Learning Robust Driving Policies

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

August 23, 2020

Collaborators

Eshed Ohn-Bar

Aditya Prakash

Kashyap Chitta

Aseem Behl

Andreas Geiger

Imitation Learning

Motivation: Hard coding policies is difficult ⇒ follow data-driven approach!

► **Given:** demonstrations or demonstrator

► Goal: train a policy to mimic decision

Conditional Imitation Learning

Advantages:

- ► End-to-End Trainable
- ► Cheap Annotations

Limitations:

- ► Generalization
- ► High Sample Complexity
- ► Covariate Shift
- ► Interpretability

How can we learn to drive under the **vast diversity**

of all visual, planning and control scenarios?

Situational Driving

Inspiration: World Models

- ► Step 1: Learn **generative model** of game environments (VAE)
- ► Step 2: Learn dynamics model and control model in **latent space** (CMA-ES)
- ► Not sufficient ⇒ we combine this idea with **imitation learning**

Learning Situational Driving

- ▶ Step 1: Learn a **mixture of expert policies** $\{\alpha_{\theta}^k, \pi_{\theta}^k\}$ via imitation (LSD)
- lacktriangle Step 2: Learn a **general purpose context embedding** $q_{m{\phi}}$ as a eta-VAE
- ➤ Step 3: Perform **task-driven policy refinement** by interacting with the simulation and maximizing a driving task reward (LSD+)

Learning Situational Driving

$$\pi_{\mathbf{\Theta}}(\mathbf{a}|\mathbf{o},c) = \sum_{k=1}^{K} \underbrace{\alpha_{\mathbf{\theta}}^{k}(\mathbf{o},c)}_{\substack{\text{Mixture} \\ \text{Weights}}} \underbrace{\pi_{\mathbf{\theta}}^{k}(\mathbf{a}|\mathbf{o},c)}_{\substack{\text{Expert} \\ \text{Models}}} + \underline{\Psi} \underbrace{\begin{bmatrix} q_{\mathbf{\phi}}(\mathbf{I}) \\ v \\ c \end{bmatrix}}_{\substack{\text{Context} \\ \text{Embedding}}}$$
$$\pi_{\mathbf{\theta}}^{k}(\mathbf{a}|\mathbf{o},c) = \mathcal{N}\left(\mathbf{a} \,\middle|\, \boldsymbol{\mu}_{\mathbf{\theta}}^{k}(\mathbf{o},c), \, \mathrm{diag}(\boldsymbol{\sigma}_{\mathbf{\theta}}^{k}(\mathbf{o},c))^{2}\right)$$

Observations:
$$\mathbf{o} = [\mathbf{I}, v] \in \mathcal{O}$$

Command: $c \in \mathcal{C} = \{\text{left}, \text{right}, \text{straight}, \text{follow}\}$

Actions:
$$\mathbf{a} \in \mathcal{A} = [-1, 1]^2$$

Learning Situational Driving

$$\pi_{\mathbf{\Theta}}(\mathbf{a}|\mathbf{o},c) = \sum_{k=1}^{K} \underbrace{\alpha_{\mathbf{\theta}}^{k}(\mathbf{o},c)}_{\substack{\text{Mixture} \\ \text{Weights}}} \underbrace{\pi_{\mathbf{\theta}}^{k}(\mathbf{a}|\mathbf{o},c)}_{\substack{\text{Expert} \\ \text{Models}}} + \underline{\Psi} \underbrace{\begin{bmatrix} q_{\mathbf{\phi}}(\mathbf{I}) \\ v \\ c \end{bmatrix}}_{\substack{\text{Context} \\ \text{Embedding}}}$$
$$\pi_{\mathbf{\theta}}^{k}(\mathbf{a}|\mathbf{o},c) = \mathcal{N}\left(\mathbf{a} \,\middle|\, \boldsymbol{\mu}_{\mathbf{\theta}}^{k}(\mathbf{o},c), \, \operatorname{diag}(\boldsymbol{\sigma}_{\mathbf{\theta}}^{k}(\mathbf{o},c))^{2}\right)$$

Training:

- ▶ Step 1: Learn Mixture of Experts: $\mathcal{L}_{\mathsf{MoE}} = -\log\left[\sum_{k=1}^K \alpha_{\pmb{\theta}}^k \pi_{\pmb{\theta}}^k\right] + \mathcal{L}_{\mathsf{V}} + \mathcal{L}_{\mathsf{R}}$
- ► Step 2: Learn Context Embedding: $\mathcal{L}_{VAE} = \beta \, \text{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{I}) \parallel p_0(\mathbf{z}) \right) + \left\| d_{\phi}(\mathbf{z}) \mathbf{I} \right\|_2^2$
- ▶ Step 3: Task-driven optimization: $\mathcal{J}_{\mathsf{TASK}}(\boldsymbol{\theta}_{\mathsf{readout}}, \boldsymbol{\Psi}) = \mathbb{E}_{\pi_{\boldsymbol{\Theta}}}\left[\sum_{t=0}^{T} r_t\right]$

CARLA Benchmark

Training Town

- ▶ Random start and end location, 4 known weathers, 2 unseen weathers
- ► Metric: Percentage of successfully completed episodes (success rate)
- ► Collision does not necessarily terminate episode

NoCrash Benchmark

Empty Regular Dense

- ▶ Difficulty varies with number of dynamic agents in the scene
- ► Empty: 0 Agents Regular: 65 Agents Dense: 220 Agents
- ► All collisions terminate episode

AnyWeather Benchmark

► Evaluation on 10 unseen weathers, quantifies generalization performance

Importance of Mixture Model

	Training Data and Mixture Components				
Evaluation Task	Navigation (Static, K=1)	Navigation (Dynamic, K=1)	Navigation (Dynamic, K=3)		
Straight (Static)	99	64	100		
One Turn (Static)	98	74	100		
Navigation (Static)	96	78	98		
Navigation (Dynamic)	40	78	92		

Results of Mixture Model on CARLA Benchmark:

- ► Static model solves static scenes well but cannot handle dynamic objects
- ▶ Dynamic model handles dynamic scenes better but degrades on static scenes
- ▶ Dynamic mixture model generalizes to all scenarios (without on-policy data)

Importance of Mixture Model and Task-based Refinement

Model	Success Rate (%)
Monolithic (K=1)	75
MoE Shared Backbone (K=3)	89
MoE Shared Backbone (K=5)	90
MoE Shared Backbone (K=8)	87
MoE Separate Backbone (K=3)	94
MoE Separate Backbone (K=5)	93
MoE Separate Backbone (K=8)	93
MoE Separate Backbone + Refinement (K=3)	98

Results of Full Model on CARLA Benchmark:

- ▶ Performance improves up to 3 or 5 mixture components
- ► Separate backbones increase diversity and generalization
- ► Tasked-based refinement improves performance further

Emergent Driving Modes

Emergent Driving Modes:

► Acceleration distribution of three different experts during testing

Results on CARLA Benchmark

Driving Task	CIRL	CILRS	CILRS (ours)	LSD (ours)	LSD+R (ours)
Straight	100	96	96	100	100
One Turn	71	84	86	99	99
Navigation	53	69	67	99	99
Navigation Dynamic	41	66	64	94	98

- ► Using reward-based optimization alone (CIRL) is not sufficient
- ► LSD enables better driving behavior across all driving tasks
- ► Large improvements in the presence of dynamic objects

Results on CARLA NoCrash Benchmark

Driving Task	CILRS	CILRS	LSD (ours)	LSD+R (ours) Expert
Empty	66 ± 2	65 ± 2	93 ± 2	94 ± 1 96 ± 0
Regular	49 ± 5	46 ± 2	66 ± 2	68 ± 2 91 ± 1
Dense	23 ± 1	20 ± 1	27 ± 2	30 \pm 4 41 \pm 2

- ► All methods perform worse due to challenges (density, collision terminations)
- ► Expert provided by CARLA often fails in dense environments (e.g., clogging)
- ► LSD enables better driving behavior across all driving tasks

Results on AnyWeather Benchmark

Task	CILRS	LSD (ours)	LSD+R (ours)
Straight	83.2	85.2	85.6
One Turn	78.4	80.4	81.6
Navigation	76.4	78.8	79.6
Nav. Dynamic	75.6	77.2	78.4

- ► AnyWeather benchmark test generalization to challenging unseen weathers
- ► All methods can fail even on simple straight driving tasks
- ► Some challenging weathers lead to zero success rate for all methods
- ► More research is required to address these challenges

Qualitative Results

How useful is **data aggregation** for self-driving?

Imitation Learning

Hard coding policies is often difficult \Rightarrow Rather use a data-driven approach!

- ► **Given:** demonstrations or demonstrator
- ► Goal: train a policy to mimic decision

Formal Definition of Imitation Learning

General Imitation Learning:

$$\underset{\theta}{\operatorname{argmin}} \ \mathbb{E}_{s \sim P(s|\pi_{\theta})} \left[\mathcal{L} \left(\pi^{*}(s), \pi_{\theta}(s) \right) \right]$$

State distribution $P(s|\pi_{\theta})$ depends on rollout determined by current policy π_{θ}

Behavior Cloning:

$$\underset{\theta}{\operatorname{argmin}} \ \underbrace{\mathbb{E}_{(s^*, a^*) \sim P^*} \left[\mathcal{L} \left(a^*, \pi_{\theta}(s^*) \right) \right]}_{= \sum_{i=1}^{N} \mathcal{L} \left(a_i^*, \pi_{\theta}(s_i^*) \right)}$$

- ► State distribution P^* provided by expert
- ► Reduces to supervised learning problem

Challenges of Behavior Cloning

- ► Behavior cloning makes IID assumption
 - ► Next state is sampled from states observed during expert demonstration
 - ► Thus, next state is sampled independently from action predicted by current policy
- ▶ What if π_{θ} makes a mistake?
 - Enters new states that haven't been observed before
 - ► New states not sampled from same (expert) distribution anymore
 - ► Cannot recover, can lead to catastrophic failure

Experiment by Held and Hein

DAgger

Data Aggregation (DAgger):

- ► Iteratively build a set of inputs that the final policy is likely to encounter based on previous experience. Query expert for aggregate dataset.
- ▶ But can easily overfit to main mode of demonstrations
- ► High training variance (random initialization, order of data)

Distribution over Driving Actions

DAgger with Critical States and Replay Buffer

Key Ideas:

- 1. Sample **critical states** from the collected on-policy data based on the utility they provide to the learned policy in terms of driving behavior
- 2. Incorporate a **replay buffer** which progressively focuses on the high uncertainty regions of the policy's state distribution

DAgger with Critical States and Replay Buffer

Sampling Strategies:

- ► Task-based: Sample uniformly from "left", "right", "straight"
- ▶ Policy-based: Use test-time dropout to estimate epistemic uncertainty
- ► Expert-based: Highest loss or deviation in brake signal wrt. expert

Distribution over Driving Actions

- ► CARLA **NoCrash benchmark**
- ▶ **Dense setting** with 220 agents
- ► Comparison to various baselines with (+) and without data augmentation

- ▶ Data augmentation increases the performance of all methods
- ► DAgger overfits quickly (!), not better than data augmentation
- ▶ Our model consistently improves upon the baselines in all conditions

- ▶ Data augmentation increases the performance of all methods
- ► DAgger overfits quickly (!), not better than data augmentation
- ► Our model consistently improves upon the baselines in all conditions

- ▶ Data augmentation increases the performance of all methods
- ► DAgger overfits quickly (!), not better than data augmentation
- ► Our model consistently improves upon the baselines in all conditions

Task	CILRS+	DART	DA-RB ⁺	DA-RB ⁺ (E)	Expert
			(Ours)	(Ours)	
Training	45±6	50±1	62±1	66 ±5	71±4
New Weather	39±4	37 ± 2	60 ±1	56±1	72±3
New Town	23±1	26 ± 2	34±2	36 ±3	41±2
New Town & Weather	26±2	21±1	25±1	35 ±2	43±2

Mean and standard deviation over 3 evaluation runs.

- ► Ensemble (E) improves performance further (particularly in new environment)
- ► Expert provided by CARLA often fails in dense environments (e.g., clogging)

Infractions Analysis

- ► Signficiant reduction in collisions with dynamic objects
- ► More time-outs due to less infractions (e.g., clogged scenes, red lights)

Training Variance

	CILRS+	DAgger ⁺	DA-RB ⁺
Iter 0	$14.6 \pm \textbf{3.4}$	14.6 ± 3.4	14.6 ± 3.4
Iter 1	-	15.2 ± 5.1	24.8 ± 1.9
Iter 2	-	13.2 ± 1.9	25.4 ± 1.5
Iter 3	-	$17.8 \pm \textbf{3.6}$	$27.0 \pm \textbf{0.9}$

Standard deviation wrt. 5 random training seeds (New Town & Weather)

- ► Significant reduction in variance compared to CILRS and DAgger
- ► Sampling the dataset based on critical states is crucial for variance reduction

Interpretability: GradCAM Attention Maps

CILRS [Codevilla et al. 2019]

Our Approach

Interpretability: GradCAM Attention Maps

CILRS [Codevilla et al. 2019]

Our Approach

Qualitative Results

Summary

- ► A single imitation learner cannot capture the complexities of driving
- ► Mixture of experts can significantly improve generalization
- ► Task-driven optimization is difficult but important
- ▶ Data augmentation is important but can easily overfit in self-driving
- ► Sampling critical states in a replay buffer improves aggregation performance
- Training variance can be reduced using this strategy
- ► Generalization to all CARLA weathers remains unsolved
- ► Better experts and improvements in the CARLA simulation are needed (and on their way current version is CARLA 0.9.9!)

Thank you!

http://autonomousvision.github.io

