Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou 1,3,5 and Luc van Gool 3,4,5 and Andreas Geiger 1,2,5

1Max Planck Institute for Intelligent Systems Tübingen
2University of Tübingen
3Computer Vision Lab, ETH Zürich
4KU Leuven
5Max Planck ETH Center for Learning Systems

http://superquadrics.com/hierarchical_primitives
Motivation

Existing shape representations focus only on reconstructing the geometry of a 3D object without considering its part-based decomposition or relations between parts.
Our Structure-aware Representation

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives.
Our Structure-aware Representation

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives.

where simple parts are represented with fewer primitives and complex parts with more components.
Our Structure-aware Representation

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives.

The hierarchical part decomposition is learned without any supervision neither on the object parts nor their structure.
Our Structure-aware Representation

Given an input and a target mesh represented as a set of occupancy pairs \(\mathcal{X} = \{(x_i, o_i)\}_{i=1}^N \), our network predicts a binary tree of primitives. For each primitive the network regresses:

- A set of 11 parameters \(\lambda^d_k \) that define the shape, size and position in 3D space of its primitive at each depth level \(d \).
- A reconstruction quality \(q^d_k \).
Expressive Shape Abstractions

We evaluate our model on the single view 3D reconstruction task on ShapeNet and D-FAUST.
Expressive Shape Abstractions

We show that considering the part decomposition improves the reconstruction quality.
Expressive Shape Abstractions

We show that considering the part decomposition improves the reconstruction quality.
Semantic Interpretation of Learned Hierarchies

We show that our model recovers semantic hierarchies as the same node is consistently used for representing the same object part.
Semantic Interpretation of Learned Hierarchies

We show that our model recovers semantic hierarchies as the same node is consistently used for representing the same object part.
Thank you for your attention!

Project Page: http://superquadrics.com/hierarchical_primitives