
Supplementary Material for
PlanT: Explainable Planning Transformers via

Object-Level Representations

Katrin Renz1,2 Kashyap Chitta1,2 Otniel-Bogdan Mercea1
A. Sophia Koepke1 Zeynep Akata1,2,3 Andreas Geiger1,2

1University of Tübingen 2Max Planck Institute for Intelligent Systems, Tübingen
3Max Planck Institute for Informatics, Saarbrücken

https://www.katrinrenz.de/plant

Abstract: In this supplementary document, we first provide additional method-
ological details to elaborate on the descriptions from the main paper. Next, we
provide information on the implementation of our baselines as well as a detailed
description of the model configurations of PlanT. Finally, we provide additional
experimental results. The supplementary video contains qualitative visualiza-
tions of the object relevance for both PlanCNN and PlanT. While PlanCNN does
not give temporally consistent visualizations of the object relevance, PlanT reli-
ably identifies relevant objects in dense traffic via its learned attention weights.

1 Methodological Details

In this section, we provide additional details regarding our task formulation, architecture, represen-
tation, and metrics.

1.1 Task Formulation

We train all models via supervised learning. An expert agent (taken from Chitta et al. [1]) is first
executed to collect a dataset, D = {(X i,Wi)}Zi=1. The dataset contains Z observations of the
environment, X , and the corresponding expert output trajectory, defined by a set of 2D waypoints in
BEV space, i.e., W = {wt = (xt, yt)}Tt=1. This BEV space uses the coordinate frame of the ego
vehicle. The policy for PlanT, π, is trained in a supervised manner using the collected data, D, to
minimize the loss function L:

argmin
π

E(X ,W)∼D [L(W, π(X))] . (1)

We use the L1 distance between the predicted trajectory, π(X), and the expert trajectory,W , as the
primary loss function, as well as an auxiliary objective based on future trajectory prediction which
is detailed in Section 3 of the main paper.

1.2 Architecture

We first provide PyTorch-style pseudo-code for PlanT in Algorithm 1. In the following, we elaborate
on the architecture of our waypoint decoder and low-level controller.

Decoder. We use a GRU decoder [2] to output waypoints. The update gate of the GRU takes the
traffic light state and the current position as inputs. The input to the first GRU unit is set to (0,0)
since the BEV space is centered at the ego vehicle’s position. Identically to [1] we append the target
point to the input of the GRU unit. We use a single layer GRU followed by a linear layer which
takes in the hidden state and predicts the differential ego vehicle waypoints {δww}Ww=1 for W = 4
future time-steps in the ego vehicle’s current coordinate frame. The waypoints are then given by
{ww = ww−1 + δww}t+Ww=t+1.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://www.katrinrenz.de/plant

Algorithm 1 Planning Transformer pseudo-code (PyTorch style)

V, R: attributes for vehicles and route segments (z, x, y, phi , w, h)
W: ground truth waypoints
e_cls , e_vehicle , e_route: learnable embeddings
proj: linear projection layer
transformer: transformer with global pairwise attention (BERT)
gru: recurrent waypoint prediction module

auxiliary task
P: ground truth class labels for attributes of next time -step
pred: linear classification layer per attribute

def PlanT(V, R):
compute token embeddings for vehicles and route
vehicle_embed = proj(V) + e_vehicle
route_embed = proj(R) + e_route

stack tokens as (CLS , v_1 , ..., v_V , r_1 , ..., r_R)
input_embeds = stack(e_cls , vehicle_embed , route_embed)

use transformer to get hidden states
hidden_states = transformer(input_embeds=input_embeds)

predict waypoints from hidden state for cls token
W_preds = gru(unstack(hidden_states)[0])

predict attributes from hidden states for vehicle tokens
v_hidden = unstack(hidden_states)[1:V]
P_preds = []
for attribute in [‘z’,‘x’,‘y’,‘phi’,‘w’,‘h’]:

P_preds.append(pred[attribute](v_hidden))

return W_preds , P_preds

for (V, R, W, P) in dataloader:
W_preds , P_preds = PlanT(V, R)
loss = abs(w_preds - w) # L1 loss
for attribute , pred in enumerate(P_preds):

loss += cross_entropy(pred , P[attribute]) # CE loss
optimizer.zero_grad (); loss.backward (); optimizer.step()

Controller. Our experimental setting assumes access to an inverse dynamics model [3] for low-level
control, i.e., generating steer, throttle, and brake values provided by the future trajectoryW . Specif-
ically, we use two PID controllers for lateral and longitudinal control from the predicted waypoints,
{ww}t+Ww=t+1. The longitudinal controller takes in the magnitude of a weighted average of the vectors
between waypoints of consecutive time steps, whereas the lateral controller takes in their orientation.
For the PID controllers, we use the same configuration as in the author-provided codebase of Chitta
et al. [1].

1.3 Representation

Route Visualizations. We represent the route using a discrete set of tokens, each of which is a
rectangular segment of the future route of the ego vehicle. To obtain these route segments, we
subsample the dense set of points along the route provided by CARLA using the Ramer-Douglas-
Peucker algorithm [4, 5].One segment spans the area between two of these subsampled route points,
with the length equal to the distance between the points, as illustrated in Fig. 1 (green boxes).
While we show all the segments with their original length in Fig. 1 for clarity, in practice, we
restrict the maximum length of any single segment to Lmax =10m and always input a fixed number
of segments Ns = 2 to our policy. We observe that increasing the value of Ns does not have a
significant impact, but the performance drops without the restriction of Lmax (Table 3b).

Object Extraction. We extract the object bounding boxes directly from CARLA. The boxes are
then normalized to the coordinate frame of the ego vehicle before being input to PlanT. Note that
the ego vehicle, which has a fixed position, orientation and extent in the chosen coordinate system,

2

Figure 1: Route Representation. We visualize example route segments used to obtain the object-
level input representations for PlanT that encode the road context as green oriented bounding boxes.

is excluded from the representation. The effect of including the ego vehicle token, which provides
information regarding the ego vehicle’s velocity, is minimal (Table 3c).

1.4 Metrics

In the main paper, we report five metrics to provide a comprehensive understanding of the perfor-
mance of our planners. We now provide detailed descriptions of these metrics.

(1) Route Completion (RC): percentage of route distance completed, Ri by the agent in route i,
averaged across N routes:

RC =
1

N

N∑
i

Ri. (2)

However, if an agent drives outside the route lanes for a percentage of the route, then the RC is
reduced by a multiplier (1- % off-route distance).

(2) Infraction Score (IS): product of infraction penalty coefficients, pj for every instance of infrac-
tion j incurred by the agent during the route:

IS =

Ped,Veh,Stat,Red∏
j

(pj)# infractionsj . (3)

Agents start with a perfect 1.0 base score, which is reduced by a penalty coefficient for every in-
fraction. The penalty coefficient for each infraction is pre-defined and set to 0.5 for a collision with
a pedestrian, 0.6 for a collision with a vehicle, 0.65 for a collision with static layout elements, and
0.7 for red light violations. The official CARLA leaderboard also mentions a penalty for stop sign
violations. However, we omit this infraction from our analysis as it is known to have no impact on
the official leaderboard [1].

(3) Driving Score (DS): weighted average of the route completion with infraction multiplier Pi:

DS =
1

N

N∑
i

RiPi. (4)

(4) Collisions with Vehicles per km (CV): total number of vehicle collisions, normalized by the
total number of km driven:

CV =

∑N
i # collisionsi∑N

i ki
, (5)

where ki is the driven distance (in km) for route i.

(5) Inference time (IT): time in milliseconds for one forward pass of the learned planning model
during inference with a batch size of 1. All inference times are recorded on a single RTX 3080 GPU.
An IT below 33ms is sufficient for real-time execution (30fps) of the planner on this hardware.

3

Figure 2: PlanCNN Input Rasterization. We consider 3 different settings for spatial extent and
resolution in the ablation study for PlanCNN (Table 2a of main paper). Here, we visualize the
vehicle channel (in blue) and ego route channel (in green) for the different configurations.

2 Implementation Details

In this section, we first describe two baselines, rule-based planner and PlanCNN, in greater detail.
We then elaborate on the model configurations for PlanT that we use in our experiments. Finally,
we describe the implementation of the perception module used for PlanT with perception.

2.1 Rule-based Planner

We build a rule-based planning algorithm that uses the same inputs as PlanT based on the expert
driver from [6]. Given the route to be followed, this planner chooses the nearest point along the route
4m from its current position to compute an aim direction, which is fed to a lateral PID controller
to output steering values. For longitudinal control, the planner uses either 0 or 4 m/s as the target
speed depending on its current circumstances. If it is less than 5 meters away from a pedestrian,
vehicle, or red light, the target speed is set to 0 m/s. For vehicle collisions, we additionally check if
a linear extrapolation of the ego vehicle and target vehicle based on their current velocity will lead
to them being closer than 5 meters after 4 seconds, in which case the target speed is set to 0. Under
every other circumstance, the target speed is set to 4 m/s. The parameter choices for these heuristics
were made by tuning for the best DS on a subset of the Longest6 benchmark. A longitudinal PID
controller then tries to match the speed of the expert policy to this target speed as much as possible.
We use the same hyper-parameters for the PID controllers as those in Prakash et al. [6].

2.2 PlanCNN

This approach is inspired by the AIM-BEV model of Hanselmann et al. [7] and AIM-VA model
of Chitta et al. [8]. PlanCNN includes 3 channels for (1) vehicles, (2) vehicle speeds, and (3) the
ego route, and is the closest representation to the one used by PlanT (i.e., the same input information
as PlanT but rasterized into an image). The vehicle and ego route channels have binary values
indicating the presence/absence of that class at a particular pixel location. The vehicle speed channel
encodes the speed of each pixel in the scene (in meters per second) and is set to zero for all pixels
that do not belong to the vehicle class.

In Table 2a of the main paper, we explore three different ways of rasterizing the inputs for PlanCNN.
We provide illustrations of these approaches to rasterization in Fig. 2. More specifically, we visu-
alize the vehicle channel and ego route channel for the driving scene shown on the left (Fig. 2a).
The first configuration (Side 19.2 and Back 0, Fig. 2b) is taken from existing work [9, 7]. In this
representation, the ego vehicle is placed at the bottom of the image. The spatial region covered in
the image includes 38.4m to the front of the ego vehicle and 19.2m to either side at a resolution of
5 pixels per meter, resulting in a 192× 192 image. The second configuration (Side 30 and Back 30,
Fig. 2c) is closest to the input used by PlanT. It uses a 180 × 180 image with a resolution of 3 pix-
els per meter. As an intermediate step between these two configurations, we additionally consider
a version of PlanCNN with the same spatial extent as PlanT to the sides but with no visibility of
vehicles to the rear. For this, we do not render any pixels on the bottom half of the image, as shown
in Fig. 2d. We show that the configuration closest to that of PlanT (Fig. 2c) obtains the best results
(see Table 2a of the main paper), indicating the importance of a larger field of view.

4

Model Layers Hidden size Heads Parameters Inference Time
PlanTMINI 4 256 4 11.2M 5.46±0.28

PlanTSMALL 4 512 8 28.8M 7.04±0.39

PlanTMEDIUM 8 512 8 41.4M 10.79±0.47

Table 1: PlanT Variants. Details regarding the size and runtime of our model variants.

Note that we use the same waypoint Prediction Network (i.e., GRU) and controller for the feature
vector obtained by the CNN encoder of PlanCNN and PlanT, enabling fair comparisons.

2.3 PlanT

Our analysis includes three BERT encoder variants taken from [10]: MINI, SMALL, and MEDIUM with
11.2M, 28.8M and 41.4M parameters respectively. We provided detailed information regarding
these architectures in Table 1. The transition from PlanTMINI to PlanTSMALL involves an increased
width (hidden dimension size), whereas the transition from PlanTSMALL to PlanTMEDIUM increases the
network depth (number of layers).

2.4 PlanT with Perception

We leverage a TransFuser [1] backbone for LiDAR and RGB sensor fusion in order to predict the
input attributes for PlanT. Unless otherwise stated, our implementation details follow [1].

Sensor configuration. We use LiDAR and RGB sensors to extract the input representation for
PlanT from sensor data. More specifically, we use the front half of a LiDAR that provides points
in the range 32m to the front and 16m to each side of the vehicle, converted to a 2D BEV grid as
described by [1]. For the RGB sensor we use the configuration of [11], namely one camera to the
front placed 1.5m behind and 2m above the ego vehicles origin with a resolution of 900× 256 and
a field of view of 100◦.

Training. We keep the architectural details but adjust some of the training objectives of TransFuser
to obtain a suitable perception module and add data augmentation. Our training objectives include
the original vehicle detection loss of TransFuser based on a CenterNet [12] detection head and a
new waypoint objective supervised with the next 20 dense ground truth route waypoints instead of
the future waypoints of the ego vehicle. We also learn the initial position input to the GRU since
the route can be displaced and not start at the origin of the vehicle when the ego vehicle deviates
from the route. Finally, we add a binary traffic light classification flag. For data augmentation we
shift and rotate the position of the camera as a proxy for deviations of the ego vehicle during data
collection. We uniformly sample the augmentation values from [-1, 1] meters for the shift and [−5◦,
5◦] for the orientation. The positions and orientations of the other vehicles and the lidar points are
adjusted accordingly in a pre-processing step of the training.

Inference. To be able to input the obtained information to PlanT we post-process the output of the
perception module to match the input representation of PlanT. For the vehicles, we only consider
detections with a confidence above a threshold φ taken from the CenterNet output heatmap. The
perception network predicts bounding boxes for every time step but does not associate instances of
the same entity, which is required for extracting vehicle speeds for the next stage of our system.
To match instances at runtime, we store a buffer of bounding boxes of the last ξ timesteps sampled
at 20 fps and associate them using Hungarian matching [13] based on the intersection over union.
The matching problem is relatively simple in the BEV coordinate system with this large frame rate
since objects do not occlude each other. Objects that do not match with detections from the last ξ
timesteps are excluded from the state representation for PlanT.

To obtain the route segments we accumulate route predictions over time to get a dense set of points
along the route. We then fit a cubic spline to these points, making it possible to interpolate smoothly
through them and remove outliers. We then resample equidistant points along this spline, leading
to an input Ut similar to what the route planner of the CARLA simulator provides. To obtain route
segments, we use the same extraction procedure described in the main paper. The points are subsam-

5

Loss weight λ DS ↑ RC ↑ IS ↑ CV ↓
0.6 73.86±0.89 86.48±1.57 0.85±0.02 0.30±0.07

0.8 72.74±3.58 86.76±3.30 0.83±0.02 0.37±0.04

1.0 76.31±3.13 87.54±2.67 0.86±0.02 0.29±0.05

2.0 67.83±3.79 86.74±2.85 0.77±0.03 0.49±0.08

4.0 67.35±4.69 84.94±4.01 0.79±0.03 0.44±0.13

Table 2: PlanCNN Multi-task Training. Mean±std of 3 evaluations on Longest6. None of the
loss weight settings lead to improvements compared to training PlanCNN with only the imitation
objective (Table 1 main paper).

pled using the Ramer-Douglas-Peucker algorithm [4, 5] to select a subset Ût. One segment spans
the area between two points subsampled from the route, ui,t,ui+1,t ∈ Ût.

3 Additional Experiments

In this section, we provide additional results. We first show the impact of different training strate-
gies involving auxiliary objectives for PlanCNN and PlanT. Next, we provide additional insights
into the design choices for the input representation of PlanT. Finally, we comment on the training
variance, failure cases of the expert, and our attempt to extract attention maps for PlanCNN via
GradCAM [14].

3.1 Training Strategies

Multi-task Training for PlanCNN. The default configuration of PlanCNN (see Table 1 main paper)
uses only the imitation objective with no auxiliary training loss. Here, we investigate multi-task
training for PlanCNN via a convolutional decoder. The self-supervised multi-task loss function used
for PlanCNN in this experiment can be described as:

L =

T∑
t=1

||wt −wgt
t ||1 + λ ||ŝt+1 − st+1||1, (6)

where wt represents the waypoint at time-step t, and wgt
t represents the corresponding ground truth.

ŝt+1 ∈ R180×180×3 is the predicted rasterized input representation of the next time-step, with st+1

being the corresponding ground truth. We use the feature map after the fourth ResNet layer before
average pooling and process it with a convolutional decoder to predict the BEV of the next timestep.
We report the performance of this multi-task variant of PlanCNN with different settings of the loss
weight λ in Table 2. We performed a hyperparameter search in [0.6, 4.0] which ensured that the
magnitude of the auxiliary loss was in a similar range to the imitation objective. This is similar to
how the weighting factor λ for PlanT (cf. Eq. (1) in the main paper) was determined. None of these
settings lead to significant improvements when compared to the default version from the main paper
trained with only the imitation objective (which reaches a DS of 77.47).

PlanT Training Strategies. We show results for three different training strategies for PlanTSMALL
in Figure 3. Specifically, we demonstrate that using the auxiliary task of predicting the attributes of
other vehicles in a future timestep significantly improves performance and enables the use of small
datasets. For this experiment, we randomly subsample 50% of the dataset (0.5×) in addition to the
three versions of the dataset used in the main paper (1×, 2×, 3×). We compare three different
training techniques: (1) Pure imitation learning without an auxiliary task. (2) Pre-training, where
we train the model in two stages. First, we pre-train on the auxiliary task of predicting the other
vehicle’s future. Note that we only do this for the vehicle tokens, so any common driving dataset
can be used for this step. After pre-training the network weights we fine-tune the model on the
waypoint prediction task with only the imitation objective. (3) Multi-task learning on both objectives
simultaneously. On all dataset sizes, we observe that pre-training helps to improve the performance
compared to imitation only, but is not able to reach the performance of the multi-task approach.
In particular, we observe that on the 0.5× dataset, multi-task training improves the DS by over 30

6

0.5 1.0 2.0 3.0
Dataset size

20

30

40

50

60

70

80

90

DS

Imitation Pre-training Multi-task

Figure 3: Training Strategy. Driving scores on the Longest6 benchmark for different dataset sizes.
Evaluation std (3 runs) is shown using black error bars. With our proposed multi-task training strat-
egy we gain 30% DS for PlanTSMALL on the 0.5× dataset and reach the same performance obtained
with the 3× dataset (which is six times larger) when trained using only the imitation objective.

λ DS ↑

0.05 59.84±1.97
0.1 70.15±5.76
0.2 72.01±0.82
0.4 68.63±2.03

(a) Loss weights.

Route DS ↑

no Lmax 62.78±2.82
2 segments 72.01±0.82
4 segments 73.01±3.41
6 segments 70.63±4.38

(b) Route.

vi DS ↑

- speed 49.07±3.16
- id 67.32±5.54
default 72.01±0.82
+ ego 72.28±5.82

(c) Attributes.

Tok. Enc. DS ↑

Obj. O 72.01±0.82
Obj. MLP 71.15±6.69
Attr. A+O 60.57±4.28
Attr. A+P 47.69±2.22

(d) Tokenization.

Table 3: PlanT Ablation Experiments. We investigate different parts of our method including
the loss weights for the multi-task setting, different versions of the input representation and how to
obtain token embeddings. To reduce the computational overhead, the ablation studies are conducted
using PlanTSMALL on the 1× dataset. The score of the default configuration is highlighted in gray.

points compared to imitation only. By doing so, it reaches the performance of the imitation-only
model trained with a much larger dataset (e.g. 3×). In summary, multi-task training, while being
simpler and faster than pre-training since it does not involve two stages, is the best training strategy
for PlanT.

PlanT Loss Weights. In Table 3a, we compare the DS of PlanT for different settings of the auxiliary
loss weight λ, with a weight of 0.2 giving the best results. Therefore, we use this value in all the
experiments involving PlanT in both the main paper and this supplementary document.

3.2 PlanT Input Representation Hyperparameters

Route. Table 3b shows the impact of changing the route representation on the driving score. In
the default setting, we reduce the maximum length of one route segment to 10m and include two
tokens for the two closest route elements in PlanT’s input representation. Intuitively, the maximum
length limit reduces out-of-distribution data samples during test time since long straight routes (that
can span several hundreds of meters with a single bounding box) are represented in the same way
as short ones. This prevents sizes unseen during training from occurring during testing and makes it
easier to generalize to unseen road layouts. We also observe this empirically (Table 3b), where not
limiting the maximum length hurts performance. Using more than 2 route segments as an input does
not have a significant impact, but with more than 4 segments the performance decreases slightly.
Therefore, for simplicity and better inference times, we use 2 route segments by default.

Attributes. We study the design choices involved in the input attributes in Table 3c. Removing
the speed attribute from the vehicle input tokens (- speed) has a large negative impact, showing that
the motion is an important cue for high driving performance. Removing the route id (- id) from the
input (without the id the ordering of the route segments is not explicitly known) also slightly hurts

7

φ DS ↑ CV ↓

0.1 57.66±5.01 0.97±0.09
0.3 56.03±1.08 1.18±0.21
0.5 48.75±2.54 1.70±0.12

(a) CenterNet Threshold.

ξ DS ↑

2 55.34±6.71
4 57.66±5.01
6 52.63±7.66

(b) Matching Threshold.

Table 4: PlanT with Perception Ablation Experiments. We investigate different approaches to
post-process the perception outputs, specifically the confidence threshold of the vehicle predictions
and the matching threshold. The score of the default configuration is highlighted in gray.

performance. Since we only use the closest two route segments, not knowing the order does not hurt
as much. Interestingly, unlike previous work [1], we find that inputting the ego velocity (+ ego) does
not hurt performance. As we mention in the main paper, PlanT also does not suffer from the inertia
problem [15], and creeping or other heuristics to prevent this are necessary.

Tokenization. We attempted several different methods to tokenize our input representation (Ta-
ble 3d). Our default setting encodes one token per object and adds an object-specific learnable
embedding (O). When we replace the linear projection and the addition of the object-specific em-
bedding with an object-specific MLP (Enc. denotes the MLP), we reach a similar performance.
For the experiments in the main paper, we choose the linear projection instead of an MLP since a
linear projection is a more standard approach for transformers [16]. We also experiment with two
versions of PlanT with one token per attribute (Tok.=Attr.) In this configuration, we use attribute-
specific learnable embeddings (A) in addition to the object-specific embedding (O). This configu-
ration (Attr.+A+O) is around 10 points worse (DS=60.57) than the default approach of one token
per object (DS=72.01). Since we have 6 attributes, using one token per object also leads to a 6×
reduction in the input length to the transformer, saving computation due to its quadratic complexity.
Finally, we attempt to use one token per attribute with knowledge about the attribute type (A) and
a sinusoidal (non-learnable) positional embedding (P). This decreases the performance further to
47.69, due to the lack of explicit information about the object type, which the transformer is unable
to recover.

3.3 PlanT with perception

Failures. The main failure mode that arises due to the incorporation of a perception module is a 3×
increase in CV, resulting in a significant drop in performance for PlanT with perception (DS=57.66)
in comparison to PlanT with perfect perception (DS=81.36). This is a result of two main factors:
(1) the incomplete field of view which excludes the back and far away objects to the sides, which
we know are important based on Tab. 2a of the main paper and (2) the added input noise due to
inaccuracies in the perception system.

Ablation study. We first evaluate the influence of the CenterNet confidence threshold φ in Table 4a.
Reducing the threshold results in keeping more vehicle detections that have a lower confidence to
be a correct prediction. This leads to more detected vehicles and is reflected in the decrease of
the collision rate CV and therefore also in the improvement of the driving score DS. Varying the
threshold for the matching algorithm shows that 4 leads to the best result, as can be seen in Table 4b.

Runtime of the full driving stack. For calculating the runtime of the full driving stack the inference
time of the object detector needs to be added to the inference time of the planner. When considering
real-time requirements of the full driving stack (around 30 fps, i.e., 33 ms), decreasing the inference
time of the planner to 5.46 ms compared to 28.94 ms without any loss in performance would per-
mit the use of a significantly more accurate object detector while maintaining the required system
runtime. With many real-world detectors, the number of input actors may increase in environments
where the perception task is more challenging. To evaluate the impact of such an increase, we scale
the number of input vehicle tokens to 2x the true number of vehicles in every frame and observe that
the planner’s runtime increases by only 9.6%. Therefore, our conclusions regarding the improve-
ments in inference time for PlanT compared to PlanCNN remain true in a setting involving false
positive detections. For the specific perception module we used in our experiment we obtain a run-
time of 26.82ms (including the forward pass of the model, matching of the vehicles, interpolation
and subsampling of the route), leading to a total inference time of 37.61ms (26.82 + 10.79).

8

Method Input DS ↑ RC ↑ IS ↑ CV ↓ IT ↓

Se
ns

or

LAV [17] Camera + LiDAR 32.74±1.45 70.36±3.14 0.51±0.02 0.84±0.11 -
TransFuser [1] Camera + LiDAR 47.30±5.72 93.38±1.20 0.50±0.60 2.44±0.64 101.24
LAV v2 [17] Camera + LiDAR 57.52±1.16 82.61±0.99 0.68±0.02 0.69±0.08 -
PlanT w/ perception Camera + LiDAR 57.66±5.01 88.20±0.94 0.65±0.06 0.97±0.09 37.61

Expert [1] Obj. + Route + Actions 76.91±2.23 88.67±0.56 0.86±0.03 0.28±0.06 -

Table 5: Longest6 Results. We show the mean±std for 3 evaluations. In addition to the main paper
we also evaluate LAV v2 which was made public after the submission.

Model Mean DS ↑ Train std ↓ Eval std ↓
PlanCNN 74.94 2.91 2.07
PlanTMEDIUM 77.90 3.19 3.00

Table 6: Variance. We show training and evaluation variance for 3 training seeds of PlanCNN
and PlanTMEDIUM trained on the 3× dataset, with 3 evaluation runs each. Both models exhibit large
variance in scores, both in terms of training and evaluation.

3.4 Other Results

LAV v2. We evaluate the LAV v2 [17] checkpoint that was released after the submission deadline on
the Longest6 benchmark. In Tab. 5 we observe that this model can match but does not outperform
PlanT with perception.

Variance. We show the impact of training and evaluation seed variance in Table 6. We train each
method 3 times and evaluate each resulting model 3 times on the Longest6 benchmark, giving a
total of 9 evaluations per method. The training variance between different seeds is due to different
data augmentations, data sampling, and network initializations during optimization. The evaluation
variance is a result of the variation in the sensor noise, physics and traffic manager of CARLA.
Based on the results, both factors are considerable.

Expert Failures. We show examples of common failure modes of the expert in Fig. 4. These
infractions all occur inside intersections after the expert initially enters since it does not anticipate the
entrance of other traffic at the same time. Once the other vehicle enters, the expert predicts a collision
and stops. In such situations, the expert remains static, and there is a chance of getting blocked
(when the other vehicle also stops and remains static) or being involved in a collision (when the
other vehicle ignores the expert due to CARLA’s imperfect rule-based traffic manager). We observe
that PlanT is more conservative when deciding whether to enter an intersection and encounters such
situations slightly less often.

9

Figure 4: Expert Failures. The expert’s failures are a result of stopping after entering an intersection
due to anticipated collisions. The ego vehicle is marked with a yellow triangle, and vehicles that lead
to infractions are marked with a blue box.

10

References
[1] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, , and A. Geiger. Transfuser: Imitation with

transformer-based sensor fusion for autonomous driving. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 2022.

[2] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN encoder-decoder for statistical machine trans-
lation. In Proc. of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

[3] R. Bellman. Adaptive Control Processes - A Guided Tour, volume 2045. Princeton University
Press, 2015.

[4] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Comput.
Graph. Image Process., 1:244–256, 1972.

[5] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. Cartographica: The International Journal for
Geographic Information and Geovisualization, 10:112–122, 1973.

[6] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-end au-
tonomous driving. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[7] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger. King: Generat-
ing safety-critical driving scenarios for robust imitation via kinematics gradients. arXiv.org,
2204.13683, 2022.

[8] K. Chitta, A. Prakash, and A. Geiger. Neat: Neural attention fields for end-to-end autonomous
driving. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2021.

[9] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Proc. Conf. on
Robot Learning (CoRL), 2019.

[10] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova. Well-read students learn better: On the
importance of pre-training compact models. arXiv.org, 1908.08962, 2019.

[11] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control prediction for end-
to-end autonomous driving: A simple yet strong baseline. arXiv preprint arXiv:2206.08129,
2022.

[12] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points. arXiv.org, 1904.07850, 2019.

[13] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

[14] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), pages 618–626, 2017.

[15] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of behavior
cloning for autonomous driving. In Proc. of the IEEE International Conf. on Computer Vision
(ICCV), 2019.

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth
16x16 words: Transformers for image recognition at scale. In Proc. of the International Conf.
on Learning Representations (ICLR), 2021.

[17] X. Chen, T. Jiang, J. Song, J. Yang, M. Black, A. Geiger, and O. Hilliges. gdna: Towards gener-
ative detailed neural avatars. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022.

11

	Methodological Details
	Task Formulation
	Architecture
	Representation
	Metrics

	Implementation Details
	Rule-based Planner
	PlanCNN
	PlanT
	PlanT with Perception

	Additional Experiments
	Training Strategies
	PlanT Input Representation Hyperparameters
	PlanT with perception
	Other Results

