Supplementary Material for OctNet: Learning Deep 3D Representations at High Resolutions

Anonymous CVPR submission

Paper ID 1319

1. Introduction

In the following supplemental material we present details regarding our operations on the hybrid grid-octree data structure, additional experimental results and all details on the used network architectures. In Section 2 we provide details on the data index used to efficiently access data in the grid-octree data structure. Section 3 yields more insights into the efficient implementation of the convolution operation on octrees. We present further quantitative and qualitative results in Section 4 and in Section 5 we specify all details of the network architectures used in our experiments.

2. Data Index

An important implementation detail of the hybrid grid-octree data structure is the memory alignment for fast data access. We store all data associated with the leaf nodes of a shallow octree in a compact contiguous array. Thus, we need a fast way to compute the offset in this data array for any given voxel. In the main text we presented the following equation:

$$data_idx(i) = \underbrace{8 \sum_{j=0}^{pa(i)-1} bit(j) + 1}_{\text{#nodes above i}} - \underbrace{\sum_{j=0}^{i-1} bit(j)}_{\text{#split nodes pre i}} + \underbrace{mod (i-1,8)}_{offset}.$$
(1)

As explained in the main text the whole octree structure is stored as a bit-string and a voxel is uniquely identified by the bit index *i*, i.e., the index within the bit string. The data is aligned breadth-first and only the leaf nodes have data associated. Consequently, the first part of the equation above counts the number of split and leaf nodes up to the voxel with bit index *i*. The second term subtracts the number of split nodes before the particular voxel as data is only associated with leaf nodes. Finally, we need to get the offset within the voxel's neighborhood. This is done by the last term of the equation.

Let us illustrate this with a simple example: For ease of visualization we will consider a quadtree. Hence, each voxel can be split into 4 instead of 8 children. The equation for the offset changes to

data_idx₄(i) = 4
$$\sum_{j=0}^{\mathrm{pa}_4(i)-1} \mathrm{bit}(j) + 1 - \sum_{j=0}^{i-1} \mathrm{bit}(j) + \underbrace{\mathrm{mod}(i-1,4)}_{\mathrm{offset}},$$
 (2)

with

$$\operatorname{pa}_4(i) = \left\lfloor \frac{i-1}{4} \right\rfloor \,. \tag{3}$$

Now consider the following bit string for instance: $1\,0101\,0000\,1001\,0000\,0100$. According to our definition, this bit string corresponds to the tree structure visualized in Fig. 1a and 1b, where *s* indicates a split node and *v* a leaf node with associated data. In Fig. 1c we show the bit indices for all nodes. Note that the leaf nodes at depth 3 do not need to be stored in the bit string as this information is implicit. Finally, the data index for all leaf nodes is visualized in Fig. 1d. Now we can verify

equation (2) using a simple example. Assume the bit index 51: The parent bit index is given by equation (3) as 12. To compute the data index we first count the number of nodes before 49 as it is the first node within its siblings (first term of equation), which is 17. Next, we count the number of split nodes up to 49 (second term of equation), which is 6. Finally, we look up the position 51 within its siblings (last term of equation), which is 2. Combining those three terms yields the data index 17 - 6 + 2 = 13.

3. Efficient Convolution

In the main text we discussed that the convolution for larger octree cells and small convolution kernels can be efficiently implemented. A naïve implementation applies the convolution kernel at every location (i, j, k) comprised by the cell $\Omega[i, j, k]$. Therefore, for an octree cell of size 8^3 and a convolution kernel kernel of 3^3 this would require $8^3 \cdot 3^3 = 13,824$ multiplications. However, we can implement this calculation much more efficiently as depicted in Fig. 2. We observe that the value inside the cell of size 8^3 is constant. Thus, we only need to evaluate the convolution once inside this cell and multiply the result with the size of the cell 8^3 , see Fig. 2a. Additionally, we only need to evaluate a truncated versions of the kernel on the corners, edges and faces of the voxel, see Fig. 2b-d. This implementation is more efficient, as we need only 27 multiplications for the constant part, $8 \cdot 19$ multiplications for the corners, $12 \cdot 6 \cdot 15$ multiplications for the edges, and $6 \cdot 6^2 \cdot 9$ multiplications for the faces of the voxel. In total this yields 3203 multiplications, or 23.17% of the multiplications required by the naïve implementation.

4. Additional Results

In this Section we show additional quantitative and qualitative results for 3D shape classification, 3D orientation estimation and semantic 3D point labeling.

4.1. 3D Classification

In the main text of our work we analyzed the runtime and memory consumption of OctNet compared with the equivalent dense networks on ModelNet10 [3]. Additionally, we demonstrated that without further data augmentation, ensemble learn-ing, or more sophisticated architectures the accuracy saturates at an input resolution of about 16^3 , when keeping the number of network parameters fixed across all resolutions. In this Section we show the same experiment on ModelNet40 [3]. The results are summarized in Fig. 3. In contrast to ModelNet10, we see an increase in accuracy up to an input resolution of 32^3 . Beyond this resolution the classification performance does not further improve. Note that the only form of data augmentation

CVPR 2017 Submission #1319. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: ModelNet40 results.

we used in this experiment was rotation around the up-vector as the 3D models in this dataset vary in pose. We conclude that object classification on the ModelNet40 dataset is more challenging than on the ModelNet10 dataset, but both datasets are relatively easy in the sense that details do not matter as much as in the datasets used for our other experiments.

4.2. 3D Orientation Estimation

To demonstrate that OctNet can handle input resolutions larger than 256^3 we added results for the 3D orientation estimation experiment with an input resolution of 512^3 . The results are presented in Fig. 4. As for the orientation experiment in the main paper, we can observe the trend that performance increases with increasing input resolution.

We evaluated our OctNet also on the Biwi Kinect Head Pose Database [?] as an additional experiment on 3D pose estimation. The dataset consists of 24 sequences of 20 individuals sitting in front of a Kinect depth sensor. For each frame the head center and the head pose in terms of its 3D rotation is annotated. We split the dataset into a training set of 18 individuals for training and 2 individuals for testing and project the depth map to 3D points with the given camera parameters. We then create the hybrid grid-octree structure from the 3D points that belong to the head (In this experiment we are only interested in 3D orientation estimation, as the head can be reliable detected in the color images). As in the previous experiment we parameterize the orientation with unit quaternions and train our OctNet using the same settings as in the previous 3D orientation estimation experiment. Fig. 5 shows the quantitative results over varying input resolutions. We see a reasonable improvement of accuracy from 8^3 up to 64^3 . Beyond this input resolution the octree resolution becomes finer than the resolution of the 3D point cloud. Thus, further improvements can not be expected. In Fig. 6 we show some qualitative results.

Figure 4: Additional Chair Orientation Results.

4.3. 3D Semantic Segmentation

In this Section we present additional qualitative results of the semantic 3D point labeling task in Fig. 7 to 11. In these visualizations we show the color part of the voxelized input, the result of the labeling in the voxel representation, and the result back-projected to the 3D point cloud for different houses in the test set of [2].

5. Network Architecture Details

In this Section we detail the network architectures used throughout our experimental evaluations. We use the following notation for brevity: conv(x, y) denotes a 3^3 convolutional layer with x input feature maps and y output feature maps. Similarly, maxpool(f) is a max-pooling operation that decreases dimensionality by a factor of f along each axis. All convolutional and fully-connected layers, except the very last one, are followed by a ReLU as activation function.

CVPR 2017 Submission #1319. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CVPR #1319

CVPR 2017 Submission #1319. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CVPR #1319

In the first two experiments, 3D classification and 3D orientation estimation, we show two different classes of architectures. In the first one we keep the number of convolution layers per block fixed and add blocks depending on the input resolution of the network. We call those networks OctNet1, OctNet2, and OctNet3, depending on the number of convolution layers per block. Therefore, the number of parameters increases along with the input resolution. The detailed architectures are depicted in Table 1, 2, and 3 for the classification task and in Table 5, 6, and 7 for the orientation estimation tasks, respectively. Second, we trained network architectures where we keep the number of parameters fixed, independently of the input resolution. The detailed network architectures for those experiments are presented in Table 4 and 8.

Finally, for semantic 3D point labeling, we use the U-Net type architecture [1,4] shown in Table 9. We use a concatenation layer concat(\cdot , \cdot) to combine the outputs from the decoder and encoder parts of the networks to preserve details.

CVPR #1319

647

8³

	~	~	
-	0		
1	U	4	
	-		

705	
706	

707	
708	
709	

7	71	0	
7	71	1	
7	71	2	

711
712
713
714
715
716

8^3	16^{3}	32^{3}	64^{3}	128^{3}	256^3
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
	$\operatorname{conv}(8, 16)$				
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)
			maxpool(2)	maxpool(2)	maxpool(2)
			conv(24, 32)	conv(24, 32)	conv(24, 32)
				maxpool(2)	maxpool(2)
				conv(32, 40)	conv(32, 40)
					maxpool(2)
					conv(40, 48)
		Drop	out(0.5)		
		fully-con	nected(1024)		
		fully-co	nnected(10)		
		So	ftMax		

Table 1: Network Architectures ModelNet10 Classification: OctNet1

03	1.03	003	0.43	1003	or a3
8°	16°	32°	64°	128°	256°
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
	$\operatorname{conv}(8,16)$	$\operatorname{conv}(8, 16)$	$\operatorname{conv}(8, 16)$	$\operatorname{conv}(8, 16)$	$\operatorname{conv}(8, 16)$
	conv(16, 16)	conv(16, 16)	conv(16, 16)	conv(16, 16)	conv(16, 16)
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	$\operatorname{conv}(24,24)$
			maxpool(2)	maxpool(2)	maxpool(2)
			conv(24, 32)	conv(24, 32)	conv(24, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
				maxpool(2)	maxpool(2)
				conv(32, 40)	conv(32, 40)
				conv(40, 40)	conv(40, 40)
					maxpool(2)
					conv(40, 48)
					$\operatorname{conv}(48, 48)$
	•	Drop	out(0.5)		•
		fully-conr	nected(1024)		
		fully-cor	nnected(10)		
		So	ftMax		

Table 2: Network Architectures ModelNet10 Classification: OctNet2

8^3	16^{3}	32^{3}	64^{3}	128^{3}	256^3
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	conv(8,8)	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
	$\operatorname{conv}(8, 16)$				
	conv(16, 16)	conv(16, 16)	conv(16, 16)	conv(16, 16)	conv(16, 16
	conv(16, 16)				
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	conv(24, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	conv(24, 24)
			maxpool(2)	maxpool(2)	maxpool(2)
			conv(24, 32)	conv(24, 32)	conv(24, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
				maxpool(2)	maxpool(2)
				conv(32, 40)	conv(32, 40)
				conv(40, 40)	conv(40, 40)
				conv(40, 40)	conv(40, 40)
					maxpool(2)
					conv(40, 48)
					conv(48, 48)
					conv(48, 48
		Drop	out(0.5)		
		fully-conr	nected(1024)		
		fully-cor	nnected(10)		
		So	ftMax		

Table 3: Network Architecture	s ModelNet10	Classification:	OctNet3.
-------------------------------	--------------	------------------------	----------

~ 3	1.03		a 13	1003	
85	165	325	645	128°	256°
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8, 14)$					
					maxpool(2)
conv(14, 14)					
conv(14, 20)	$\operatorname{conv}(14, 20)$				
				maxpool(2)	maxpool(2)
conv(20, 20)					
conv(20, 26)	$\operatorname{conv}(20, 26)$				
			maxpool(2)	maxpool(2)	maxpool(2)
conv(26, 26)					
conv(26, 32)	$\operatorname{conv}(26, 32)$				
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
conv(32, 32)					
conv(32, 32)	$\operatorname{conv}(32, 32)$				
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
Dropout(0.5)					
		fully-conn	ected(512)		
	fully-connected(10)				
		Soft	Max		

Table 4: Network Architectures ModelNet10 Classification.

 64^{3}

 128^{3}

 256^{3}

 32^{3}

8³

 16^{3}

~		~	
0	0	2	
9	Z	U	

921	

922
923
924

925	
926	
927	

928
929
930

$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$		
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)		
	$\operatorname{conv}(8, 16)$	conv(8, 16)	$\operatorname{conv}(8, 16)$	$\operatorname{conv}(8, 16)$	$\operatorname{conv}(8, 16)$		
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)		
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)		
			maxpool(2)	maxpool(2)	maxpool(2)		
			conv(24, 32)	conv(24, 32)	conv(24, 32)		
				maxpool(2)	maxpool(2)		
				conv(32, 40)	conv(32, 40)		
					maxpool(2)		
					$\operatorname{conv}(40, 48)$		
Dropout(0.5)							
fully-connected(1024)							
	fully-connected(4)						
Normalize							

Table 5: Network Architectures Orientation Estimation: OctNet1

8 ³	16 ³	32^{3}	64^{3}	128^{3}	256^{3}
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
	$\operatorname{conv}(8, 16)$				
	conv(16, 16)				
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	conv(24, 24)
			maxpool(2)	maxpool(2)	maxpool(2)
			conv(24, 32)	conv(24, 32)	conv(24, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
				maxpool(2)	maxpool(2)
				conv(32, 40)	conv(32, 40)
				conv(40, 40)	conv(40, 40)
					maxpool(2)
					conv(40, 48)
					$\operatorname{conv}(48, 48)$
		Drop	$\operatorname{out}(0.5)$		•
		fully-conr	nected(1024)		
		fully-co	nnected(4)		
		Nor	malize		

Table 6: Network Architectures Orientation Estimation: OctNet2

03	1.03	0.03	C 43	1003	0rc3
8	10	32	64	128	250
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$	$\operatorname{conv}(8,8)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
	$\operatorname{conv}(8, 16)$				
	conv(16, 16)				
	conv(16, 16)				
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		conv(16, 24)	conv(16, 24)	conv(16, 24)	conv(16, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	conv(24, 24)
		conv(24, 24)	conv(24, 24)	conv(24, 24)	conv(24, 24)
			maxpool(2)	maxpool(2)	maxpool(2)
			conv(24, 32)	conv(24, 32)	conv(24, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
			conv(32, 32)	conv(32, 32)	conv(32, 32)
				maxpool(2)	maxpool(2)
				conv(32, 40)	conv(32, 40)
				conv(40, 40)	conv(40, 40)
				conv(40, 40)	conv(40, 40)
					maxpool(2)
					conv(40, 48)
					conv(48, 48)
					conv(48, 48)
		Drop	out(0.5)		
		fully-conr	nected(1024)		
		fully-co	nnected(4)		
		Nor	malize		

Table 7: Network Architecture	orientation	Estimation:	OctNet3.
-------------------------------	-------------	--------------------	----------

8^3	16^{3}	32^{3}	64^3	128^{3}	256^{3}
$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$	$\operatorname{conv}(1,8)$
$\operatorname{conv}(8, 14)$	$\operatorname{conv}(8, 14)$	$\operatorname{conv}(8, 14)$	$\operatorname{conv}(8, 14)$	$\operatorname{conv}(8, 14)$	$\operatorname{conv}(8, 14)$
					maxpool(2)
conv(14, 14)	conv(14, 14)	conv(14, 14)	conv(14, 14)	conv(14, 14)	conv(14, 14)
conv(14, 20)	conv(14, 20)	conv(14, 20)	conv(14, 20)	conv(14, 20)	$\operatorname{conv}(14, 20)$
				maxpool(2)	maxpool(2)
conv(20, 20)	conv(20, 20)	conv(20, 20)	conv(20, 20)	conv(20, 20)	$\operatorname{conv}(20, 20)$
conv(20, 26)	conv(20, 26)	conv(20, 26)	conv(20, 26)	conv(20, 26)	$\operatorname{conv}(20,26)$
			maxpool(2)	maxpool(2)	maxpool(2)
conv(26, 26)	conv(26, 26)	conv(26, 26)	conv(26, 26)	conv(26, 26)	conv(26, 26)
conv(26, 32)	conv(26, 32)	$\operatorname{conv}(26, 32)$	conv(26, 32)	conv(26, 32)	$\operatorname{conv}(26, 32)$
		maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
conv(32, 32)	conv(32, 32)	conv(32, 32)	conv(32, 32)	conv(32, 32)	conv(32, 32)
conv(32, 32)	conv(32, 32)	conv(32, 32)	conv(32, 32)	conv(32, 32)	$\operatorname{conv}(32, 32)$
	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)	maxpool(2)
		Dropo	ut(0.5)		
		fully-conn	ected(512)		
		fully-con	nected(4)		
		Norn	nalize		

 Table 8: Network Architectures Orientation Estimation.

CVPR #1319

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121 1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

CVPR 2017 Submission #1319. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Output name

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
11/3
11/4
11/5
1176

conv(8,8)Enc1 conv(8, 16)maxpool(2)conv(16, 16)Enc2 conv(16, 32)maxpool(2)conv(32, 32) Enc3 conv(32, 64)maxpool(2)conv(64, 64)Enc4 conv(64, 128)maxpool(2)conv(128, 128) conv(128, 128)conv(128, 128) Dec4 unpool(2)concat(Enc4,Dec4) conv(256, 128) conv(128, 64)Dec3 unpool(2)concat(Enc3,Dec3) conv(128, 64)conv(64, 32)Dec2 unpool(2)concat(Enc2,Dec2) conv(64, 32)conv(32, 16)Dec1 unpool(2)concat(Enc1,Dec1) conv(32, 32)conv(32, 8)

Operation

Table 9: Network Architecture Semantic 3D Point Cloud Labeling.

SoftMax

Output

- 1177 1178 1179 1180
- 1181 1182
- 1183
- 1184 1185
- 1186
- 1187

1188		1242
1189	Keterences	1243
1190	[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.	1244
1191	arXiv.org, 1511.00561, 2015. 5	1245
1192	[2] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg, and L. V. Gool. Learning where to classify in multi-view semantic segmen-	1246
1193	tation. In Proc. of the European Conf. on Computer Vision (ECCV), 2014. 3	1247
1194	[3] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proc.	1248
1105	IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015. 2	1240
1196	[4] Özgün Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3d u-net: Learning dense volumetric segmentation from	1250
1197	sparse annotation. <i>arXiv.org</i> , 1606.06650, 2016. 5	1251
1198		1252
1199		1253
1200		1254
1200		1255
1201		1256
1203		1257
1200		1258
1205		1259
1206		1260
1200		1261
1207		1267
1200		1262
1203		1264
1211		1265
1212		1266
1213		1267
1213		1268
1215		1260
1216		1200
1210		1270
1218		1271
1210		1273
1220		1274
1221		1275
1222		1276
1223		1277
1224		1278
1225		1279
1226		1280
1227		1281
1228		1282
1229		1283
1230		1284
1231		1285
1232		1286
1233		1287
1234		1288
1235		1289
1236		1290
1237		1291
1238		1292
1239		1293
1240		1294
1241		1295