Driving with Attention

Andreas Geiger

Autonomous Vision Group
University of Tübingen and MPI for Intelligent Systems

Covered Papers

Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

Aditya Prakash, Kashyap Chitta and Andreas Geiger CVPR 2021

NEAT: Neural Attention Fields for End-to-End Autonomous Driving

Kashyap Chitta, Aditya Prakash and Andreas Geiger ICCV 2021

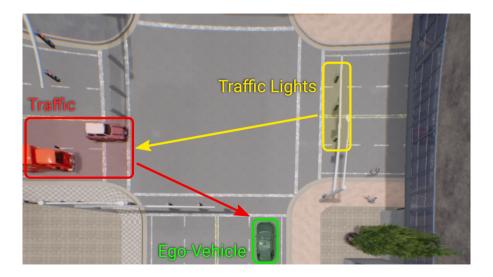
Collaborators

Aditya Prakash

Kashyap Chitta

TransFuser: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

Motivation



Sensors

RGB Camera

- + Dense RGB input
- Lacks reliable 3D information
- Variation in weather

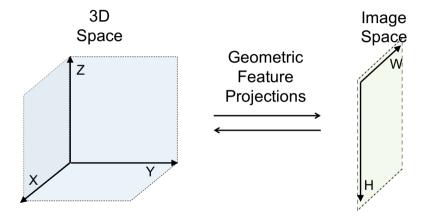
LiDAR Point Cloud

- + 3D information
- Sparse input
- No traffic light state

Research Questions

- ► How to integrate representations from multiple modalities?
- ► To what extent should the different modalities be processed independently?
- ▶ What kind of fusion mechanism to use for maximum performance?

Geometric Fusion



Geometric Fusion under-performs in complex urban scenarios

Geometric Fusion under-performs in complex urban scenarios

Geometric Fusion lacks global context

► For the yellow region, geometric fusion aggregates features from the blue region

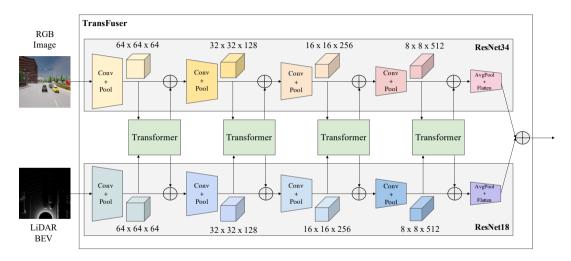
Geometric Fusion lacks global context

► However, for safe navigation, it is essential to aggregate features from the red region since it contains vehicles which are affected by the traffic light

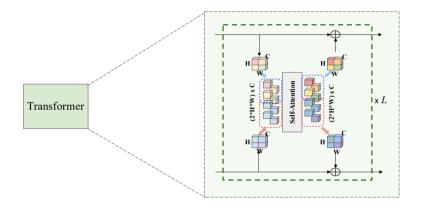
Key Idea

Use **attention-based** feature fusion to capture the **global context** of the scene **across modalities**.

TransFuser Architecture

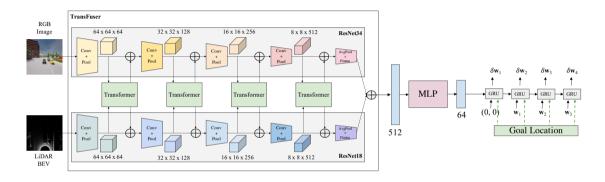


Attention-based Feature Fusion



- ► Consider feature maps as **sets of tokens** (cells of grid = tokens)
- ▶ Pass all tokens to **self-attention** module and reshape back into grid form

Architecture



- ► GRU-based **autoregressive waypoint prediction** network (conditioned on goal)
- ▶ Loss Function: $\mathcal{L} = \sum_{t=1}^{4} ||\mathbf{w}_t \mathbf{w}_t^{gt}||_1$, waypoints are input to **PID controller**

Experiments

Dataset

- ▶ 8 Towns and multiple weather conditions in CARLA
- ► Routes of varying length in complex urban scenarios
- ► Expert policy based on A* planner and collision avoidance heuristics

Sensors

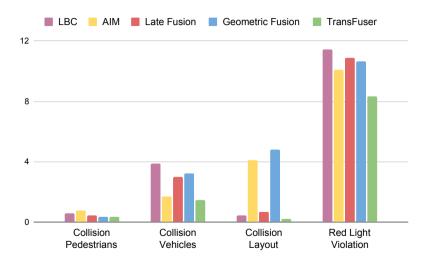
- ► RGB camera: 400×300 resolution, 100° FOV
- ► LiDAR: 80m range, 64 channels, 10 Hz rotation frequency

Results

Method	Town05 Short		Town05 Long	
	DS↑	RC↑	DS↑	RC ↑
CILRS	7.47 ± 2.51	13.40 ± 1.09	3.68 ± 2.16	7.19 ± 2.95
Learning by Cheating	30.97 ± 4.17	55.01 ± 5.14	7.05 ± 2.13	32.09 ± 7.40
Waypoint Prediction	49.00 ± 6.83	81.07 ± 15.59	26.50 ± 4.82	60.66 ± 7.66
Late Fusion	51.56 ± 5.24	83.66 ± 11.04	31.30 ± 5.53	68.05 ± 5.39
Geometric Fusion	54.32 ± 4.85	$\textbf{86.91} \pm 10.85$	25.30 ± 4.08	69.17 \pm 11.07
TransFuser	54.52 ± 4.29	78.41 ± 3.75	33.15 ± 4.04	56.36 ± 7.14

Mean and standard deviation over 9 runs (3 training seeds, 3 rollouts per seed)

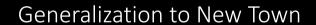
Infraction Analysis



CARLA Leaderboard

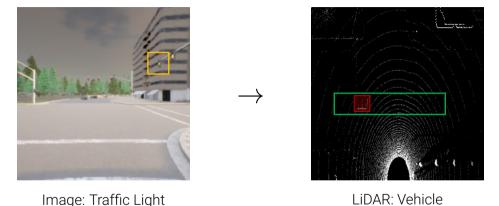
Method	Driving Score ↑	Route Completion ↑
CILRS	5.37	14.40
Learning by Cheating	8.94	17.54
Waypoint Prediction	12.88	41.52
Late Fusion	13.27	42.10
Geometric Fusion	14.47	40.99
TransFuser	16.93	51.82

Qualtitative Results



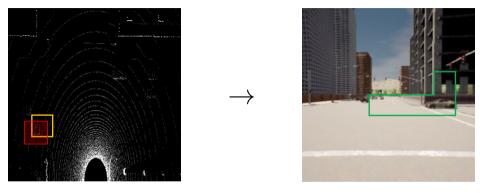
Qualtitative Results

Generalization to New Weathers



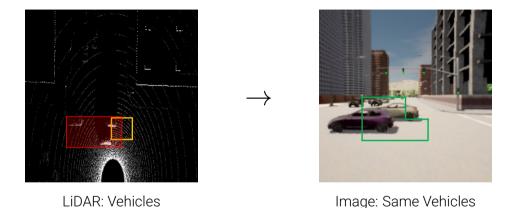
3

► Yellow: Query token in source modality. Green: Top-5 tokens in target modality.



LiDAR: Vehicles Image: Traffic Light and other Vehicles

► Yellow: Query token in source modality. Green: Top-5 tokens in target modality.

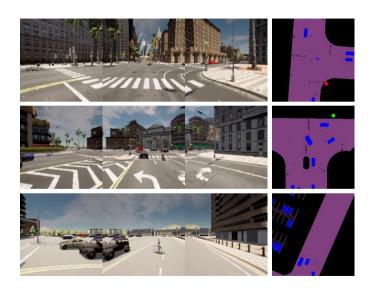


► Yellow: Query token in source modality. Green: Top-5 tokens in target modality.

NEAT: Neural Attention Fields for End-to-End Autonomous Driving

Bird's-Eye-View (BEV)

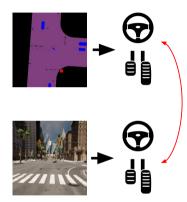
- Efficient reasoning about the semantic, spatial, and temporal structure is crucial for self-driving
- Driving happens in physical 3D space
- ► BEV ≈ 3D space
- How to obtain compact, interpretable BEV repr. from **images** as input?



BEV Semantics for Driving

Prior work:

- ► LBC [CoRL 2019]
- ► Roach [ICCV 2021]

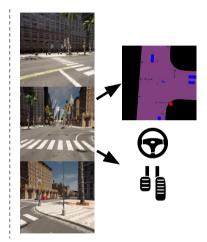


BEV Semantics for Driving

Prior work:

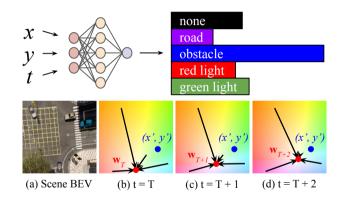
- ► LBC [CoRL 2019]
- ► Roach [ICCV 2021]

- ► Multi-task learning
- ► Single training stage
- ➤ Selective attention

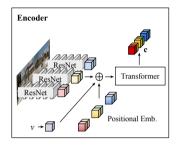


Representation

- ► Implicit BEV semantics and waypoints
- Arbitrary spatial and temporal resolution
- ► Small **memory** footprint
- Can make use of sparse supervision signals

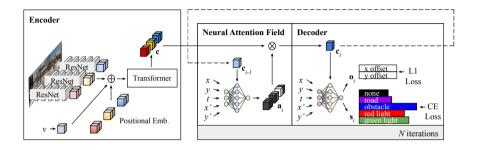


Architecture: Encoder



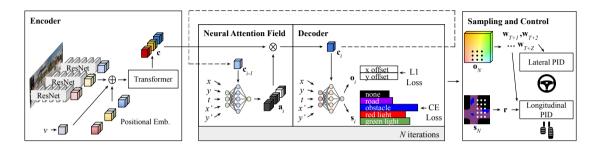
- ► A **ResNet backbone** yields 64 patches/tokens per image
- ► Patch features are combined with **velocity** and **positional encoding**
- ► A **Transformer** integrates contextual cues through self-attention

Architecture: NEAT and Decoder



- ▶ The **encoder** is not informed by the query (x, y, t) or target (x', y') location
- ▶ Instead, **NEAT** identifies relevant patch features recurrently $(\dim(\mathbf{c}_i) \ll \dim(\mathbf{c}))$
- lacktriangle The **decoder** predicts the semantic class and waypoint offset from ${f c}_N$

Architecture: Sampling and Control



- ► At test time, we decode **waypoints** and a **red light indicator** from our model
- ► To extract both, we uniformly sample a sparse grid and **query the decoder**
- ► Grid pooling provides robustness at inference time; control via PID controllers

Experiments

Sensors

- ► 3 RGB cameras: (-60°, 0° and 60°)
- ► No LiDAR

Evaluation

- ► 42 mixed-length routes (200-3000m) from 6 different towns
- ▶ 7 weather conditions (Clear, Cloudy, Wet, MidRain, WetCloudy, HardRain, SoftRain)
- ► 6 daylight conditions (Night, Twilight, Dawn, Morning, Noon, Sunset)
- ► High density of dynamic agents and complex scenarios

Results

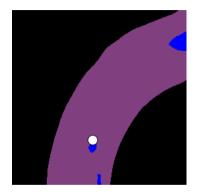
Method	Aux. Sup.	DS ↑
CILRS	Velocity	22.97 ± 0.90
Learning by Cheating	BEV Sem	29.07 ± 0.67
	None	51.25 ± 0.17
Waypoint Prediction	2D Sem	57.95 ± 2.76
	BEV Sem	60.62 ± 2.33
NEAT	BEV Sem	$\textbf{65.10} \pm \textbf{1.75}$

- ► CILRS / LBC use discrete / image-based target locations
- ► WP and NEAT use **BEV-based target locations**

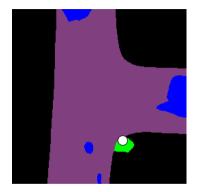
CARLA Leaderboard

Method	Driving Score ↑
WOR	31.37
MaRLn	24.98
NEAT	21.83
Waypoint Prediction	19.38
TransFuser	16.93
Learning by Cheating	8.94
CILRS	5.37

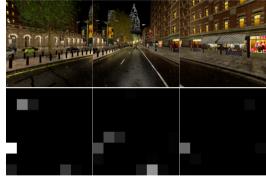
- ► Sometimes too **cautious** and doesn't complete route in time
- ▶ But **safest driving** and trained with 1-2 orders **less data** than WOR/MaRLn



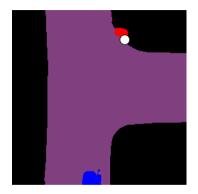
- ► White circle = query location (x, y)
- ▶ NEAT consistently **attends** to the region corresponding to the **object of interest**

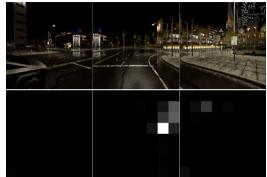


- ► White circle = query location (x, y)
- ▶ NEAT consistently **attends** to the region corresponding to the **object of interest**



- ► White circle = query location (x, y)
- ▶ NEAT consistently **attends** to the region corresponding to the **object of interest**





- ► White circle = query location (x, y)
- ▶ NEAT consistently **attends** to the region corresponding to the **object of interest**

Video

Summary

Conclusions:

- ► Global contextual reasoning is crucial in complex urban scenarios
- ► Attention is effective in aggregating information from multiple modalities
- ► This allows for navigation of challenging intersection scenarios
- ▶ Joint BEV semantic prediction and trajectory planning leads to safer driving
- ► An implicit intermediate representation can efficiently solve this task

Code and Models:

- www.github.com/autonomousvision/transfuser
- www.github.com/autonomousvision/neat

Thank you!

http://autonomousvision.github.io

