Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

Despoina Paschalidou^{1,5,6} Angelos Katharopoulos^{3,4} Andreas Geiger^{1,2,5} Sanja Fidler^{6,7,8}

¹Max Planck Institute for Intelligent Systems Tübingen
³Idiap Research Institute, Switzerland
⁴École Polytechique Fédérale de Lausanne (EPFL)
⁵Max Planck ETH Center for Learning Systems
⁶NVIDIA
⁷University of Toronto
⁸Vector Institute

 $https://paschalidoud.github.io/neural_parts$

Reconstruction Accuracy

Primitive-based thar rely on simple shapes require a large number of parts for accurate reconstructions.

Primitive-based thar rely on simple shapes require a large number of parts for accurate reconstructions.

Neural Parts yield accurate and semantic reconstructions using an order of magnitude less parts.

Primitive-based Learning

Primitive-based Learning

Primitives as Homeomorphic Mappings

A homeomorphism is a continuous map between two topological spaces Y and X that preserves all topological properties. In our setup, a homeomorphism $\phi_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is

$$\mathbf{x} = \phi_{oldsymbol{ heta}}(\mathbf{y})$$
 and $\mathbf{y} = \phi_{oldsymbol{ heta}}^{-1}(\mathbf{x})$

where x and y are 3D points in X and Y and $\phi_{\theta} : Y \to X, \phi_{\theta}^{-1} : X \to Y$ are continuous bijections.

Primitives as Homeomorphic Mappings

A homeomorphism is a continuous map between two topological spaces Y and X that preserves all topological properties. In our setup, a homeomorphism $\phi_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is

$$\mathbf{x} = \phi_{oldsymbol{ heta}}(\mathbf{y})$$
 and $\mathbf{y} = \phi_{oldsymbol{ heta}}^{-1}(\mathbf{x})$

where x and y are 3D points in X and Y and $\phi_{\theta} : Y \to X, \phi_{\theta}^{-1} : X \to Y$ are continuous bijections.

Training Neural Parts

- Reconstruction Loss: The surface of the target and the predicted shape should match.
- Occupancy Loss: The volume of the target and the predicted shape should match.
- Normals Consistency Loss: The normals of the target and the predicted shape should match.
- **Overlapping Loss**: Prevents overlapping primitives.
- Coverage Loss: Prevents degenerate primitive arrangements.

Representation Power of Primitive-based Representations

Single-view 3D Reconstruction on D-FAUST

Semantic Consistency of Humans in Motion

Single-view 3D Reconstruction on FreiHAND

Single-view 3D Reconstruction on ShapeNet

Single-view 3D Reconstruction on ShapeNet

Single-view 3D Reconstruction on ShapeNet

Check our project page for code and additional results!

https://paschalidoud.github.io/neural_parts