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Primitive-based Representations
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Primitive-based Representations
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Primitive-based Representations
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Primitive-based Representations
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Primitive-based Representations

Semantic Interpretability
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Reconstruction Accuracy



Primitive-based thar rely on simple shapes require a large number of parts for accurate

reconstructions.
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Primitive-based thar rely on simple shapes require a large number of parts for accurate
reconstructions.
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Neural Parts yield accurate and semantic reconstructions using an order of magnitude less parts.
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Primitive-based Learning
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Primitive-based Learning
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Primitives as Homeomorphic Mappings

A homeomorphism is a continuous map between two topological spaces Y and X that preserves all topological
properties. In our setup, a homeomorphism ¢g : R3 — R3 is

x = ¢o(y) and y = ¢ " (x)

where x and y are 3D points in X and Yand ¢g : Y — X, ¢>51 : X — Y are continuous bijections.
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Training Neural Parts
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o Reconstruction Loss: The surface of the target and the predicted shape should match.

o Occupancy Loss: The volume of the target and the predicted shape should match.

o Normals Consistency Loss: The normals of the target and the predicted shape should match.
o Overlapping Loss: Prevents overlapping primitives.

o Coverage Loss: Prevents degenerate primitive arrangements.



Representation Power of Primitive-based Representations
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Single-view 3D Reconstruction on
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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