Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou 1,3,5 and Luc van Gool 3,4,5 and Andreas Geiger 1,2,5

 $^1{\rm Max}$ Planck Institute for Intelligent Systems Tübingen $^2{\rm University}$ of Tübingen $^3{\rm Computer}$ Vision Lab, ETH Zürich $^4{\rm KU}$ Leuven $^5{\rm Max}$ Planck ETH Center for Learning Systems

http://superquadrics.com/hierarchical_primitives

Motivation

Existing shape representations focus only on reconstructing the geometry of a 3D object without considering its part-based decomposition or relations between parts.

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives

Binary Tree of Primitives

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives

Binary Tree of Primitives

where **simple parts** are represented with fewer primitives and **complex parts** with more components.

Jointly recovers the geometry and the latent hierarchical layout of an object as an unbalanced binary tree of primitives.

Binary Tree of Primitives

The hierarchical part decomposition is learned without any supervision neither on the object parts nor their structure.

Given an **input** and a **target mesh** represented as a set of occupancy pairs $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$, our network predicts **a binary tree of primitives**. For each primitive the network regresses:

- A set of 11 parameters λ_k^d that define the shape, size and position in 3D space of its primitive at each depth level d.
- A reconstruction quality q_k^d .

Expressive Shape Abstractions

We evaluate our model on the single view 3D reconstruction task on ShapeNet and D-FAUST.

Expressive Shape Abstractions

We show that considering the part decomposition improves the reconstruction quality.

Expressive Shape Abstractions

We show that considering the part decomposition improves the reconstruction quality.

Semantic Interpretation of Learned Hierarchies

We show that our model recovers **semantic hierarchies** as the same node is consistently used for representing the same object part.

Semantic Interpretation of Learned Hierarchies

We show that our model recovers **semantic hierarchies** as the same node is consistently used for representing the same object part.

