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Abstract. Recently, implicit neural representations have gained popular-
ity for learning-based 3D reconstruction. While demonstrating promising
results, most implicit approaches are limited to comparably simple geom-
etry of single objects and do not scale to more complicated or large-scale
scenes. The key limiting factor of implicit methods is their simple fully-
connected network architecture which does not allow for integrating local
information in the observations or incorporating inductive biases such
as translational equivariance. In this paper, we propose Convolutional
Occupancy Networks, a more flexible implicit representation for detailed
reconstruction of objects and 3D scenes. By combining convolutional
encoders with implicit occupancy decoders, our model incorporates induc-
tive biases, enabling structured reasoning in 3D space. We investigate the
effectiveness of the proposed representation by reconstructing complex
geometry from noisy point clouds and low-resolution voxel representations.
We empirically find that our method enables the fine-grained implicit
3D reconstruction of single objects, scales to large indoor scenes, and
generalizes well from synthetic to real data.

1 Introduction

3D reconstruction is a fundamental problem in computer vision with numerous
applications. An ideal representation of 3D geometry should have the following
properties: a) encode complex geometries and arbitrary topologies, b) scale to
large scenes, c) encapsulate local and global information, and d) be tractable in
terms of memory and computation.

Unfortunately, current representations for 3D reconstruction do not satisfy
all of these requirements. Volumetric representations [25] are limited in terms of
resolution due to their large memory requirements. Point clouds [9] are lightweight
3D representations but discard topological relations. Mesh-based representations
[13] are often hard to predict using neural networks.

Recently, several works [3,26,27,31] have introduced deep implicit representa-
tions which represent 3D structures using learned occupancy or signed distance
functions. In contrast to explicit representations, implicit methods do not dis-
cretize 3D space during training, thus resulting in continuous representations
of 3D geometry without topology restrictions. While inspiring many follow-up
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Fig. 1: Convolutional Occupancy Networks. Traditional implicit models (a)
are limited in their expressiveness due to their fully-connected network structure.
We propose Convolutional Occupancy Networks (b) which exploit convolutions,
resulting in scalable and equivariant implicit representations. We query the
convolutional features at 3D locations p ∈ R3 using linear interpolation. In
contrast to Occupancy Networks (ONet) [26], the proposed feature representation
ψ(p,x) therefore depends on both the input x and the 3D location p. Fig. (c)
shows a reconstruction of a two-floor building from a noisy point cloud on the
Matterport3D dataset [1].

works [10, 11, 23, 24, 28–30,41], all existing approaches are limited to single ob-
jects and do not scale to larger scenes. The key limiting factor of most implicit
models is their simple fully-connected network architecture [26, 31] which neither
allows for integrating local information in the observations, nor for incorporating
inductive biases such as translation equivariance into the model. This prevents
these methods from performing structured reasoning as they only act globally
and result in overly smooth surface reconstructions.

In contrast, translation equivariant convolutional neural networks (CNNs)
have demonstrated great success across many 2D recognition tasks including
object detection and image segmentation. Moreover, CNNs naturally encode
information in a hierarchical manner in different network layers [50,51]. Exploiting
these inductive biases is expected to not only benefit 2D but also 3D tasks, e.g.,
reconstructing 3D shapes of multiple similar chairs located in the same room.
In this work, we seek to combine the complementary strengths of convolutional
neural networks with those of implicit representations.

Towards this goal, we introduce Convolutional Occupancy Networks, a novel
representation for accurate large-scale 3D reconstruction1 with continuous im-
plicit representations (Fig. 1). We demonstrate that this representation not only

1 With 3D reconstruction, we refer to 3D surface reconstruction throughout the paper.
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preserves fine geometric details, but also enables the reconstruction of complex
indoor scenes at scale. Our key idea is to establish rich input features, incorpo-
rating inductive biases and integrating local as well as global information. More
specifically, we exploit convolutional operations to obtain translation equivari-
ance and exploit the local self-similarity of 3D structures. We systematically
investigate multiple design choices, ranging from canonical planes to volumetric
representations. Our contributions are summarized as follows:

– We identify major limitations of current implicit 3D reconstruction methods.
– We propose a flexible translation equivariant architecture which enables

accurate 3D reconstruction from object to scene level.
– We demonstrate that our model enables generalization from synthetic to real

scenes as well as to novel object categories and scenes.

Our code and data are provided at https://github.com/autonomousvision/
convolutional occupancy networks.

2 Related Work

Learning-based 3D reconstruction methods can be broadly categorized by the
output representation they use.

Voxels: Voxel representations are amongst the earliest representations for
learning-based 3D reconstruction [5,46,47]. Due to the cubic memory requirements
of voxel-based representations, several works proposed to operate on multiple
scales or use octrees for efficient space partitioning [8, 14, 25, 37, 38, 42]. However,
even when using adaptive data structures, voxel-based techniques are still limited
in terms of memory and computation.

Point Clouds: An alternative output representation for 3D reconstruction is
3D point clouds which have been used in [9,21,34,49]. However, point cloud-based
representations are typically limited in terms of the number of points they can
handle. Furthermore, they cannot represent topological relations.

Meshes: A popular alternative is to directly regress the vertices and faces of
a mesh [12, 13, 17, 20, 22, 44, 45] using a neural network. While some of these
works require deforming a template mesh of fixed topology, others result in
non-watertight reconstructions with self-intersecting mesh faces.

Implicit Representations: More recent implicit occupancy [3,26] and distance
field [27, 31] models use a neural network to infer an occupancy probability or
distance value given any 3D point as input. In contrast to the aforementioned
explicit representations which require discretization (e.g., in terms of the number
of voxels, points or vertices), implicit models represent shapes continuously and
naturally handle complicated shape topologies. Implicit models have been adopted
for learning implicit representations from images [23, 24, 29, 41], for encoding
texture information [30], for 4D reconstruction [28] as well as for primitive-based
reconstruction [10, 11, 15, 32]. Unfortunately, all these methods are limited to

https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/autonomousvision/convolutional_occupancy_networks
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comparably simple 3D geometry of single objects and do not scale to more
complicated or large-scale scenes. The key limiting factor is the simple fully-
connected network architecture which does not allow for integrating local features
or incorporating inductive biases such as translation equivariance.

Notable exceptions are PIFu [40] and DISN [48] which use pixel-aligned implicit
representations to reconstruct people in clothing [40] or ShapeNet objects [48].
While these methods also exploit convolutions, all operations are performed
in the 2D image domain, restricting these models to image-based inputs and
reconstruction of single objects. In contrast, in this work, we propose to aggregate
features in physical 3D space, exploiting both 2D and 3D convolutions. Thus,
our world-centric representation is independent of the camera viewpoint and
input representation. Moreover, we demonstrate the feasibility of implicit 3D
reconstruction at scene-level as illustrated in Fig. 1c.

In concurrent work, Chibane et al. [4] present a model similar to our convo-
lutional volume decoder. In contrast to us, they only consider a single variant
of convolutional feature embeddings (3D), use lossy discretization for the 3D
point cloud encoding and only demonstrate results on single objects and humans,
as opposed to full scenes. In another concurrent work, Jiang et al. [16] leverage
shape priors for scene-level implicit 3D reconstruction. In contrast to us, they
use 3D point normals as input and require optimization at inference time.

3 Method

Our goal is to make implicit 3D representations more expressive. An overview
of our model is provided in Fig. 2. We first encode the input x (e.g., a point
cloud) into a 2D or 3D feature grid (left). These features are processed using
convolutional networks and decoded into occupancy probabilities via a fully-
connected network. We investigate planar representations (a+c+d), volumetric
representations (b+e) as well as combinations thereof in our experiments. In the
following, we explain the encoder (Section 3.1), the decoder (Section 3.2), the
occupancy prediction (Section 3.3) and the training procedure (Section 3.4) in
more detail.

3.1 Encoder

While our method is independent of the input representation, we focus on 3D
inputs to demonstrate the ability of our model in recovering fine details and
scaling to large scenes. More specifically, we assume a noisy sparse point cloud
(e.g., from structure-from-motion or laser scans) or a coarse occupancy grid as
input x.

We first process the input x with a task-specific neural network to obtain a
feature encoding for every point or voxel. We use a one-layer 3D CNN for voxelized
inputs, and a shallow PointNet [35] with local pooling for 3D point clouds. Given
these features, we construct planar and volumetric feature representations in
order to encapsulate local neighborhood information as follows.
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Fig. 2: Model Overview. The encoder (left) first converts the 3D input x
(e.g., noisy point clouds or coarse voxel grids) into features using task-specific
neural networks. Next, the features are projected onto one or multiple planes
(Fig. 2a) or into a volume (Fig. 2b) using average pooling. The convolutional
decoder (right) processes the resulting feature planes/volume using 2D/3D
U-Nets to aggregate local and global information. For a query point p ∈ R3, the
point-wise feature vector ψ(x,p) is obtained via bilinear (Fig. 2c and Fig. 2d) or
trilinear (Fig. 2e) interpolation. Given feature vector ψ(x,p) at location p, the
occupancy probability is predicted using a fully-connected network fθ(p, ψ(p,x)).

Plane Encoder: As illustrated in Fig. 2a, for each input point, we perform an
orthographic projection onto a canonical plane (i.e., a plane aligned with the
axes of the coordinate frame) which we discretize at a resolution of H ×W pixel
cells. For voxel inputs, we treat the voxel center as a point and project it to
the plane. We aggregate features projecting onto the same pixel using average
pooling, resulting in planar features with dimensionality H ×W × d, where d is
the feature dimension.

In our experiments, we analyze two variants of our model: one variant where
features are projected onto the ground plane, and one variant where features
are projected to all three canonical planes. While the former is computationally
more efficient, the latter allows for recovering richer geometric structure in the z
dimension.

Volume Encoder: While planar feature representations allow for encoding
at large spatial resolution (1282 pixels and beyond), they are restricted to two
dimensions. Therefore, we also consider volumetric encodings (see Fig. 2b) which
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better represent 3D information, but are restricted to smaller resolutions (typically
323 voxels in our experiments). Similar to the plane encoder, we perform average
pooling, but this time over all features falling into the same voxel cell, resulting
in a feature volume of dimensionality H ×W ×D × d.

3.2 Decoder

We endow our model with translation equivariance by processing the feature
planes and the feature volume from the encoder using 2D and 3D convolutional
hourglass (U-Net) networks [6, 39] which are composed of a series of down- and
upsampling convolutions with skip connections to integrate both local and global
information. We choose the depth of the U-Net such that the receptive field
becomes equal to the size of the respective feature plane or volume.

Our single-plane decoder (Fig. 2c) processes the ground plane features with
a 2D U-Net. The multi-plane decoder (Fig. 2d) processes each feature plane
separately using 2D U-Nets with shared weights. Our volume decoder (Fig. 2e)
uses a 3D U-Net. Since convolution operations are translational equivariant, our
output features are also translation equivariant, enabling structured reasoning.
Moreover, convolutional operations are able to “inpaint” features while preserving
global information, enabling reconstruction from sparse inputs.

3.3 Occupancy Prediction

Given the aggregated feature maps, our goal is to estimate the occupancy
probability of any point p in 3D space. For the single-plane decoder, we project
each point p orthographically onto the ground plane and query the feature value
through bilinear interpolation (Fig. 2c). For the multi-plane decoder (Fig. 2d),
we aggregate information from the 3 canonical planes by summing the features
of all 3 planes. For the volume decoder, we use trilinear interpolation (Fig. 2e).

Denoting the feature vector for input x at point p as ψ(p,x), we predict the
occupancy of p using a small fully-connected occupancy network:

fθ(p, ψ(p,x))→ [0, 1] (1)

The network comprises multiple ResNet blocks. We use the network architecture
of [29], adding ψ to the input features of every ResNet block instead of the more
memory intensive batch normalization operation proposed in earlier works [26].
In contrast to [29], we use a feature dimension of 32 for the hidden layers. Details
about the network architecture can be found in the supplementary.

3.4 Training and Inference

At training time, we uniformly sample query points p ∈ R3 within the volume of
interest and predict their occupancy values. We apply the binary cross-entropy
loss between the predicted ôp and the true occupancy values op:

L(ôp, op) = −[op · log(ôp) + (1− op) · log(1− ôp)] (2)
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We implement all models in PyTorch [33] and use the Adam optimizer [19] with
a learning rate of 10−4. During inference, we apply Multiresolution IsoSurface
Extraction (MISE) [26] to extract meshes given an input x. As our model is
fully-convolutional, we are able to reconstruct large scenes by applying it in a
“sliding-window” fashion at inference time. We exploit this property to obtain
reconstructions of entire apartments (see Fig. 1).

4 Experiments

We conduct three types of experiments to evaluate our method. First, we perform
object-level reconstruction on ShapeNet [2] chairs, considering noisy point
clouds and low-resolution occupancy grids as inputs. Next, we compare our ap-
proach against several baselines on the task of scene-level reconstruction using
a synthetic indoor dataset of various objects. Finally, we demonstrate synthetic-
to-real generalization by evaluating our model on real indoor scenes [1, 7].

Datasets:

ShapeNet [2]: We use all 13 classes of the ShapeNet subset, voxelizations,
and train/val/test split from Choy et al. [5]. Per-class results can be found in
supplementary.
Synthetic Indoor Scene Dataset: We create a synthetic dataset of 5000
scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table).
A scene consists of a ground plane with randomly sampled width-length ratio,
multiple objects with random rotation and scale, and randomly sampled walls.
ScanNet v2 [7]: This dataset contains 1513 real-world rooms captured with an
RGB-D camera. We sample point clouds from the provided meshes for testing.
Matterport3D [1]: Matterport3D contains 90 buildings with multiple rooms
on different floors captured using a Matterport Pro Camera. Similar to ScanNet,
we sample point clouds for evaluating our model on Matterport3D.

Baselines:

ONet [26]: Occupancy Networks is a state-of-the-art implicit 3D reconstruction
model. It uses a fully-connected network architecture and a global encoding of
the input. We compare against this method in all of our experiments.
PointConv: We construct another simple baseline by extracting point-wise fea-
tures using PointNet++ [36], interpolating them using Gaussian kernel regression
and feeding them into the same fully-connected network used in our approach.
While this baseline uses local information, it does not exploit convolutions.
SPSR [18]: Screened Poisson Surface Reconstruction (SPSR) is a traditional
3D reconstruction technique which operates on oriented point clouds as input.
Note that in contrast to all other methods, SPSR requires additional surface
normals which are often hard to obtain for real-world scenarios.



8 S. Peng et al.

GPU Memory IoU Chamfer-L1 Normal C. F-Score

PointConv 5.1G 0.689 0.126 0.858 0.644
ONet [26] 7.7G 0.761 0.087 0.891 0.785

Ours-2D (642) 1.6G 0.833 0.059 0.914 0.887
Ours-2D (3 × 642) 2.4G 0.884 0.044 0.938 0.942
Ours-3D (323) 5.9G 0.870 0.048 0.937 0.933
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Table 1: Object-Level 3D Reconstruction from Point Clouds. Left: We
report GPU memory, IoU, Chamfer-L1 distance, Normal Consistency and F-
Score for our approach (2D plane and 3D voxel grid dimensions in brackets),
the baselines ONet [26] and PointConv on ShapeNet (mean over all 13 classes).
Right: The training progression plot shows that our method converges faster
than the baselines.

Metrics:

Following [26], we consider Volumetric IoU, Chamfer Distance, Normal Consis-
tency for evaluation. We further report F-Score [43] with the default threshold
value of 1% unless otherwise specified. Details can be found in the supplementary.

4.1 Object-Level Reconstruction

We first evaluate our method on the single object reconstruction task on ShapeNet [2].
We consider two different types of 3D inputs: noisy point clouds and low-resolution
voxels. For the former, we sample 3000 points from the mesh and apply Gaussian
noise with zero mean and standard deviation 0.05. For the latter, we use the
coarse 323 voxelizations from [26]. For the query points (i.e., for which supervision
is provided), we follow [26] and uniformly sample 2048 and 1024 points for noisy
point clouds and low-resolution voxels, respectively. Due to the different encoder
architectures for these two tasks, we set the batch size to 32 and 64, respectively.

Reconstruction from Point Clouds: Table 1 and Fig. 3 show quantitative
and qualitative results. Compared to the baselines, all variants of our method
achieve equal or better results on all three metrics. As evidenced by the training
progression plot on the right, our method reaches a high validation IoU after only
few iterations. This verifies our hypothesis that leveraging convolutions and local
features benefits 3D reconstruction in terms of both accuracy and efficiency. The
results show that, in comparison to PointConv which directly aggregates features
from point clouds, projecting point-features to planes or volumes followed by
2D/3D CNNs is more effective. In addition, decomposing 3D representations
from volumes into three planes with higher resolution (642 vs. 323) improves
performance while at the same time requiring less GPU memory. More results
can be found in supplementary.

Voxel Super-Resolution: Besides noisy point clouds, we also evaluate on the
task of voxel super-resolution. Here, the goal is to recover high-resolution details
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Input PointConv ONet [26] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3 × 642) (323)

Fig. 3: Object-Level 3D Reconstruction from Point Clouds. Comparison
of our convolutional representation to ONet and PointConv on ShapeNet.

GPU Memory IoU Chamfer-L1 Normal C. F-Score

Input - 0.631 0.136 0.810 0.440

ONet [26] 4.8G 0.703 0.110 0.879 0.656

Ours-2D (642) 2.4G 0.652 0.145 0.861 0.592
Ours-2D (3 × 642) 4.0G 0.752 0.092 0.905 0.735
Ours-3D (323) 10.8G 0.752 0.091 0.912 0.729

Table 2: Voxel Super-Resolution. 3D reconstruction results from low resolution
voxelized inputs (323 voxels) on the ShapeNet dataset (mean over 13 classes).

from coarse (323) voxelizations of the shape. Table 2 and Fig. 4 show that our
method with three planes achieves comparable results over our volumetric method
while requiring only 37% of the GPU memory. In contrast to reconstruction from
point clouds, our single-plane approach fails on this task. We hypothesize that a
single plane is not sufficient for resolving ambiguities in the coarse but regularly
structured voxel input.

4.2 Scene-Level Reconstruction

To analyze whether our approach can scale to larger scenes, we now reconstruct
3D geometry from point clouds on our synthetic indoor scene dataset. Due to the
increasing complexity of the scene, we uniformly sample 10000 points as input
point cloud and apply Gaussian noise with standard deviation of 0.05. During
training, we sample 2048 query points, similar to object-level reconstruction.
For our plane-based methods, we use a resolution to 1282. For our volumetric
approach, we investigate both 323 and 643 resolutions. Hypothesizing that the
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Input ONet [26] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3 × 642) (323)

Fig. 4: Voxel Super-Resolution. Qualitative comparison between our method
and ONet using coarse voxelized inputs at resolution 323 voxels.

IoU Chamfer-L1 Normal Consistency F-Score

ONet [26] 0.475 0.203 0.783 0.541
PointConv 0.523 0.165 0.811 0.790
SPSR [18] - 0.223 0.866 0.810
SPSR [18] (trimmed) - 0.069 0.890 0.892

Ours-2D (1282) 0.795 0.047 0.889 0.937
Ours-2D (3 × 1282) 0.805 0.044 0.903 0.948
Ours-3D (323) 0.782 0.047 0.902 0.941
Ours-3D (643) 0.849 0.042 0.915 0.964
Ours-2D-3D (3 × 1282 + 323) 0.816 0.044 0.905 0.952

Table 3: Scene-Level Reconstruction on Synthetic Rooms. Quantitative
comparison for reconstruction from noisy point clouds. We do not report IoU for
SPSR as SPSR generates only a single surface for walls and the ground plane.
To ensure a fair comparison to SPSR, we compare all methods with only a single
surface for walls/ground planes when calculating Chamfer-L1 and F-Score.

plane and volumetric features are complementary, we also test the combination
of the multi-plane and volumetric variants.

Table 3 and Fig. 5 show our results. All variants of our method are able
to reconstruct geometric details of the scenes and lead to smooth results. In
contrast, ONet and PointConv suffer from low accuracy while SPSR leads to
noisy surfaces. While high-resolution canonical plane features capture fine details
they are prone to noise. Low-resolution volumetric features are instead more
robust to noise, yet produce smoother surfaces. Combining complementary vol-
umetric and plane features improves results compared to considering them in
isolation. This confirms our hypothesis that plane-based and volumetric features
are complementary. However, the best results in this setting are achieved when
increasing the resolution of the volumetric features to 643.

4.3 Ablation Study

In this section, we investigate on our synthetic indoor scene dataset different
feature aggregation strategies at similar GPU memory consumption as well as
different feature interpolation strategies.
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Fig. 5: Scene-Level Reconstruction on Synthetic Rooms. Qualitative com-
parison for point-cloud based reconstruction on the synthetic indoor scene dataset.
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GPU Memory IoU Chamfer-L1 Normal C. F-Score

Ours-2D (1922) 9.5GB 0.773 0.047 0.889 0.937
Ours-2D (3 × 1282) 9.3GB 0.805 0.044 0.903 0.948
Ours-3D (323) 8.5GB 0.782 0.047 0.902 0.941

(a) Performance at similar GPU Memory

IoU Chamfer-L1 Normal C. F-Score

Nearest Neighbor 0.766 0.052 0.885 0.920
Bilinear 0.805 0.044 0.903 0.948

(b) Interpolation Strategy

Table 4: Ablation Study on Synthetic Rooms. We compare the performance
of different feature aggregation strategies at similar GPU memory in Table 4a
and evaluate two different sampling strategies in Table 4b.

Performance at Similar GPU Memory: Table 4a shows a comparison of
different feature aggregation strategies at similar GPU memory utilization. Our
multi-plane approach slightly outperforms the single plane and the volumetric
approach in this setting. Moreover, the increase in plane resolution for the single
plane variant does not result in a clear performance boost, demonstrating that
higher resolution does not necessarily guarantee better performance.

Feature Interpolation Strategy: To analyze the effect of the feature interpo-
lation strategy in the convolutional decoder of our method, we compare nearest
neighbor and bilinear interpolation for our multi-plane variant. The results in
Table 4b clearly demonstrate the benefit of bilinear interpolation.

4.4 Reconstruction from Point Clouds on Real-World Datasets

Next, we investigate the generalization capabilities of our method. Towards this
goal, we evaluate our models trained on the synthetic indoor scene dataset on the
real world datasets ScanNet v2 [7] and Matterport3D [1]. Similar to our previous
experiments, we use 10000 points sampled from the meshes as input.

ScanNet v2: Our results in Table 5 show that among all our variants, the
volumetric-based models perform best, indicating that the plane-based approaches
are more affected by the domain shift. We find that 3D CNNs are more robust
to noise as they aggregate features from all neighbors which results in smooth
outputs. Moreover, all variants outperform the learning-based baselines by a
significant margin.

The qualitative comparison in Fig. 6 shows that our model is able to smoothly
reconstruct scenes with geometric details at various scales. While Screened
PSR [18] also produces reasonable reconstructions, it tends to close the resulting
meshes and hence requires a carefully chosen trimming parameter. In contrast,
our method does not require additional hyperparameters.

Matterport3D Dataset: Finally, we investigate the scalability of our method
to larger scenes which comprise multiple rooms and multiple floors. For this
experiment, we exploit the Matterport3D dataset. Unlike before, we implement
a fully convolutional version of our 3D model that can be scaled to any size
by running on overlapping crops of the input point cloud in a sliding window
fashion. The overlap is determined by the size of the receptive field to ensure
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Chamfer-L1 F-Score

ONet [26] 0.398 0.390
PointConv 0.316 0.439
SPSR [18] 0.293 0.731
SPSR [18] (trimmed) 0.086 0.847

Chamfer-L1 F-Score

Ours-2D (1282) 0.139 0.747
Ours-2D (3 × 1282) 0.142 0.776
Ours-3D (323) 0.095 0.837
Ours-3D (643) 0.077 0.886
Ours-2D-3D (3 × 1282 + 323) 0.099 0.847

Table 5: Scene-Level Reconstruction on ScanNet. Evaluation of point-based
reconstruction on the real-world ScanNet dataset. As ScanNet does not provide
watertight meshes, we trained all methods on the synthetic indoor scene dataset.
Remark: In ScanNet, walls / floors are only observed from one side. To not
wrongly penalize methods for predicting walls and floors with thickness (0.01 in
our training set), we chose a F-Score threshold of 1.5% for this experiment.

correctness of the results. Fig. 1 shows the resulting 3D reconstruction. Our
method reconstructs details inside each room while adhering to the room layout.
Note that the geometry and point distribution of the Matterport3D dataset
differs significantly from the synthetic indoor scene dataset which our model is
trained on. This demonstrates that our method is able to generalize not only
to unseen classes, but also novel room layouts and sensor characteristics. More
implementation details and results can be found in supplementary.

5 Conclusion

We introduced Convolutional Occupancy Networks, a novel shape representation
which combines the expressiveness of convolutional neural networks with the
advantages of implicit representations. We analyzed the tradeoffs between 2D and
3D feature representations and found that incorporating convolutional operations
facilitates generalization to unseen classes, novel room layouts and large-scale
indoor spaces. We find that our 3-plane model is memory efficient, works well on
synthetic scenes and allows for larger feature resolutions. Our volumetric model,
in contrast, outperforms other variants on real-world scenarios while consuming
more memory.

Finally, we remark that our method is not rotation equivariant and only
translation equivariant with respect to translations that are multiples of the
defined voxel size. Moreover, there is still a performance gap between synthetic and
real data. While the focus of this work was on learning-based 3D reconstruction,
in future work, we plan to apply our novel representation to other domains such
as implicit appearance modeling and 4D reconstruction.
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Fig. 6: Scene-Level Reconstruction on ScanNet. Qualitative results for
point-based reconstruction on ScanNet [7]. All learning-based methods are trained
on the synthetic room dataset and evaluated on ScanNet.
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mâché approach to learning 3d surface generation. In: Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR) (2018) 1, 3

14. Hane, C., Tulsiani, S., Malik, J.: Hierarchical surface prediction for 3d object
reconstruction. In: Proc. of the International Conf. on 3D Vision (3DV) (2017) 3

15. Jeruzalski, T., Deng, B., Norouzi, M., Lewis, J.P., Hinton, G.E., Tagliasacchi, A.:
NASA: neural articulated shape approximation. In: Proc. of the European Conf.
on Computer Vision (ECCV) (2020) 3

16. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local
implicit grid representations for 3d scenes. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) (2020) 4

17. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh
reconstruction from image collections. In: Proc. of the European Conf. on Computer
Vision (ECCV) (2018) 3



16 S. Peng et al.

18. Kazhdan, M.M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans.
on Graphics 32(3), 29 (2013) 7, 10, 11, 12, 13, 14

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of
the International Conf. on Machine learning (ICML) (2015) 7

20. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface
representations. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2018) 3

21. Lin, C., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense
3d object reconstruction. In: Proc. of the Conf. on Artificial Intelligence (AAAI)
(2018) 3

22. Lin, C., Wang, O., Russell, B.C., Shechtman, E., Kim, V.G., Fisher, M., Lucey,
S.: Photometric mesh optimization for video-aligned 3d object reconstruction. In:
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2019) 3

23. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: DIST: rendering deep
implicit signed distance function with differentiable sphere tracing. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) (2020) 2, 3

24. Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces without 3d
supervision. In: Advances in Neural Information Processing Systems (NeurIPS)
(2019) 2, 3

25. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: Proc. IEEE International Conf. on Intelligent Robots and
Systems (IROS) (2015) 1, 3

26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2019) 1, 2, 3, 6, 7, 8, 9, 10,
11, 13, 14

27. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.:
Implicit surface representations as layers in neural networks. In: Proc. of the IEEE
International Conf. on Computer Vision (ICCV) (2019) 1, 3

28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d recon-
struction by learning particle dynamics. In: Proc. of the IEEE International Conf.
on Computer Vision (ICCV) (2019) 2, 3

29. Niemeyer, M., Mescheder, L.M., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2020) 2, 3, 6

30. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields:
Learning texture representations in function space. In: Proc. of the IEEE Interna-
tional Conf. on Computer Vision (ICCV) (2019) 2, 3

31. Park, J.J., Florence, P., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf:
Learning continuous signed distance functions for shape representation. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2019) 1, 2, 3

32. Paschalidou, D., van Gool, L., Geiger, A.: Learning unsupervised hierarchical part
decomposition of 3d objects from a single rgb image. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2020) 3

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems (NeurIPS) (2019) 7



Convolutional Occupancy Networks 17

34. Prokudin, S., Lassner, C., Romero, J.: Efficient learning on point clouds with basis
point sets. In: Proc. of the IEEE International Conf. on Computer Vision (ICCV)
(2019) 3

35. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR) (2017) 4

36. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In: Advances in Neural Information Processing
Systems (NeurIPS) (2017) 7

37. Riegler, G., Ulusoy, A.O., Bischof, H., Geiger, A.: OctNetFusion: Learning depth
fusion from data. In: Proc. of the International Conf. on 3D Vision (3DV) (2017) 3

38. Riegler, G., Ulusoy, A.O., Geiger, A.: Octnet: Learning deep 3d representations at
high resolutions. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) (2017) 3

39. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI) (2015) 6

40. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
Proc. of the IEEE International Conf. on Computer Vision (ICCV) (2019) 4
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