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Abstract

The ability to synthesize realistic and diverse indoor furniture layouts automatically
or based on partial input, unlocks many applications, from better interactive 3D
tools to data synthesis for training and simulation. In this paper, we present
ATISS, a novel autoregressive transformer architecture for creating diverse and
plausible synthetic indoor environments, given only the room type and its floor
plan. In contrast to prior work, which poses scene synthesis as sequence generation,
our model generates rooms as unordered sets of objects. We argue that this
formulation is more natural, as it makes ATISS generally useful beyond fully
automatic room layout synthesis. For example, the same trained model can be
used in interactive applications for general scene completion, partial room re-
arrangement with any objects specified by the user, as well as object suggestions for
any partial room. To enable this, our model leverages the permutation equivariance
of the transformer when conditioning on the partial scene, and is trained to be
permutation-invariant across object orderings. Our model is trained end-to-end
as an autoregressive generative model using only labeled 3D bounding boxes as
supervision. Evaluations on four room types in the 3D-FRONT dataset demonstrate
that our model consistently generates plausible room layouts that are more realistic
than existing methods. In addition, it has fewer parameters, is simpler to implement
and train and runs up to 8x faster than existing methods.

1 Introduction

Generating synthetic 3D content that is both realistic and diverse is a long-standing problem in
computer vision and graphics. In the last decade, there has been increased demand for tools that
automate the creation of 3D artificial environments for applications like video games and AR/VR,
as well as general 3D content creation [61, 16, 36, 4, 62]. These tools can also synthesize data to
train computer vision models, avoiding expensive and laborious annotations. Generative models
[28, 19, 13, 29, 56] have demonstrated impressive results on synthesizing photorealistic images
[7, 1, 24, 8, 25] and intelligible text [46, 2], and are beginning to be adopted for the generation of 3D
environments.

Recent works proposed to solve the scene synthesis task by incorporating procedural modeling
techniques [45, 43, 23, 9] or by generating scene graphs with generative models [34, 59, 65, 35, 44,
64, 63, 27, 12]. Procedural modeling requires specifying a set of rules for the scene formation process,
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Figure 1: Motivation In addition to fully automatic layout synthesis (A), our formulation in terms of unordered
sets of objects allows our model to be used for novel interactive applications with versatile user control: scene
completion given any number of existing furniture pieces of any class pinned to a specific location by the user
(B), and object suggestions with user-provided constraints (object centroid constraint shown in red) (C).

but acquiring these rules is a time-consuming task, requiring skills of experienced artists. Similarly,
graph-based approaches require scene graph annotations, which may be laborious to obtain.

Another line of research utilizes CNN-based [58, 47] and transformer-based [57] architectures to
generate rooms by autoregressively selecting and placing objects in a scene, i.e. one after the other.
These approaches represent scenes as ordered sequences of objects. Typically, the ordering is defined
using the spatial arrangement of objects in a room (e.g. left-to-right) [22] or the object class frequency
(e.g. most to least probable) [47, 57]. Such orderings impose unnatural constraints on the scene
generation process, inhibiting practical applications. For example, in [47, 57], which order objects by
class frequency, the probability of a bed (more common) appearing after an ottoman (less common)
in the training set is zero. As a result, these methods cannot generate more common objects after less
common objects, which makes them impractical for interactive tasks like general room completion
and partial room re-arrangement, where input is unconstrained (e.g. Fig.1B).

To address these limitations, we pose scene synthesis as an unordered set generation problem and
introduce ATISS, a novel autoregressive transformer architecture to model this process. Given a
room type (e.g. bedroom, living room) and its shape, our model generates meaningful furniture
arrangements by sequentially placing objects in a permutation-invariant fashion. We train ATISS
to maximize the log-likelihood of all possible permutations of object arrangements in a collection
of training scenes, labeled only with object classes and 3D bounding boxes, which are easier
to obtain, than costly support relationship [59] or scene graph annotations [34]. Unlike existing
works [58, 47, 57], we propose the first model to perform scene synthesis as an autoregressive set
generation task. ATISS is significantly simpler to implement and train, requires fewer parameters and
is up to 8× faster at run-time than the fastest available baseline [57]. Furthermore, we demonstrate that
our model generates more plausible object arrangments without any post-processing on the predicted
layout. Our formulation allows applying a single trained model to automatic layout synthesis and to
a number of interactive scenarios with versatile user input (Fig.1), such as automatic placement of
user-provided objects, object suggestion with user-provided constraints, and room completion. Code
and data are publicaly available at https://nv-tlabs.github.io/ATISS.

2 Related Work

In this section, we discuss the most relevant literature on interior scene synthesis, as well as trans-
former architectures [56] in the context of generative modeling.

Procedural Modeling with Grammars: Procedural modeling describes methods that recursively
apply a set of functions for content synthesis. Grammars are a formal instantiation of this idea
and have been used for modeling 3D structures such as plants [52], buildings and cities [37, 40],
indoor [45] and outdoor [43] scenes. [52] employed reversible-jump MCMC to control the output of
stochastic context-free grammars. Meta-Sim [23] learned a model that modifies attributes of scene
graphs sampled from a known probabilistic context-free grammar to match visual statistics between
generated and real data. [9] extended this model to also learn to sample from the grammar, allowing
context dependent relationships to be learnt. Concurrently, [44] employed Grammar-VAE [31] to
generate scenes using a scene grammar generated from annotated data. In contrast, our model
implicitly encapsulates inter-object relationships, without having to impose hand-crafted constraints.

Graph-based Scene Synthesis: Representing scenes as graphs has been extensively studied in
literature [34, 59, 65, 35, 44, 64, 63, 27, 12]. Zhou et al. [65] introduced a neural message passing
algorithm for scene graphs that predicts the category of the next object to be placed at a specific
location. Similarly, [34, 64, 44, 35] utilized a VAE [28] to synthesize 3D scenes as parse trees [44],
adjacency matrices [64], scene graphs [35] and scene hierarchies [34]. Concurrently, [59, 63] adopted
a two-stage generation process that disentangles planning the scene layout from instantiating the
scene based on this plan. Note that graph-based models require supervision either in the form of
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Figure 2: Method Overview. Starting from a scene withM objects and a floor layout, the layout encoder maps
the floor into a feature representation F and the structure encoder maps the objects into a context embedding
C = {Cj}Mj=1. The floor layout feature F, the context embedding C and a learnable query vector q are then
passed to the transformer encoder that predicts q̂. Using q̂ the attribute extractor autoregressively predicts
the attribute distributions that are used to sample the attributes for the next object to be generated.

relation graphs [59, 63, 35] or scene hierarchies [34]. In contrast, ATISS infers functional and spatial
relations between objects directly from data labeled only with object classes and 3D bounding boxes.

Autoregressive Scene Synthesis: Closely related to our work are autoregressive indoor scene
generation models [58, 47, 57]. Ritchie et al. [47] introduced a CNN-based architecture that operates
on a top-down image-based representation of a scene and inserts objects in it sequentially by predicting
their category, location, orientation and size with separate network modules. [47] requires supervision
in the form of 2D bounding boxes as well as auxiliary supervision such as depth maps and object
segmentation masks. In concurrent work, Wang et al. [57] introduced SceneFormer, a series of
transformers that autoregressively add objects in a scene similar to [47]. Both [47, 57] use separate
models to generate object attributes (e.g. category, location) that are trained independently and
represent scenes as ordered sequences of objects, ordered by the category frequency. In contrast,
we propose a simpler architecture that consists of a single model trained end-to-end to predict
all attributes. We provide experimental evidence that our model generates more realistic object
arrangements while being significantly faster. While [47, 57] assume a fixed ordering of the objects
in each scene, our model does not impose any constraint on the ordering of objects. Instead, during
training, we enforce that our model generates objects with all orderings, in a permutation invariant
fashion. This allows us to represent scenes as unordered sets of objects and perform various interactive
tasks such as rearranging any object in a room or suggesting new objects given any room.

Transformers for Set Generation: Transformer models [56] demonstrated impressive results on
various tasks such as machine translation [50, 39], language-modeling [2, 10], object detection
[33, 3, 66], image recognition [14, 53], semantic segmentation [60] as well as on image [42, 26, 5,
15, 54] and music [11] generation tasks. While there are works [32, 30] that utilize the permutation
equivariance property of transformers for unordered set processing and prediction, existing generative
models with transformers assume ordered sequences [2, 5, 6] even when there exists no natural order
such as for pointclouds [38] and objects in a scene [57]. Instead, we introduce an autoregressive
transformer for unordered set generation that enforces that the probability of adding a new element in
the set is invariant to the order of the elements already in the set. We show that for the scene synthesis
task, our model outperforms transformers that consider ordered sets of elements in every metric.

3 Method

Given an empty or a partially complete room of a specific type (e.g. bedroom) together with its shape,
as a top-down orthographic projection of its floor, we want to learn a generative model that populates
the room with objects, whose functional composition and spatial arrangement is plausible. To this
end, we propose an autoregressive model that represents scenes as unordered sets of objects (Sec. 3.1)
and describe our implementation using a transformer network (Sec. 3.2). Finally, we analyse the
training and inference details of our method (Sec. 3.3).

3.1 Autoregressive Set Generation

Let X = {X1, . . . ,XN} denote a collection of scenes where each Xi =
(
Oi,Fi

)
comprises the

unordered set of objects in the sceneOi = {oij}Mj=1 and its floor layout Fi. To compute the likelihood
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of generating Oi we need to accumulate the likelihood of generating {oij}Mj=1 autoregressively in any
order. This is formally written as

pθ(Oi|Fi) =
∑

Ô∈π(Oi)

∏
j∈Ô

pθ(o
i
j | oi<j ,Fi), (1)

where pθ(oij | oi<j ,Fi) is the probability of the j-th object, conditioned on the previously generated
objects and the floor layout, and π(·) is a permutation function that computes the set of permutations
of all objects in the scene. As a result, the log-likelihood of the whole collection X is

log pθ(X ) =
N∑
i=1

log

 ∑
Ô∈π(Oi)

∏
j∈Ô

pθ(o
i
j | oi<j ,Fi)

 . (2)

However, training our generative model to maximize the log-likelihood of (2) poses two problems:
(a) the summation over all permutations is intractable and (b) (2) does not ensure that all orderings
will have high probability. The second problem is crucial because we want our generative model to
be able to complete any partial set in a plausible way, namely we want any generation order to have
high probability. To this end, instead of maximizing (2), we maximize the likelihood of generating a
scene in all possible orderings, p̂θ(·), which is defined as

log p̂θ(X ) =
N∑
i=1

log

 ∏
Ô∈π(Oi)

∏
j∈Ô

pθ(o
i
j | oi<j ,Fi)

 =

N∑
i=1

∑
Ô∈π(Oi)

∑
j∈Ô

log pθ(o
i
j | oi<j ,Fi).

(3)
Note that training our generative model with (3) allows us to approximate the summation over all
permutations using Monte Carlo sampling thus solving both problems of (2).

Modelling Object Attributes: We represent objects in a scene as labeled 3D bounding boxes and
model them with four random variables that describe their category, size, orientation and location,
oj = {cj , sj , tj , rj}. The category cj is modeled using a categorical variable over the total number
of object categories C in the dataset. For the size sj ∈ R3, the location tj ∈ R3 and the orientation
rj ∈ R1, we follow [48, 55] and model them with mixture of logistics distributions

sj ∼
K∑
k=1

πsklogistic(µsk, σ
s
k) tj ∼

K∑
k=1

πtklogistic(µtk, σ
t
k) rj ∼

K∑
k=1

πrklogistic(µrk, σ
r
k) (4)

where πsk, µsk and σsk denote the weight, mean and variance of the k-th logistic distribution used for
modeling the size. Similarly, πtk, µtk and σtk and πrk, µrk ans σrk refer to the weight, mean and variance
of the k-th logistic of the location and orientation, respectively. In our setup, the orientation is the
angle of rotation around the up vector and the location is the 3D centroid of the bounding box.

Similar to prior work [47, 57], we predict the object attributes in an autoregressive manner: object
category first, followed by position, orientation and size as follows:

pθ(oj | o<j ,F) = pθ(cj |o<j ,F)pθ(tj |cj , o<j ,F)pθ(rj |cj , tj , o<j ,F)pθ(sj |cj , tj , rj , o<j ,F).
(5)

This is a natural choice, since we want our model to consider the object class before reasoning about
the size and the position of an object. To avoid notation clutter, we omit the scene index i from (5).

3.2 Network Architecture

The input to our model is a collection of scenes in the form of 3D labeled bounding boxes with their
corresponding room shape. Our network consists of four main components: (i) the layout encoder
that maps the room shape to a global feature representation F, (ii) the structure encoder hθ that maps
the M objects in the scene into per-object context embeddings C = {Cj}Mj=1, (iii) the transformer
encoder τθ that takes F, C and a query embedding q and predicts the features q̂ for the next object
to be generated and (iv) the attribute extractor that predicts the attributes of the next object. Our
model is illustrated in Fig. 2. The layout encoder is simply a ResNet-18 [20] that extracts a feature
representation F ∈ R64 for the top-down orthographic projection of the floor.
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Figure 3: Training Overview: Given a scene with M objects (coloured squares), we first randomly permute
them and then keep the first T objects (here T = 3). We task our network to predict the next object to be added
in the scene given the subset of kept objects (highlighted with grey) and its floor layout feature F. Our loss
function is the negative log-likelihood (NLL) of the next object in the permuted sequence (green square).

Structure Encoder: The structure encoder hθ maps the attributes of the j-th object into a per-object
context embedding Cj as follows:

hθ : RC × R3 × R3 × R1 → RLc × RLs × RLt × RLr

(c, s, t, r) 7→ [λ(c); γ(s); γ(t); γ(r)]
(6)

where Lc, Ls, Lt, Lr are the output dimensionalities of the embeddings used to map the category, the
size, the location and the orientation into a higher dimensional space respectively and [· ; ·] denotes
concatenation. For the object category cj we use a learnable embedding λ(·), whereas for the size sj ,
the position tj and the orientation rj , we use the positional encoding of [56] as follows

γ(p) = (sin(20πp), cos(20πp), . . . , sin(2L−1πp), cos(2L−1πp)) (7)

where p can be any of the size, position or orientation attributes and γ(·) is applied separately in each
attribute’s dimension. The set of per-object context vectors synthesizes the context embedding C that
encapsulates information for the existing objects in the scene and is used to condition the next object
to be generated. Before passing the output of (6) to the transformer encoder, we map each Cj to 64
dimensions using a linear projection.

Transformer Encoder: We follow [56, 10] and implement our encoder τθ as a multi-head attention
transformer without any positional encoding. This allows us to learn a parametric function that
computes features that are invariant to the order of Cj in C. We use these features to predict the next
object to be added in the scene, creating an autoregressive model. The input set of the transformer is

I = {F} ∪ {Cj}Mj=1 ∪ q, with M the number of objects in the scene. q ∈ R64 is a learnable object
query vector that allows the transformer to predict output features q̂ ∈ R64 used for generating the
next object to be added in the scene. The use of a query token is akin to the use of a mask embedding
in Masked Language Modelling [10] or the class embedding for the Vision Transformer [49].

Attribute Extractor: We autoregressively predict the attributes of the next object to be added in the
scene using one MLP for each attribute. More formally, the attribute extractor is defined as follows:

cθ : R64 → RC q̂ 7→ ĉ (8)

tθ : R64 × RLc → R3×3×K (q̂, λ(c)) 7→ t̂ (9)

rθ : R64 × RLc × RLt → R1×3×K (q̂, λ(c), γ(t)) 7→ r̂ (10)

sθ : R64 × RLc × RLt × RLr → R3×3×K (q̂, λ(c), γ(t), γ(r)) 7→ ŝ (11)

where ĉ, ŝ, t̂, r̂ are the predicted attribute distributions and cθ, tθ, rθ and sθ are mappings between
the latent space and the low-dimensional space of attributes. For the object category, cθ predicts C
class probabilities, whereas, tθ, rθ and sθ predict the mean, variance and mixing coefficient for the K
logistic distributions for each attribute. To predict the object properties in an autoregressive manner,
we need to condition the prediction of a property on the previously predicted properties. Thus, instead
of only passing q̂ to each MLP, we concatenate it with the previously predicted attributes, mapped in
a higher-dimensional space using the embeddings λ(·) and γ(·) from (6).

3.3 Training and Inference

During training, we choose a scene from the dataset and apply a random permutation π(·) on its
M objects. Then, we randomly select the first T objects to compute the context embedding C.
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Scene Layout Training Sample FastSynth SceneFormer Ours

Figure 4: Qualitative Scene Synthesis Results. Synthesized scenes for three room types: bedrooms (1st+2nd
row), living room (3rd row), dining room (4th row) using FastSynth, SceneFormer and our method. To showcase
the generalization abilities of our model we also show the closest scene from the training set (2nd column).

Conditioned on C and F, our network predicts the attribute distributions of the next object to be
added in the scene and is trained to maximize the log-likelihood of the T +1 object from the permuted
scene. A pictorial representation of the training process is provided in Fig. 3. To indicate the end of
sequence, we augment the C object classes with an additional class, which we refer to as end symbol.

During inference, we start with an empty context embedding C = ∅ and the floor representation F of
the room to be populated and autoregressively sample attribute values from the predicted distributions
of (8)-(11) for the next object. Once a new object is generated, it is appended to the context C to
be used in the next step of the generation process until the end symbol is generated. A pictorial
representation of the generation process can be found in Fig. 2. In order to transform the predicted
labeled bounding boxes to 3D models we use object retrieval. In particular, we retrieve the closest
object from the dataset in terms of the euclidean distance of the bounding box dimensions.

4 Experimental Evaluation

In this section, we provide an extensive evaluation of our method, comparing it to existing baselines.
We further showcase several interactive use cases enabled by our method, not previously possible.
Additional results as well as implementation details are provided in the supplementary.

Datasets: We train our model on the 3D-FRONT dataset [17] which contains a collection of 6, 813
houses with roughly 14, 629 rooms, populated with 3D furniture objects from the 3D-FUTURE
dataset [18]. In our evaluation, we focus on four room types: (i) bedrooms, (ii) living rooms, (iii)
dining rooms and (iv) libraries. After pre-processing to filter out uncommon object arrangements and
rooms with unnatural sizes, we obtained 5996 bedrooms, 2962 living rooms, 2625 dining rooms and
622 libraries. We use 21 object categories for the bedrooms, 24 for the living and dining rooms and
25 for the libraries. The preprocessing steps are discussed in the supplementary.

Baselines: We compare our approach to FastSynth [47] and SceneFormer [57] using the authors’
implementations. Note that both approaches were originally evaluated on the SUNCG dataset [51],
which is now unavailable. Thus, we retrained both on 3D-FRONT. We also compare with a variant of
our model that generates scenes as ordered sequences of objects (Ours+Order). To incorporate the
order information to the input, we utilize a positional embedding [56] and a fixed ordering based on
the object frequency as described in [57].
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Figure 5: Scene Diversity. We show three generated scenes conditioned on three different floor plans for
bedrooms and dining rooms. Every triplet of columns corresponds to a different floor plan.

FID Score (↓) Scene Classification Accuracy Category KL Divergence (↓)
FastSynth SceneFormer Ours+Order Ours FastSynth SceneFormer Ours+Order Ours FastSynth SceneFormer Ours+Order Ours

Bedrooms 40.89 43.17 38.67 38.39 0.883 0.945 0.760 0.562 0.0064 0.0052 0.0533 0.0085
Living 61.67 69.54 35.37 33.14 0.945 0.972 0.694 0.516 0.0176 0.0313 0.0372 0.0034
Dining 55.83 67.04 35.79 29.23 0.935 0.941 0.623 0.477 0.0518 0.0368 0.0278 0.0061
Library 37.72 55.34 35.60 35.24 0.815 0.880 0.572 0.521 0.0431 0.0232 0.0183 0.0098

Table 1: Quantitative Comparison. We report the FID score (↓) at 2562 pixels, the KL divergence (↓) between
the distribution of object categories of synthesized and real scenes and the real vs. synthetic classification
accuracy for all methods. Classification accuracy closer to 0.5 is better.

Evaluation Metrics: To measure the realism of the generated scenes, we follow prior work [47]
and report the KL divergence between the object category distributions of synthesized and real
scenes from the test set and the classification accuracy of a classifier trained to discriminate real
from synthetic scenes. We also report the FID [21] between top-down orthographic projections of
synthesized and real scenes from the test set, which we compute using [41] on 2562 images. We
repeat the metric computation for FID and classification accuracy 10 times and report the average.

4.1 Scene Synthesis

We start by evaluating the performance of our model on generating plausible object configurations
for various room types, conditioned on different floor plans. Fig. 4 provides a qualitative comparison
of four scenes generated with our model and baselines. In some cases, both [47, 57] generate invalid
room layouts with objects positioned outside room boundaries or overlapping. Instead, our model
consistently synthesizes realistic object arrangements. We validate this quantitatively in Tab. 1,
where we compare the generated scenes wrt. their similarity to the original data from 3D-FRONT.
Synthesized scenes sampled from our model are almost indistinguishable from scenes from the test
set, as indicated by the classification accuracy in Tab. 1, which is consistently around 50%. Our
model also achieves lower FID scores for all room types and generates category distributions that are
more faithful to the category distributions of the test set, expressed as lower KL divergence.

Scene Layout FastSynth SceneFormer Ours Scene Layout FastSynth SceneFormer Ours

Figure 6: Generalization Beyond Training Data. We show four synthesized bedrooms conditioned on four
room layouts that we manually designed.
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Partial Scene FastSynth SceneFormer Ours+Order Ours

Figure 7: Scene Completion. Given a partial scene (left column), we visualize scene completions using our
model and our baselines. Our model consistently generates plausible layouts.

Bedroom Living Dining Library

FastSynth [47] 13193.77 30578.54 26596.08 10813.87
SceneFormer [57] 849.37 731.84 901.17 369.74
Ours [47] 102.38 201.59 201.84 88.24

Table 2: Generation Time Comparison. We measure
time (ms) to generate a scene, conditioned on a floor plan.

FastSynth [47] SceneFormer [57] Ours

38.180 129.298 36.053

Table 3: Network Parameters Comparison. We
report the number of network parameters in millions.

To showcase that our model generates diverse object arrangements we visualize 3 generated scenes
conditioned on the same floor plan for all methods (Fig. 5). We observe that our generated scenes
are consistently valid and contain diverse object arrangements. In comparison [47, 57] struggle to
generate plausible layouts particularly for the case of living rooms and dining rooms. We hypothesize
that these rooms are more challenging than bedrooms, for the baselines, due to their significantly
smaller volume of training data, and the large number of constituent objects per scene (20 on average,
as opposed to 8). To investigate whether our model also generates plausible layouts conditioned on
floor plans with uncommon shapes that are not in the training set, we manually design unconventional
floor plans (Fig. 6) and generate bedroom layouts. While both [47, 57] fail to generate valid scenes,
our model synthesizes diverse object layouts that are consistent with the floor plan. Finally, we
compare the computational requirements of our architecture to [47, 57]. Our model is significantly
faster (Tab. 2), while having fewer parameters (Tab. 3) than both [47, 57]. Note that [47] is orders of
magnitude slower because it requires rendering every individual object added in the scene.

4.2 Applications

In this section, we present three applications that greatly benefit by our unordered set formulation
and are crucial for creating an interactive scene synthesis tool.

Scene Completion: Starting from a partial scene, the task is to populate the empty space in a
meaningful way. Since both [47, 57] are trained on sorted sequences of objects, they first generate
frequent objects (e.g. beds, wardrobes) followed by less common objects. As a result, incomplete
scenes that contain less common objects cannot be correctly populated. This is illustrated in Fig. 7,
where [47, 57] either fail to add any objects in the scene or place furnitures in unatural positions, thus
resulting in bedrooms without beds (see 1st row Fig. 7) and scenes with overlapping furniture (see
2nd row Fig. 7). In contrary, our model successfullly generates plausible completions with multiple
objects such as lamps, wardrobes and dressing tables.

Figure 8: Failure Case Detection and Correction. We use a partial room with unnatural object arrangements.
Our model identifies the problematic objects (first row, in green) and relocates them into meaningful positions.
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Lamp Double Bed Cabinet TV-stand Wardrobe Nothing

Figure 9: Object Suggestion. A user specifies a region of acceptable positions to place an object (marked as
red boxes, 1st row) and our model suggests suitable objects (2nd row) to be placed in this location.

Failure Case Detection and Correction: We showcase that our model is able to identify and correct
unnatural object arrangements. Given a scene, we compute the likelihood of each object, according
to our model, conditioned on the other objects in the scene. We identify problematic objects as those
with low likelihood and sample a new location from our generative model to rearrange it. We test
our model in various scenarios such as overlapping objects, objects outside the room boundaries and
objects in unnatural positions and show that it successfully identifies problematic objects (highlighted
in green in Fig. 8) and rearranges them into a more plausible position. Note that this task cannot be
performed by methods that consider ordering because they assign very low likelihood to common
objects appearing after rare objects e.g. beds after cabinets.

Object Suggestion: We now test the ability of our model to provide object suggestions given a scene
and user specified location constraints. To perform this task we sample objects from our generative
model and accept the ones that fullfill the constraints provided by the user. Fig. 9 shows examples of
location constraints (red box in top row) and the corresponding objects suggested (bottom row). Note
that even when the user provided region is partially outside the room boundaries (4th, 5th column),
suggested objects always reside in the room. Moreover, if the acceptable region overlaps with another
object, our model suggests adding nothing (6th column). This task requires computing the likelihood
of an object conditioned on an arbitrary scene, which [57, 47] cannot perform due to ordering.

4.3 Perceptual Study

We conducted two paired Amazon Mechanical Turk perceptual studies to evaluate the quality of our
generated layouts against [47] and [57]. We sample 6 bedroom layouts for each method from the
same 211 test set floor plans. Users saw 2 different rotating 3D scenes per method randomly selected
from 6 pre-rendered layouts. Random layouts for each floor plan were assessed by 5 different workers
to evaluate agreement and diversity across samples for a total of 1055 question sets per paired study.
Generated scenes of [47] were judged to contain errors like interpenetrating furniture 41.4% of the
time, nearly twice as frequently as our method, while [57] performs significantly worse (Tab. 4).
Regarding realism, the scenes of [47] were more realistic than ours in only 26.9% of the cases. We
conclude that our method outperforms the baselines in the key metric, generation of realistic indoor
scenes, by a large margin. Additional details are provided in the supplementary.

Method Condition Mean Error
Frequency ↓

More ↑
Realistic

Realism
CI 99%

FastSynth [47] vs. Ours 0.414 0.269 [0.235, 0.306]
SceneFormer [57] vs. Ours 0.713 0.165 [0.138, 0.196]
Ours vs. Both 0.232 0.783 [0.759, 0.805]

Table 4: Perceptual Study Results. Aggregated results for two A/B paired tests. Our method was judged more
realistic with high confidence (binomial confidence interval with α = 0.01 reported) and contained fewer errors.

5 Conclusion
We introduced ATISS, a novel autoregressive transformer architecture for synthesizing 3D rooms
as unordered sets of objects. Our method generates realistic scenes that advance the state-of-the-art
for scene synthesis. In addition, our novel formulation enables new interactive applications for
semi-automated scene authoring, such as general scene completion, object suggestions, anomaly
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detection and more. We believe that our model is an important step not only toward automating the
generation of 3D environments, with impact on simulation and virtual testing, but also toward a new
generation of tools for user-driven content generation. By accepting a wide range of user inputs,
our model mitigates societal risks of task automation, and promises to usher in tools that enhance
the workflow of skilled laborers, rather than replacing them. In future work, we plan to extend
order invariance to object attributes to further expand interactive possibilities of this model, and to
incorporate style information. As any machine learning model, our model can introduce learned
biases for indoor scenes, and we plan to investigate learning from less structured and more widely
available data sources to make this model applicable to a wider range of cultures and environments.
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