

# Motivation

**Problem:** Reconstruct a dense 3D model using RGB images captured from different views.

Contribution: Combine the benefits of a CNN-based approach with the strengths of a **structured** model with **ray potentials**.

| potentials   | <b>CNN-base</b> |
|--------------|-----------------|
|              | $\checkmark$    |
|              | $\checkmark$    |
|              | $\checkmark$    |
| $\checkmark$ |                 |
| $\checkmark$ |                 |
| $\checkmark$ |                 |
|              |                 |

**Our Solution:** Integrates a Multi-view CNN that learns view-invariant feature representations with an MRF that explicitly encodes the physics of perspective projection and occlusion.



# RayNet: Learning Volumetric 3D Reconstruction with Ray Potential Despoina Paschalidou<sup>1,5</sup> Ali Osman Ulusoy<sup>2</sup> Carolin Schmitt<sup>1</sup> Luc van Gool<sup>3</sup> Andreas Geiger<sup>1,4</sup>

<sup>1</sup>Autonomous Vision Group, MPI for Intelligent Systems Tübingen <sup>2</sup>Microsoft <sup>3</sup>Computer Vision Lab, ETH Zürich & KU Leuven <sup>4</sup>Computer Vision and Geometry Group, ETH Zürich <sup>5</sup>Max Planck ETH Center for Learning Systems

# **Multi-view Stereopsis with Ray Potentials**

Given depth probabilities  $\{s_i^r\}$  for every ray/pixel  $r \in \mathcal{R}$  we encourage the predicted depth at pixel r to coincide with the first occupied voxel along the ray using ray potentials  $\psi_r(\mathbf{o_r})$ .



## RayNet

### Inference:

- 1. Multi-view CNN estimates depth distributions
- 2. Fuse  $s_i^r \in S$  using message passing in MRF
- 3. Predict a globally consistent depth distribution  $p(d_r = d_i^r)$

### Training:

- Naïve backpropagation through the unrolled MRF is intractable due to the large number of messages that need to be stored
- Use stochastic ray sampling scheme to produce mini-batches

### Occupancy variable



### **DTU Dataset**: 124 indoor scenes with $\sim 50$ images



### **Aerial Dataset**: $\sim 200$ images with LIDAR ground-truth







ZNCC

|                                  | Aerial Dataset |        |              | DTU Dataset - BUDDHA |          |        |              | DTU Dataset - BIRD |          |        |              |        |
|----------------------------------|----------------|--------|--------------|----------------------|----------|--------|--------------|--------------------|----------|--------|--------------|--------|
| Methods                          | Accuracy       |        | Completeness |                      | Accuracy |        | Completeness |                    | Accuracy |        | Completeness |        |
|                                  | Mean           | Median | Mean         | Median               | Mean     | Median | Mean         | Median             | Mean     | Median | Mean         | Median |
| Ulusoy et al. 2015               | 0.0790         | 0.0167 | 0.0088       | 0.0065               | 4.784    | 3.552  | 0.953        | 0.402              | 6.024    | 4.623  | 2.996        | 0.898  |
| Hartmann et al. 2017             | 0.0907         | 0.0285 | 0.0209       | 0.0209               | 0.637    | 0.206  | 1.057        | 0.475              | 1.881    | 0.271  | 4.1671       | 1.044  |
| SurfaceNet (LR) (Ji et al. 2017) | _              | _      | _            | _                    | 2.034    | 1.677  | 1.453        | 1.141              | 2.887    | 2.468  | 2.330        | 1.556  |
| RayNet                           | 0.0611         | 0.0160 | 0.0125       | 0.0085               | 0.663    | 0.470  | 0.558        | 0.251              | 2.618    | 1.680  | 0.983        | 0.668  |





## **Qualitative Evaluation**



SurfaceNet

RayNet

Image

SurfaceNet

RayNet

Ulusoy et al. 2015







**Multi-View CNN** 





RayNet

# **Quantitative Evaluation**

Hartmann et al. 2017