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Abstract

In this work, we investigate the importance of 3D rea-
soning for photorealistic and controllable neural render-
ing. Towards this goal, we develop an approach which ex-
plicitly formulates light transport in static and dynamic 3D
scenes using a neural network. In contrast to existing ap-
proaches that operate primarily in the 2D image domain,
our approach reasons in both 3D and 2D space, thus en-
abling both global illumination effects and manipulation of
3D scene geometry. Our differentiable model can be trained
jointly on multiple scenes from noisy renderings and is able
to produce photorealistic renderings with accurate lighting,
capturing shadows, reflections and refractions. Moreover, it
compares favorably to baselines which combine path trac-
ing and image denoising at the same computational budget.

1. Introduction
Photorealistic rendering is a core problem in graphics

and vision. Algorithms which are able to reason about di-
rect and indirect illumination of a scene (i.e., global illu-
mination) have become an essential building block for a
wide range of applications such as gaming, virtual reality,
movies and others. With the advent of deep learning, syn-
thetic data generation emerged as another important appli-
cation [2, 18, 77, 14, 85] with the potential to satisfy the no-
torious data hunger of modern deep learning systems. How-
ever, as modern deep neural networks require large amounts
of data, most existing approaches rely on approximate ren-
dering techniques to accelerate training [18, 77, 14, 85].
Training embodied agents (i.e., using reinforcement learn-
ing) poses even stronger demands wrt. simulation time [17].

Historically, photorealistic image synthesis is achieved
using sampling-based rendering techniques [64, 86] where
the physics of light transport [33] is exploited to transform
a geometric description of a scene into a realistic image.
However, while physically based rendering yields photo-
realistic results, it is also notoriously slow with rendering

times of up to multiple hours for a single image. This makes
it difficult to use in the context of training neural networks.

On the other hand, recent advances in deep generative
models (e.g., GANs [22]) enabled the generation of highly
realistic images [50, 34, 35] in milliseconds on commer-
cial GPUs. However, most existing approaches make use
of rather abstract latent representations which do not al-
low for precise control over the 3D content. Moreover, the
lack of a holistic 3D scene description limits neural ren-
dering approaches in their ability to render images that are
consistent across viewpoints or time. While several recent
works [78, 3, 52, 61, 53] have shown that neural networks
can produce consistent images for a given scene, these ap-
proaches usually do not explicitly reason about light trans-
port. Consequently, they are not able to handle fine-grained
geometric scene manipulation and do not explicitly inte-
grate illumination into the 3D representation. This moti-
vates us to seek a more explicit neural representation that
reasons about how light propagates through 3D space and
that is able to capture dynamic global illumination effects.
We summarize the contributions of this work as follows.

Contributions: We investigate the importance of 3D vs.
2D reasoning for efficient learning-based photorealistic ren-
dering. Towards this goal, we present a learning-based
approach (see Fig. 1 for a high-level overview) which al-
lows for inferring photorealistic images from a point-cloud
based scene representation in real time. In contrast to ex-
isting approaches, our method performs reasoning both in
3D and 2D space which allows for learning the physical
light transport in a scene. This enables our method to han-
dle scene modifications such as object translations, object
removal and lighting changes. At the same time, our frame-
work allows for learning useful heuristics (e.g., shadows
that are not affected by moving objects) from the train-
ing data, enabling fast rendering without sacrificing quality.
We introduce two variants of our approach: (1) a PointNet-
based [66] model and (2) an extension of this model using
photon sampling which improves the quality of shadows
and specular reflections. We show, both theoretically and
empirically, that our model can be trained without bias us-
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Figure 1. Motivation. We learn photorealistic rendering using a 3D Light Transport Layer in combination with a 2D Image Synthesis
Layer. We demonstrate that our hybrid 3D-2D approach is able to synthesize realistic images with global illumination effects in real-time.

ing noisy renderings from a physically-based renderer. We
will release our code and data upon publication.

2. Related Work

Rendering: Physically-based rendering (PBR) is a well-
studied field [86, 64] where much of the research in recent
years focuses on optimizing different parts of the render-
ing pipeline [54, 87, 70, 68] or denoising of noisy PBR
renderings [7, 48, 8]. Moreover, there is a trend of mak-
ing rendering algorithms differentiable in order to estimate
scene properties [4, 47, 21, 20, 56, 31, 11] or to use them for
training deep neural networks [84, 60, 43, 36]. While recent
approaches strive to achieve real-time photorealistic render-
ing [75, 74], they often require additional assumptions such
as temporal smoothness and are limited by temporal accu-
mulation of information in screen space. In this paper, we
probe the suitability of neural networks for learning light
transport end-to-end, with the goal of differentiable render-
ing of dynamic scenes with complex lighting.

Generative Models: Recently, deep generative models
such as variational autoencoders (VAEs) [26, 9, 38, 28]
or (conditional) generative adversarial networks (GANs)
[50, 34, 35, 6, 29] have demonstrated that neural networks
are capable of generating photorealistic synthetic imagery.
While some methods have addressed the problem of 3D
controllable image synthesis [44, 57, 76, 58], these meth-
ods are currently restricted to a small number of comparably
simple objects and do not explicitly reason about materials
or global light transport.

Novel View Synthesis: Novel view synthesis approaches
[63, 94, 15, 82, 16, 40, 12, 90, 91, 71, 10, 88, 16, 53, 92, 49,
72] focus on generating novel views of a single densely cap-
tured scene. However, since these methods lack an explicit
scene representation which captures geometry, material and
lighting, it is hard to gain precise control over their output.
In contrast, we learn to render images in a differentiable
manner from a holistic scene representation. Alhaija et al.

[1] and Nalbach et al. [55] describe methods for generating
renderings from multiple image buffers such as depth and
materials. While this allows for rendering realistic images,
a major limitation is that operations are performed in image
space, making it hard to model global illumination.

Scene Representations: [3, 65, 52, 24] propose several
deep models for rendering novel views from point clouds
[19, 67, 93, 27]. However, existing approaches are limited
to single objects or small static scenes. Moreover, they do
not explicitly model light transport or consider only diffuse,
homogeneous materials.

Recently, several alternative scene representations have
been considered [79, 83, 51, 62, 59]. Sitzmann et al. [78]
propose DeepVoxels, where a single static object-centric
scene is encoded in a voxel grid of learned features. Re-
matas et al. [69] present Neural Voxel Renderer, a neu-
ral rendering framework that maps a voxelized scene to an
RGB image. While both methods allow for rendering a se-
quence of coherent images, they are limited to comparably
small scenes with a single object due to the high memory re-
quirements of voxel-based representations. In contrast, our
approach exploits a point-based scene representation and
therefore scales to larger scenes with multiple objects. Fur-
thermore, neither of them reasons explicitly about materials,
light transport or global illumination.

Deferred Neural Rendering [83] proposes a neural tex-
ture representation for novel view synthesis of single ob-
jects with fixed lighting. Deep Appearance Models [45] en-
code the facial geometry and texture of a particular person.
Neural Volumes [46] encode multiple images of an object
into a neural volume representation which is rendered using
ray marching. While producing impressive results, these
works are trained for a single object or scene and assume
static lighting. Moreover, they only allow for limited edit-
ing as their main focus is on view synthesis. In contrast, the
focus of our work is on representing multiple scenes with
a single model, where both objects and lighting can be dy-
namically rearranged in real time during inference.
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Figure 2. Model Overview. Given an input 3D mesh, we sample a uniform point cloud and associate each point with additional properties
(albedo, emitted light color). These features are processed using the Light Transport Layer which learns to approximate the light transport
in the scene. The resulting features are projected into the 2D image domain and occluded points are removed. The final image is synthesized
using the Image Synthesis Layer that takes the projected features as well as additional low-level 2D image space information as input.

3. Method

Our goal is to train a deep neural network to render a
photorealistic scene specified in terms of a 3D model in real
time while accurately modeling light transport including re-
flection, refraction and global illumination. In this section,
we first discuss our scene representation. Next, we describe
our neural rendering architecture which is able to learn com-
plex illumination effects by exploiting both 3D and 2D in-
formation. Finally, we describe how we train our model
using noisy renderings for supervision and show that under
moderate assumptions our gradient estimates are unbiased.
An overview of our approach is given in Fig. 2.

Scene Representation: How should a 3D scene be repre-
sented for efficient and photorealistic rendering? Tradition-
ally, 3D geometry is often represented in the form of tex-
tured 3D meshes. However, while meshes and texture at-
lases are compact and encode useful geometric properties,
they are inconvenient for neural networks due to their irreg-
ular structures. In contrast, voxel-based representations can
be processed conveniently using 3D convolutions, yet they
are limited by their cubic memory requirements. In this
work, we therefore opt for a hybrid 2D-3D representation
consisting of both image-space buffers such as albedo, nor-
mal and depth maps as well as 3D information. We repre-
sent 3D information in form of an unstructured point cloud
sampled from the scene’s surface with learned feature em-
beddings enriched by albedo and light intensity/color.

Architecture: Our neural rendering model comprises three

main parts as illustrated in Fig. 2: a Light Transport Layer,
a 3D-to-2D projection step and an Image Synthesis Layer.
The Light Transport Layer models global illumination ef-
fects that cannot be modeled in image space: consider for
example a movable lamp which is present in the scene but
not visible from the current point of view. While the posi-
tion, color and intensity of the lamp strongly affect the over-
all illumination of the scene, a purely image-based method,
by definition, will fail to reason about these effects. We
therefore propose to reason in both 3D and 2D space.

Our Light Transport Layer takes a set of Nsurf randomly
sampled 3D surface points {pj} and associated attributes
for each point {aj} as input. These attributes comprise
the surface albedo and the light intensity/color emitted by
the point if the point is located on a light-emitting surface.
Our goal is to define an architecture that is able to model
or approximate light transport in a scene sufficiently well
such that illumination effects like reflections and shadows
are predicted correctly.

Towards this goal, we first predict a feature embedding fj
for each point pj using a PointNet-based architecture [66].
While we found that such a global representation is able to
reason about global illumination to some extent, we addi-
tionally propose a more explicit model for light transport
to model illumination effects more accurately. Inspired by
photon mapping [32], we sample additional Nphot photon
points {qk} from all light sources in the scene. Photons
are randomly cast into the scene and their (first) intersec-
tion with the scene geometry {q′k} is computed. For each
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Figure 3. Visualization of a Single Data Sample. (1) Noisy supervision (used during training). (2) Ground truth rendering (for reference
only, not used during training). (3-6) Image-space information A: depth, normal, albedo and view ray maps. (7) Point cloud {pj}. (8)
Point cloud {pj} after occlusion masking. (9) Per-point albedo which serves as an input to the light transport layer. (10) Emitting surface
points {qj} colored in emitter spectrum. (11) Emitting photon points {qk}. (12) Intersections of emitted photons with scene {q′

k}.

photon intersection q′k we process the position, color and
direction of the initial photon point qk with a fully con-
nected neural network, resulting in a feature vector fk at
q′k. The photon network thus encodes information about
the light color, intensity and direction which is necessary
for photorealistic shading.

Next, we remove occluded points in the 3D scene using
the depth map D and project the remaining point features fj
and photon features fk onto the image plane using perspec-
tive projection φ(j) = [KTpj ] where pj denotes the point
location, K is the camera matrix and T the rigid world-to-
view transformation matrix. The resulting 2D feature map
F is obtained by pooling the features of all points projecting
onto the same pixel. Formally, we obtain Fu at pixel u as

Fu =

{
1

|φ−1(u)|
∑
j∈φ−1(u) fj if φ−1(u) 6= ∅

0, otherwise
(1)

where φ−1(u) := {j : φ(j) = u} denotes the inverse pro-
jection. We concatenate the resulting feature map F with
additional image-space information A (i.e., a depth map,
a normal map and an albedo map) which we obtain using
OpenGL shaders. Note that this additional image-space in-
formation can be computed cheaply and complements the
global scene representation F with high-frequency albedo,
normal and depth information. Additionally, we create a
view ray map that encodes for each pixel a normalized vec-
tor pointing from the camera center to the pixel center in
world coordinates. This information is necessary for learn-
ing specular reflection and refraction effects. The final im-
age synthesis is performed using the Image Synthesis Layer
which we implement using a conventional 2D U-Net archi-
tecture [73]. Fig. 3 provides an illustration of the various
inputs and features for a bathroom scene.

Training: We train our model using a dataset D =
{(Xi, Îi)}Ni=1 which comprises pairs of 3D scene represen-
tations Xi and cheap noisy renderings Îi that are obtained
from a physically-based renderer which we run for few it-
erations. The input Xi = (Pi,Ti,Ai) consists of a scene
represented by a point cloud Pi, a view represented by a
world-to-view transform Ti and additional image-space in-
formation Ai. Let ϕθ(·) denote our model with θ the pa-
rameters of the light transport and image synthesis layer.
Our objective is to find a parameter vector θ∗ which min-
imizes the mean squared error (MSE) between the image
predicted by our model ϕθ(Xi) and the noisy rendering Îi:

θ∗ = arg min
θ

N∑
i=1

‖Îi − ϕθ(Xi)‖2 (2)

Since obtaining clean renderings is very time-consuming,
we propose the use of noisy renderings from a physically-
based renderer [42, 39]. One of our key insights and contri-
butions is to demonstrate that we can exploit the unbiased-
ness of rendering algorithms like bidirectional path tracing
[41] to obtain unbiased gradient estimates:

Lemma 1. Let X be an input representation of a scene, ϕθ
our rendering network and Î a noisy rendering of X fol-
lowing a distribution p(̂I|X) which depends on the chosen
sampling-based rendering algorithm. Assume that the true
(noise-free) rendering is given by I(X). Further assume
that the rendering algorithm is unbiased, i.e., EÎ|X [̂I] =

I(X). In this case, the following equality holds, i.e., the
gradient estimates are also unbiased:

EÎ|X

[
∇θ‖ϕθ(X)− Î‖2

]
= ∇θ‖ϕθ(X)− I(X)‖2 (3)

Proof. See supplementary material.
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Implementation Details: For the Light Transport Layer,
we use a PointNet-based architecture [66] with ResNet-
blocks [23] of depth two. For the Image Synthesis Layer we
use a UNet [73] with four downsampling and four upsam-
ling blocks. The network architecture used for photon fea-
ture creation is a fully-connected ResNet [23] architecture
with two residual blocks consisting of two fully-connected
layers each. The input, hidden and output dimension is the
same as for the PointNet architecture. For training, we use
the Adam optimizer [37] with a learning rate of 5 · 10−4
and a batch size of 128 for static scenes and 32 for dynamic
scenes (see Section 4). The learning rate is decayed expo-
nentially by multiplying it by a factor of 0.99 after every
epoch. More details are provided in the supplementary.

4. Experiments
In our experiments, we investigate the importance of 3D

reasoning for learning photorealistic rendering from noisy
observations. We conduct two types of experiments: In our
first set of experiments, we analyze the importance of 3D in-
formation and the influence of the different components of
the Image Synthesis Layer. To analyze these properties in-
dependently of light transport, we first run our approach on
a static scene observed from varying viewpoints. Our sec-
ond set of experiments addresses dynamic scenes (moving
objects and light sources) using our complete pipeline in-
cluding the Light Transport Layer.

Datasets: For our experiments on static scenes, we evaluate
our approach on a simple static indoor scene containing a ta-
ble, two light sources and a glass egg [86]. Our experiments
on dynamic scenes are based on four realistic indoor scenes
from [5]. We use Mitsuba [30] for both rendering and point
sampling. Renderings are created using bidirectional path
tracing, a modification of path tracing that is unbiased and
converges faster [86]. For each scene, we create a training
set of 100,000 images at a resolution of 256 × 256 pixels,
varying the camera pose for each training sample. We sam-
ple 10,000 surface points for each scene. For our experi-
ments on dynamic scenes, we randomly translate or remove
objects in addition to varying the camera pose.

Baselines: For our main experiment on dynamic scenes we
use three baseline methods: (1) a 2D CNN baseline which
predicts images from the image-space input Ai alone, (2) a
simple denoising approach similar to the model of Lehtinen
et al. [42], which learns to predict smooth renderings using
noisy renderings as input and (3) a simple feature projection
approach similar to Aliev et al. [3] without Light Transport
Layer. For the denoising approach we trade off accuracy
with run-time by adapting the number of pixels for which
we run the bidirectional path tracer. We report results for
1/1, 1/4, 1/16 and 1/64 of the total number of image pix-
els with four samples per pixel, setting all other pixels to

black. For fair comparison, we use the same light-weight
2D convolutional architecture for all baselines and our im-
age synthesis layer. We remark that the primary focus of
our experiments is not on improving the state-of-the-art in
image denoising, but to demonstrate the efficacy of joint
2D and 3D reasoning for learning-based neural rendering.
Both, our model as well as the denoising baselines, would
benefit from more powerful (but slower) backbones.

Metrics: For quantitative comparison, we evaluate mean
squared error (MSE) and mean structural similarity index
(MSSIM) [89] with a window size of 7 × 7 pixels. MSE
and MSSIM measure mostly low-level similarity. To also
measure perceptual similarity, we compute the FID [25] and
a Feature-L1 distance [62] between predicted and ground
truth images. For both the FID and Feature-L1 distance,
we use the features of the final average pooling layer of an
Inception v3 network [80, 81] trained on ImageNet [13].

4.1. Ablation Study on Static Scene

For our ablation study, we first conduct experiments on
a single static scene that does not contain moving objects or
light sources. Our primary goal is to investigate the influ-
ence of the different elements of the Image Synthesis Layer
as well as the importance of 3D information.

We compare the performance of our model without Light
Transport Layer for different input modalities. Fig. 4 shows
the different configurations which are evaluated against
each other. We choose a subset of 6 (out of 24 = 16) repre-
sentative configurations to highlight the importance of each
input. While configuration 1, 2 and 3 use only 3D informa-
tion (but no image space information), configuration 4 and
5 rely solely on image space information. Finally, configu-
ration 6 combines both 3D and image space information.

Results: Configurations 1, 2, 3 and 5 show similar perfor-
mance in terms of MSE, while configuration 5, which does
not receive any projected point cloud information as input,
clearly outperforms the other three configurations in terms
of MSSIM and Fréchet inception distance (FID). However,
surface normal information only yields good results if sup-
plemented by viewpoint information, as becomes evident
when comparing configurations 4 and 5. The most impor-
tant insight is that all inputs in combination (configuration
6), outperform the other configurations for all metrics by a
large margin. This result supports our initial hypothesis that
reasoning in both 3D and 2D is crucial for this task. Fig. 4
(top) shows qualitative results. While configurations 1, 2
and 3 achieve reasonable qualitative results, they also con-
tain several artifacts (e.g., the table) which do not occur in
configuration 6. Configurations 4 and 5 do not exploit 3D
information, thus severely degrading visual fidelity. This
highlights the importance of 3D information for learning-
based rendering. Configuration 6 which uses both 2D as
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Supervision 1 2 3 4 5 6
Ground
Truth

config position point features normal map ray direction map MSE MSSIM FID

1 yes no no no 0.0106 0.81 154.6
2 no yes no no 0.0107 0.80 158.6
3 yes yes no no 0.0108 0.81 149.4
4 no no yes no 0.0161 0.78 138.1
5 no no yes yes 0.0107 0.83 124.0
6 yes yes yes yes 0.0084 0.88 86.1

Figure 4. Ablation Study on Static Scene. Comparing different input configurations for a static scene. The metrics are evaluated on a
separate held-out validation set comprising 2048 samples. All networks were trained for 200,000 iterations with a batch size of 128. Note
how the full model (6) is able to predict images that are significantly less noisy than the supervision signal used for training.

well as 3D information yields the best results. Moreover, it
is remarkable that our model predicts images that are sig-
nificantly less noisy than the images used for training.

4.2. Results on Dynamic Scenes

To investigate the utility of 3D reasoning, we now turn
our attention to dynamic scenes where objects (and light
sources) are modified.

4.2.1 Dynamic Objects and Fixed Lights

We first train our network on a set of four scenes where
objects are randomly removed or translated in the scene,
but keep all light sources fixed.

Results: Fig. 5 shows qualitative and quantitative results
for our approach and the baselines. We clearly see that our
full model which uses both the Light Transport and the Im-
age Synthesis Layers outperforms the other real-time ap-
proaches (lower section of the table), both qualitatively and
quantitatively in terms of MSE, MSSIM, FID and Feature-
L1 distance. While the non-real-time denoising approach
“Denoising (1/1)” achieves the best results, the real-time
denoising approach that uses much fewer samples performs
the worst. We further analyze this behavior by plotting the
MSSIM as a function of rendering time in Fig. 6. While de-
noising approaches are able to achieve compelling results,
the proposed neural rendering approach provides a better
accuracy/runtime trade-off while being fully differentiable.
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Supervision Denoising
(1/1)

Denoising
(1/64) CNN only Feature

Projection
Ours w/o
Photons

Ours w/
Photons

Ground
Truth

Architecture time / frame MSE (↓) MSSIM (↑) FID (↓) Feature L1 (↓)

Denoising (1/1) 1.5059s 0.0005 0.880 26.4 0.163

Denoising (1/64) 0.0283s 0.0029 0.781 94.0 0.281
CNN only 0.0191s 0.0043 0.835 36.1 0.195
Feature Projection 0.0210s 0.0037 0.841 32.5 0.185
Ours (w/o Photons) 0.0243s 0.0044 0.841 31.4 0.184
Ours (w/ Photons) 0.0459s 0.0028 0.849 30.6 0.182

Figure 5. Dynamic Objects and Fixed Lights. Results on dynamic scenes where objects are modified but light sources kept fixed. We
show the non-real-time denoising baseline “Denoising (1/1)” for reference. Additional results are provided in the supplementary material.

Figure 6. Dynamic Objects and Fixed Lights. Quantitative com-
parison of our approach to the denoising baseline, varying the sam-
ple density. Reconstruction accuracy in terms of MSSIM and FID
over inference time. Numbers refer to the ratio of dropped pixels.

As evident from Fig. 5, our simple feature projection
baseline performs only slightly weaker than our variant
without photon mapping. We attribute this to the fact that
most of the light field in the scene can be encoded in local
features and only dynamic parts like sharp shadows have to
be learned. This highlights the capability of neural render-
ing approaches to learn useful heuristics from the training
data. As in the previous experiment, our full architecture
with photon mapping (which reasons more explicitly about
light transport) achieves the best quantitative results.

4.2.2 Dynamic Objects and Dynamic Lights

In the previous experiment, both the feature projection and
our approach without photons were able to handle shadows
and other illumination effects well. The reason for this is
that the light sources were assumed static, making it possi-
ble to encode viewpoint-dependent light properties into the
point features. However, by design the feature projection

baseline is unable to acquire an understanding of illumina-
tion effects in the presence of movable light sources that are
not present in the current view. To see this effect, we aug-
ment the dataset from the previous experiment by turning
all static light sources off and replacing them with a rectan-
gular area light at the ceiling, which we move randomly.

Results: Results from our method with photons, our ap-
proach without photons and the feature projection baseline
are shown in Fig. 7. We observe that the feature projection
baseline produces considerable artifacts while our approach
with photons leads to much sharper shadows and more con-
sistent global illumination. This is also evident from the
error maps in Fig. 7. The last row shows a failure case of
our approach which does not accurately recover the mirror
reflection due to the limited number of samples. We provide
a full quantitative evaluation in the supplementary material.

5. Conclusion
In this work, we conducted a systematic investigation of

the importance of 3D vs. 2D reasoning for learning-based
photorealistic neural rendering. Our experiments demon-
strated that neural rendering benefits from joint 3D-2D rea-
soning. This also confirms our initial hypothesis that rea-
soning in 3D is indeed helpful in the presence of moving
objects and light sources. In contrast to denoising meth-
ods which rely on outputs from a sampling-based renderer,
the presented approach is fully differentiable and can be
used for training deep models using differentiable render-
ing while faithfully capturing global illumination effects.

7



Feature
Projection Error

Ours w/o
Photons Error

Ours w/
Photons Error Ground Truth

Figure 7. Dynamic Objects and Dynamic Lights. We show the output of the feature projection baseline and our network’s predictions
with and without photons alongside the corresponding error maps for moving light sources. The last row shows a failure case of our
approach which in this case is not able to accurately recover the mirror reflection due to the limited number of reflected samples.
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