synthesis network of StyleGAN-XL is trained progres-
sively, increasing the output resolution over time by intro-
ducing new synthesis layers once the current resolution
stops improving. In contrast to a previous progressive grow-
ing approach (Karras et al., 2018), the discriminator struc-
ture does not change during training. Instead, the early low-
resolution images are upsampled as necessary to suit the
discriminator. In addition, the already trained synthesis lay-
ers are frozen as further layers are added.

For class-conditional synthesis, StyleGAN-XL concatenates
an embedding of a one-hot class label to z and uses a pro-
jection discriminator (Miyato & Koyama, 2018).

3. StyleGAN-T
We choose StyleGAN-XL as our baseline architecture be-
cause of its strong performance in class-conditional Ima-
geNet synthesis (Sauer et al., 2022). In this section, we
modify this baseline piece by piece, focusing on the genera-
tor (Section 3.1), discriminator (Section 3.2), and variation
vs. text alignment tradeoff mechanisms (Section 3.3) in turn.

Throughout the redesign process, we measure the effect of
our changes using zero-shot MS COCO. For practical rea-
sons, the tests use a limited compute budget, smaller models,
and a smaller dataset than the large-scale experiments in Sec-
tion 4; see Appendix A for details. We quantify sample qual-
ity using FID (Heusel et al., 2017) and text alignment using
CLIP score (Hessel et al., 2021). Following prior art (Balaji
et al., 2022), we compute the CLIP score using a ViT-g-14
model trained on LAION-2B (Schuhmann et al., 2022).

To change the class conditioning to text conditioning in our
baseline model, we embed the text prompts using a pre-
trained CLIP ViT-L/14 text encoder (Radford et al., 2021)
and use them in place of the class embedding. Accordingly,
we also remove the training-time classifier guidance. This
simple conditioning mechanism matches the early text-to-
image models (Reed et al., 2016a;b). As shown in Table 1,
this baseline reaches a zero-shot FID of 51.88 and CLIP
score of 5.58 in our lightweight training configuration. Note

https://github.com/autonomousvision/stylegan-t
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Figure 2. Example images and interpolations. StyleGAN-T generates diverse samples matching the text prompt and allows for smooth
interpolations between prompts, illustrated as a single continuous interpolation in scanline order. Generating these 56 samples at 512×512
takes 6 seconds on an NVIDIA RTX 3090, while a comparable grid takes up to several minutes with current diffusion models. The
accompanying video further demonstrates interpolations and contrasts them with diffusion models.
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Figure 3. Overview of StyleGAN-T. (a) Our generator architecture (Sec. 3.1) is closely related to StyleGAN2, with the learned constant
replaced with Fourier features and conditioning applied in a slightly different place. (b) For each resolution, a generator block is executed
and its contribution is accumulated to the image via a dedicated ToRGB layer. The generator blocks employ residual connections and
a new 2nd order style mechanism (Eq. 1). (c) Our discriminator (Sec. 3.2) processes the intermediate tokens of a DINO-trained vision
transformer using 5 identical discriminator heads. Text conditioning is done using projection at the end. (d) Text prompt is embedded
using CLIP and supplied to the generator and discriminator. We also employ a guidance term to further improve text alignment (Sec. 3.3).

that we use a different CLIP model for conditioning the gen-
erator and for computing the CLIP score, which reduces the
risk of artificially inflating the results.

3.1. Redesigning the Generator

StyleGAN-XL uses StyleGAN3 layers to achieve transla-
tional equivariance. While equivariance can be desirable
for various applications, we do not expect it to be necessary
for text-to-image synthesis because none of the successful
DM/ARM-based methods are equivariant. Additionally, the
equivariance constraint adds computational cost and poses
certain limitations to the training data that large-scale image
datasets typically violate (Karras et al., 2021).

For these reasons, we drop the equivariance and switch to
StyleGAN2 backbone for the synthesis layers, including
output skip connections and spatial noise inputs that facili-
tate stochastic variation of low-level details. The high-level
architecture of our generator after these changes is shown in
Fig. 3a. We additionally propose two changes to the details

of the generator architecture (Fig. 3b).

Residual convolutions. As we aim to increase the model
capacity significantly, the generator must be able to scale in
both width and depth. However, in the basic configuration, a
significant increase in the generator’s depth leads to an early
mode collapse in training. An important building block in
modern CNN architectures (Liu et al., 2022; Dhariwal &
Nichol, 2021) is an easily optimizable residual block that
normalizes the input and scales the output. Following these
insights, we make half the convolution layers residual and
wrap them by GroupNorm (Wu & He, 2018) for normaliza-
tion and Layer Scale (Touvron et al., 2021b) for scaling their
contribution. A layer scale of a low initial value of 10−5

allows gradually fading in the convolution layer’s contri-
bution, stabilizing the early training iterations significantly.
This design allows us to increase the total number of layers
considerably — by approximately 2.3× in the lightweight
configuration and 4.5× in the final model. For fairness, we
match the parameter count of the StyleGAN-XL baseline.
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Stronger conditioning. The text-to-image setting is chal-
lenging because the factors of variation can vastly differ per
prompt. Consider the prompts “a close-up of a face” and “a
beautiful landscape.” The first prompt should generate faces
with varying eye color, skin color, and proportions, whereas
the second should produce landscapes from different areas,
seasons, and daytime. In a style-based architecture, all of
this variation has to be implemented by the per-layer styles.
Thus the text conditioning may need to affect the styles
much more strongly than was necessary for simpler settings.

In early tests, we observed a clear tendency of the input
latent z to dominate over the text embedding ctext in our
baseline architecture, leading to poor text alignment. To
remedy this, we introduce two changes that aim to amplify
the role of ctext. First, we let the text embeddings bypass the
mapping network, following the observations by Härkönen
et al. (2022). A similar design was also used in LAFITE
(Zhou et al., 2022), assuming that the CLIP text encoder
defines an appropriate intermediate latent space for the text
conditioning. We thus concatenate ctext directly to w and
use a set of affine transforms to produce per-layer styles
s̃. Second, instead of using the resulting s̃ to modulate the
convolutions as-is, we further split it into three vectors of
equal dimension s̃1,2,3 and compute the final style vector as

s = s̃1 � s̃2 + s̃3. (1)

The crux of this operation is the element-wise multiplica-
tion � that effectively turns the affine transform into a 2nd

order polynomial network (Chrysos et al., 2020; Chrysos
& Panagakis, 2021), increasing its expressive power. The
stacked MLP-based conditioning layers in DF-GAN (Tao
et al., 2022) implicitly include similar 2nd order terms.

Together, our changes to the generator improve FID and
CLIP score by ∼10%, as shown in Table 1.

3.2. Redesigning the Discriminator

We redesign the discriminator from scratch but retain
StyleGAN-XL’s key ideas of relying on a frozen, pretrained
feature network and using multiple discriminator heads.

Feature network. For the feature network, we choose
a ViT-S (Dosovitskiy et al., 2021) trained with the self-
supervised DINO objective (Caron et al., 2021). The net-
work is lightweight, fast to evaluate, and encodes semantic
information at high spatial resolution (Amir et al., 2021).
An additional benefit of using a self-supervised feature net-
work is that it circumvents the concern of potentially com-
promising FID (Kynkäänniemi et al., 2022).

Architecture. Our discriminator architecture is shown
in Fig. 3c. ViTs are isotropic, i.e., the representation size
(tokens × channels) and receptive field (global) are the

same throughout the network. This isotropy allows us to
use the same architecture for all discriminator heads, which
we space equally between the transformer layers. Multiple
heads are known to be beneficial (Sauer et al., 2021), and
we use five heads in our design.

Our discriminator heads are minimalistic, as detailed in
Fig. 3c, bottom. The residual convolution’s kernel width
controls the head’s receptive field in the token sequence.
We found that 1D convolutions applied on the sequence of
tokens performed just as well as 2D convolutions applied on
spatially reshaped tokens, indicating that the discrimination
task does not benefit from whatever 2D structure remains
in the tokens. We evaluate a hinge loss (Lim & Ye, 2017)
independently for each token in every head.

Sauer et al. (2021) use synchronous BatchNorm (Ioffe &
Szegedy, 2015) to provide batch statistics to the discrimi-
nator. BatchNorm is problematic when scaling to a multi-
node setup, as it requires communication between nodes and
GPUs. We use a variant that computes batch statistics on
small virtual batches (Hoffer et al., 2017). The batch statis-
tics are not synchronized between devices but are calculated
per local minibatch. Furthermore, we do not use running
statistics, and thus no additional communication overhead
between GPUs is introduced.

Augmentation. We apply differentiable data augmentation
(Zhao et al., 2020) with default parameters before the feature
network in the discriminator. We use random crops when
training at a resolution larger than 224×224 pixels (ViT-S
training resolution).

As shown in Table 1, these changes significantly improve
FID and CLIP score by further ∼40%. This considerable
improvement indicates that a well-designed discriminator
is critical when dealing with highly diverse datasets. Com-
pared to the StyleGAN-XL discriminator, our simplified re-
design is ∼2.5× faster, leading to ∼1.5× faster training.

3.3. Variation vs. Text Alignment Tradeoffs

Guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)
is an essential component of current text-to-image diffusion
models. It trades variation for perceived image quality in a
principled way, preferring images that are strongly aligned
with the text conditioning. In practice, guidance drastically
improves the results; thus, we want to approximate its be-
havior in the context of GANs.

Guiding the generator. StyleGAN-XL uses a pretrained
ImageNet classifier to provide additional gradients during
training, guiding the generator toward images that are easy
to classify. This method improves results significantly. In
the context of text-to-image, “classification” involves cap-
tioning the images. Thus, a natural extension of this ap-
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proach is to use a CLIP image encoder instead of a classifier.
Following Crowson et al. (2022), at each generator update,
we pass the generated image through the CLIP image en-
coder to obtain caption cimage, and minimize the squared
spherical distance to the normalized text embedding ctext:

LCLIP = arccos2(cimage · ctext) (2)

This additional loss term guides the generated distribution
towards images that are captioned similarly to the input text
encoding ctext. Its effect is thus similar to the guidance in
diffusion models. Fig. 3d illustrates our approach.

CLIP has been used in prior work to guide a pretrained
generator during synthesis (Nichol et al., 2022; Crowson
et al., 2022; Liu et al., 2021). In contrast, we use it as a part
of the loss function during training. It is important to note
that overly strong CLIP guidance during training impairs
FID, as it limits the distribution diversity and ultimately
starts introducing image artifacts. Therefore, the weight of
LCLIP in the overall loss needs to strike a balance between
image quality, text conditioning, and distribution diversity;
we set it to 0.2. We further observed that guidance is helpful
only up to 64×64 pixel resolution. At higher resolutions,
we apply LCLIP to random 64×64 pixel crops.

As shown in Table 1, CLIP guidance improves FID and
CLIP scores by further ∼20%.

Guiding the text encoder. Interestingly, the earlier meth-
ods listed above that use a pretrained generator did not report
encountering low-level image artifacts. We hypothesize that
the frozen generator acts as a prior that suppresses them. We
build on this insight to further improve the text alignment.
In our primary training phase, the generator is trainable and
the text encoder is frozen. We then introduce a secondary
phase, where the generator is frozen and the text encoder
becomes trainable instead. We only train the text encoder as
far as the generator conditioning is concerned; the discrimi-
nator and the guidance term (Eq. 2) still receive ctext from
the original frozen encoder. This secondary phase allows a
very high CLIP guidance weight of 50 without introducing
artifacts and significantly improves text alignment without
compromising FID (Section 4.2). Compared to the primary
phase, the secondary phase can be much shorter. After con-
vergence, we continue with the primary phase.

Explicit truncation. Typically variation has been traded to
higher fidelity in GANs using the truncation trick (Marchesi,
2017; Brock et al., 2019; Karras et al., 2019), where a sam-
pled latent w is interpolated towards its mean with respect
to the given conditioning input. This way, truncation pushes
w to a higher-density region where the model performs bet-
ter. In our implementation, w = [f(z), ctext], where f(·)
denotes the mapping network, so the per-prompt mean is
given by w̃ = Ez[w] = [f̃ , ctext], where f̃ = Ez[f(z)]. We

ψ = 1.00

CS = 0.33

ψ = 0.60

CS = 0.36

ψ = 0.10

CS = 0.39

Figure 4. Truncation. Four samples for the prompt “a graphite
sketch of Eva Longoria” with different random z. Increasing
truncation (decreasing ψ) improves the text alignment according
to mean CLIP score per row (CS) at the cost of lower variation.

thus implement truncation by tracking f̃ during training and
interpolating between w̃ and w according to scaling param-
eter ψ ∈ [0, 1] at inference time.

We illustrate the impact of truncation in Fig. 4. In practice,
we rely on the combination of CLIP guidance and truncation.
Guidance improves the model’s overall text alignment, and
truncation can further boost quality and alignment for a
given sample, trading away some variation.

4. Experiments
Using the final configuration developed in Section 3, we
scale the model size, dataset, and training time. Our final
model consists of ∼1 billion parameters; we did not ob-
serve any instabilities when increasing the model size. We
train on a union of several datasets amounting to 250M text-
image pairs in total. We use progressive growing similar
to StyleGAN-XL, except that all layers remain trainable.
The hyperparameters and dataset details are listed in Ap-
pendix A.

The total training time was four weeks on 64 A100 GPUs
using a batch size of 2048. We first trained the primary phase
for 3 weeks (resolutions up to 64×64), then the secondary
phase for 2 days (text embedding), and finally the primary
phase again for 5 days (resolutions up to 512×512). For
comparison, our total compute budget is about a quarter of
Stable Diffusion’s (CompVis, 2022).

4.1. Quantitative Comparison to State-of-the-Art

We use zero-shot MS COCO to compare the performance
of our model to the state-of-the-art quantitatively at 64×64
pixel output resolution in Table 2 and 256×256 in Table 3.
At low resolution, StyleGAN-T outperforms all other ap-
proaches in terms of output quality, while being very fast to
evaluate. In this test we use the model before the final train-
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Model Model type Zero-shot FID30k Speed [s]

Stable Diffusion * Diffusion 8.40 –
eDiff-I Diffusion 7.60 26.0
LDM * Diffusion 7.59 –
GLIDE Diffusion 7.40 10.9

LAFITE * GAN 14.80 ∼0.01
StyleGAN-T GAN 7.30 0.06

* downsampled to 64×64 pixels using Lanczos – not available

Table 2. Comparison of FID on MS COCO 64×64. Inference
speeds are measured on an A100. For LAFITE we estimate what
its speed would be at a native 64×64 resolution.

Model Model type Zero-shot FID30k Speed [s]

LDM Diffusion 12.63 3.7
GLIDE Diffusion 12.24 15.0
DALL·E 2 Diffusion 10.39 –
Stable Diffusion * Diffusion 8.59 3.7
Imagen Diffusion 7.27 9.1
eDiff-I Diffusion 6.95 32.0

DALL·E Autoregressive 27.50 –
Ernie-ViLG Autoregressive 14.70 –
Make-A-Scene * Autoregressive 11.84 25.0
Parti-3B Autoregressive 8.10 6.4
Parti-20B Autoregressive 7.23 –

LAFITE GAN 26.94 0.02
StyleGAN-T * GAN 13.90 0.10

* downsampled to 256×256 pixels using Lanczos – not available

Table 3. Comparison of FID on MS COCO 256×256. Infer-
ence speeds are measured on an A100, except for Imagen and Parti
that use a faster TPUv4 accelerator. The Stable Diffusion num-
bers are from (Balaji et al., 2022; Lambda Labs, 2022); the other
numbers are obtained from the respective papers or through corre-
spondence with the authors.

ing phase, i.e., one that produces 64×64 images natively. At
high resolution, StyleGAN-T still significantly outperforms
LAFITE but lags behind DMs and ARMs in terms of FID.

These results lead us to two conclusions. First, GANs
can match or even beat current DMs in large-scale text-
to-image synthesis at low resolution. Second, a powerful
superresolution model is crucial. While FID slightly de-
creases in eDiff-I when moving from 64×64 to 256×256
(7.60→6.95), it currently almost doubles in StyleGAN-T.
Therefore, it is evident that StyleGAN-T’s superresolution
stage is underperforming, causing a gap to the current state-
of-the-art high-resolution results. Whether this gap can be
bridged simply with additional capacity or longer training
is an open question.

4.2. Evaluating Variation vs. Text Alignment

We report FID–CLIP score curves in Fig. 5. We compare
StyleGAN-T to a strong DM baseline (CLIP-conditioned
variant of eDiff-I) and a fast, distilled DM baseline (SD-
distilled) (Meng et al., 2022).
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Figure 5. Comparing text alignment tradeoffs. We compare
FID–CLIP score curves of StyleGAN-T, distilled Stable Diffusion
(SD-distilled), and eDiff-I. We report values of SD-distilled at a
guidance scale ofw = 4. For a fair comparison, we report numbers
for CLIP-conditioned eDiff-I disabling additional conditioning
on T5-XXL text embeddings. The models use different methods
to increase the CLIP score (i.e., text alignment): StyleGAN-T
decreases truncation ψ = {1.0 . . . 0.0}, SD-distilled increases the
number of sampling steps {2, 4, 8}, eDiff-I increases guidance
scale w = {0 . . . 10}.
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Figure 6. Text encoder training. Training the CLIP text encoder
(TE) pushes the entire FID–CLIP score curve to the right, hence,
increasing overall text alignment.

Using Truncation, StyleGAN-T can push the CLIP score to
0.305, successfully improving text alignment. StyleGAN-T
outperforms SD-distilled in both FID and CLIP scores yet
remains behind eDiff-I. Regarding speed, eDiff-I requires
32.0 seconds to generate a sample. SD-distilled is signif-
icantly faster and only needs 0.6 seconds at its best per-
formance at eight sampling steps. StyleGAN-T beats both
baselines, generating a sample in 0.1 seconds.

To isolate the impact of text encoder training, we evaluate
FID–CLIP score curves in Fig. 6. For this experiment, we
utilize the same generator network and only swap the text
encoder. As the generator has been frozen in the secondary
phase, it can handle both the original and fine-tuned CLIP
text embeddings as evidenced by their equal performance
measured by FID. Fine-tuning the text encoder significantly
improves the CLIP score without compromising FID.
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“a victorian house” → “a modern house”

“a cute puppy” → “a cute blue puppy, Madhubani painting”

“a landscape in winter” → “a landscape in fall”

Figure 7. Latent manipulation. Samples (first column) can be
manipulated by following semantic directions in latent space.

4.3. Qualitative Results

Fig. 2 shows example images produced by StyleGAN-T,
along with interpolations between them. The accompanying
video shows this in animation and compares it to diffusion
models, demonstrating that the interpolation properties of
GANs continue to be considerably smoother.

Interpolating between different text prompts is straightfor-
ward. For an image generated by an intermediate latent
w0 = [f(z), ctext0], we substitute the text condition ctext0
with a new text condition ctext1. We then interpolate w0

towards the new latent w1 = [f(z), ctext1] as shown in
Fig. 7. This approach is similar to DALL·E 2’s text diff op-
eration that interpolates between CLIP embeddings. Previ-
ous work for manipulating GAN-generated images (Patash-
nik et al., 2021) typically discovers these latent directions
via a training process that needs to be repeated per prompt
and is, therefore, expensive. Meaningful latent directions
are a built-in property of our model, and no extra training is
needed.

By appending different styles to a prompt, StyleGAN-T can
generate a wide variety of styles as shown in Fig. 8. Subjects
tend to be aligned for a fixed latent z, which we showcase
in the accompanying video.

5. Limitations and Future Work
Similarly to DALL·E 2 that also uses CLIP as the underly-
ing language model, StyleGAN-T sometimes struggles in
terms of binding attributes to objects as well as producing
coherent text in images (Fig. 9). Using a larger language
model would likely resolve this issue at the cost of slower
runtime (Saharia et al., 2022; Balaji et al., 2022).

“real photo” “cubism painting” “made of beads and yarn”

“chalk art” “van Gogh painting” “anime”

Figure 8. Styles. Samples generated by StyleGAN-T for a fixed
random seed and the caption “astronaut, {X}”, where X is denoted
below each image.

“a red cube on
a blue cube”

“astronaut, child’s
drawing”

“a sign that says
deep learning”

Figure 9. Failure cases. StyleGAN-T can struggle to bind at-
tributes to objects, and to produce coherent text.

Guidance via CLIP loss is vital for good text alignment, but
high guidance strength results in image artifacts. A possible
solution could be to retrain CLIP on higher-resolution data
that does not suffer from aliasing or other image quality
issues. In this context, the conditioning mechanism in the
discriminator may also be worth revisiting.

Truncation improves text alignment but differs from guid-
ance in diffusion models in two important ways. While trun-
cation is always towards a single mode, guidance can at
least theoretically be arbitrarily multi-modal. Also, trunca-
tion sharpens the distribution before the synthesis network,
which can reshape the distribution in arbitrary ways, thus,
possibly undoing any prior sharpening. Therefore, alterna-
tive methods to truncation might further improve the results.

Improved super-resolution stages (i.e., high-resolution lay-
ers) through higher capacity and longer training are an obvi-
ous avenue for future work.

Methods for “personalizing” diffusion models have become
popular (Ruiz et al., 2022; Gal et al., 2022). They finetune
a pretrained model to associate a unique identifier with a
given subject, allowing it to synthesize novel images of the
same subject in novel contexts. Such approaches could be
similarly applied to GANs.
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A. Configuration Details
Table 4 lists the training and network architecture hyperparameters for our two configurations: lightweight (used for
ablations) and the full configuration (used for main results). Table 5 details the training schedules.

Lightweight training configuration. We train using the CC12M dataset (Changpinyo et al., 2021) at 64×64 resolution,
without using progressive growing.

Full training configuration. We train using a union of several datasets: CC12m (Changpinyo et al., 2021),
CC (Sharma et al., 2018), YFCC100m (filtered) (Thomee et al., 2016; Singh et al., 2022), Redcaps (Desai et al., 2021),
LAION-aesthetic-6+ (Schuhmann et al., 2022). This amounts to a total of 250M text-image pairs. We use progressive grow-
ing similar to StyleGAN-XL, except that all layers remain trainable. The vast majority of the training budget is spent on
resolutions up to 64×64.

B. Truncation Grids
Fig. 10 shows additional examples of truncation.

Lightweight Full
Generator channel base 32768 65536
Generator channel max 512 2048
Number of residual blocks per generator block 3 4
Generator parameters 75 million 1.02 billion
Text encoder parameters 123 million 123 million
Latent (z) dimension 64 64
Discriminator’s feature network DINO ViT-S/16 DINO ViT-S/16
Discriminator head’s input feature space size 384 384
Discriminator head’s feature space size at text conditioning 64 64
Dataset size 12M 250M
Number of GPUs 8 64
Batch size 2048 2048
Optimizer Adam Adam
Generator learning rate 0.002 0.002
Generator Adam betas (0, 0.99) (0, 0.99)
Discriminator learning rate 0.002 0.002
Discriminator Adam betas (0, 0.99) (0, 0.99)
EMA 0.9978 0.9978
CLIP guidance weight 0.2 0.2 (primary phase), 50 (secondary phase)
Progressive growing No Yes

Table 4. Generator, discriminator, and training hyperparameters for the two setups used in this paper: Lightweight and Full configuration.

Lightweight Full
Primary Phase

64x64 for 50 A100 days (25 million iterations)
Primary Phase

16x16 for 450 A100 days (118,000 iterations)
32x32 for 450 A100 days ( 78,000 iterations)
64x64 for 450 A100 days ( 57,000 iterations)

Secondary Phase
190 A100 days (20,000 iterations)

Primary Phase
128x128 for 96 A100 days (10,000 iterations)
256x256 for 70 A100 days ( 6,000 iterations)
512x512 for 30 A100 days ( 3,000 iterations)

Table 5. Training schedules for the two training configurations used in this paper. The times are listed as the number of days it would
have taken on a single NVIDIA A100 GPU. An iteration corresponds to 2048 real and generated examples.
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ψ = 0.10
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ψ = 0.10
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“A painting of a fox in the style of starry night” “A surrealist dream-like oil painting by Salvador Dalı́ of a cat playing checkers”
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CS = 0.40
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CS = 0.40

“A still of Kermit The Frog in WALL-E (2008)” “A transformer robot with legs and arms made out of vegetation and leaves”

Figure 10. Additional truncation grids. We show samples for 6 different prompts and 5 different random latents, shared between the
prompts. Increasing truncation (decreasing ψ), improves the text alignment according to mean CLIP score per row, CS, at the cost of
lower variation.
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