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Abstract

Implicit representations of 3D objects have recently
achieved impressive results on learning-based 3D recon-
struction tasks. While existing works use simple texture
models to represent object appearance, photo-realistic im-
age synthesis requires reasoning about the complex inter-
play of light, geometry and surface properties. In this work,
we propose a novel implicit representation for capturing the
visual appearance of an object in terms of its surface light
field. In contrast to existing representations, our implicit
model represents surface light fields in a continuous fash-
ion and independent of the geometry. Moreover, we condi-
tion the surface light field with respect to the location and
color of a small light source. Compared to traditional sur-
face light field models, this allows us to manipulate the light
source and relight the object using environment maps. We
further demonstrate the capabilities of our model to pre-
dict the visual appearance of an unseen object from a single
real RGB image and corresponding 3D shape information.
As evidenced by our experiments, our model is able to in-
fer rich visual appearance including shadows and specular
reflections. Finally, we show that the proposed representa-
tion can be embedded into a variational auto-encoder for
generating novel appearances that conform to the specified
illumination conditions.

1. Introduction

Recently, neural implicit representations of 3D objects
have emerged as a powerful paradigm for reasoning about
the geometry and texture of objects from a single image as
input [36,41-43,50,53]. The main advantage of implicit
models is their ability to represent 3D structure continu-
ously while handling arbitrary geometric topologies. Un-
fortunately, however, existing implicit methods are not able
to model the full visual appearance of 3D objects which
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Figure 1. Overview. Given an RGB image and corresponding
(predicted or true) 3D geometry as input, our conditional implicit
surface light field model allows for manipulating the light configu-
ration and synthesizing novel viewpoints. Note how shadows and
specular reflections are faithfully captured by our model.

o :1:@

3D Geometry

requires reasoning about the complex interplay of light,
geometry and surface properties. Consequently, the re-
sulting 3D reconstructions appear “lifeless”, missing view-
and light-dependent illumination effects such as shadows or
specular reflections.

In the graphics and vision community, synthesizing rich
visual appearance of objects using learning-based meth-
ods has emerged as a popular research direction with the
promise to replace the currently dominating, but slow and
work-intensive 3D modeling and physically-based render-
ing [16] paradigm. Some methods learn neural rendering of
voxel features [38, 52] or neural texture maps [56] for syn-
thesizing novel views of an object. Similarly, Chen et al. [§]
learn the surface light field of a single object. Even though
these methods achieve high realism, they must be retrained
for each new object and they do not allow modification of
the illumination. In contrast, in this work, we are interested
in the following, more challenging scenario: Our goal is to
infer conditional surface light fields which allow for manip-
ulating illumination conditions and which can be applied to
novel, previously unseen objects.

More specifically, we propose an implicit representation
for parameterizing conditional surface light fields. As il-
lustrated in Fig. 1, our model takes an RGB image and



corresponding 3D shape information of an object as input
and allows for generating photo-realistic images of the ob-
ject from arbitrary viewpoints and light configurations. To-
wards this goal, we train our model to regress color val-
ues given a 3D location on the object’s surface, the cam-
era viewpoint and the location and color of a point light
source. We empirically demonstrate that our network repre-
sents high-frequency material properties while generalizing
across object shapes, light settings and viewpoints. While
trained on synthetic renderings and ground truth geome-
try, we find that our method generalizes to real images and
captures complex physical illumination phenomena includ-
ing shadows and specular highlights. Exploiting the well-
known rendering equation [17], we demonstrate that our
model extends beyond point light sources, enabling implicit
rendering using realistic environment maps. We also extend
our representation to the generative setting which allows for
synthesizing novel appearances conforming to given illumi-
nation conditions and for transferring appearances from one
model to another. Our contributions are summarized as fol-
lows:

e We propose Conditional Implicit Surface Light
Fields (cSLF), a novel appearance representation of
3D objects which allows for rendering novel views and
varying the light color and the light location.

e We experimentally verify that our method is able to
represent textures, diffuse and specular reflections as
well as shadows of a 3D object.

e We apply our model for predicting the appearance of
a novel object from a single RGB image given ground
truth and inferred 3D shape information.

e We demonstrate the generative modeling capabilities
of our representation by transferring and synthesizing
novel physically plausible appearances.

Code is available at https://github.com/
autonomousvision/cslf

2. Related Work

We now discuss the most related works on neural and
differentiable rendering, material and surface light field es-
timation and implicit shape and appearance modeling.

Neural Rendering: The recent success of Generative Ad-
versarial Networks (GANSs) [6,11,20,21] has enabled novel
image synthesis approaches which employ 2D or 3D convo-
lutional neural networks to generate image content directly
from a latent code. These methods mainly differ in terms
of the input representation. Examples include voxel-based
representations [2,38-40,47,52], primitive-based represen-
tations [25], depth-based representations [ 1,63] and texture-
based representations [34, 56]. In contrast to CNN based

rendering approaches, our method is inherently 3D con-
sistent as we directly predict the object appearance in 3D.
Moreover, our model allows for fine grained viewpoint and
lighting control.

Image-based relighting approaches [18,32,45,51,54,59,

] infer images from the same view in other light settings.
In contrast, our method can reason about novel views and
light configurations from a single image.

Differentiable Rendering: Recently, several methods
proposed to backpropagate gradients through the rendering
pass [9,22,27,30]. This allows for predicting explicit 3D ap-
pearance representations including texture maps [9,22,27]
and voxel colors [13]. Chen et al. [9] learn to predict the ge-
ometry and texture of a 3D mesh as well as the light position
from a single image. In contrast to these methods, we are
interested in inferring a conditional surface light field which
also captures more complex physical light-transport phe-
nomena including both shadows and specular highlights.
Furthermore, our implicit representation is continuous and
independent of the underlying geometric representation.

Materials and Surface Light Fields: Existing methods on
reflectance capture estimate (sv)BRDFs from one or multi-
ple measurements [3,5,19,24,26,28,29,33,62]. In contrast
to these works which use explicit material models and illu-
mination maps, we learn an implicit model which directly
represents a surface light field for given lighting and ge-
ometry. A surface light field represents the outgoing light
at a given location on a 3D surface as a function of the
viewing direction [12, 58]. Maximov et al. [31] propose
a method for representing material-light interaction with a
neural network which maps normals and the viewing direc-
tion to color values. Chen et al. [8] model the appearance
of a triangular mesh based on the UV coordinates and the
viewing direction. In contrast to traditional surface light
fields we do not assume fixed illumination but instead con-
dition on the light source. This allows our model to ma-
nipulate illumination at inference time. Furthermore, while
all aforementioned models consider a single object, our ap-
proach is able to predict light fields for unseen objects.

Implicit 3D Representations: Recently, implicit 3D ge-
ometry models have gained popularity [10, 36,43] as they
circumvent the discretization inherent to traditional explicit
representations. Implicit appearance models represent tex-
ture information by learning the mapping from 3D loca-
tion to color [41,42,50,53]. However, they are restricted
to simple textures which represent only diffuse material
properties. In contrast, our model represents both diffuse
and specular material properties as well as shadows. Fur-
thermore, modeling surface properties allows for capturing
high-frequency details which cannot be captured with tex-
ture models (see Fig. 5 in our experiments). [37], proposes
neural radiance fields as an implicit representation of visual
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appearance that allows for photo-realistic novel view syn-
thesis. Very recent, concurrent work [60] introduces a view-
dependent implicit representation for modeling appearance
and geometry from multi-view images. While [37] and [60]
can only represent single scenes with the original light set-
ting, our model allows for predicting the appearance of a
novel scene from a single image and for rendering unseen
light configurations.

3. Method

An overview of our model is provided in Fig. 2. We take
a 2D image and the corresponding 3D shape as input, and
encode both into latent representations (z and s) which are
fed into our conditional implicit Surface Light Field (cSLF).
Given a 3D point p, its viewing direction v and the light
configuration 1, our cSLF model then outputs the predicted
color value for this point.

We first describe the physical image formation process
and traditional surface light field representations. Next,
we introduce our cSLF model. Finally, we provide details
about the network architectures and the loss functions.

3.1. Background

Physically-based rendering techniques [16] utilize the
rendering equation to calculate the amount of light that ra-
diates from a specific surface location into the direction of
the camera. Let p € R? denote a 3D surface point and
v € R? the viewpoint of the camera, i.e., the vector from p
to the camera center. Let further r € R? denote the incom-
ing light direction. The rendering equation describes how
much of the light arriving at p is reflected into the camera
direction v:

L(p,v) = /stBRDF(p,r,v) - Lin(r) - (nTr) dr (1)

Here, svBRDF(p, r, v) denotes the spatially varying bidi-
rectional reflectance distribution function which models the
interaction between light and the surface of a 3D object by
determining the proportion of light reflected in outgoing di-
rection v from incoming light direction r. Furthermore, Li,
is the incoming radiance and n € R? describes the surface
normal at point p.

Surface light fields [12, 58] instead directly represent the
radiated light as a function that associates a color value
¢ € R? with every surface location p and view direction
v. Formally, they are described by the following mapping:

Lsip(p,v) : R x R® - R3 )

While this mapping can be learned using neural networks
[8, 31], surface light fields do not allow for varying the
light configuration. Instead, the illumination properties are
“hard-coded” in this representation. In contrast, the model

proposed in the following is conditioned on the light con-
figuration, thus allowing the modification of illumination
parameters at inference time.

3.2. Conditional Implicit Surface Light Fields

In this work, we aim at representing illumination-
dependent visual appearance by learning a surface light
field conditioned on a single light source. We refer to this
representation as conditional implicit Surface Light Field
(cSLF)

Leste(p,v,1,8,2) : RE X R? x RM x S x Z - R® (3)

where 1 € RM denotes the parameters of a point light
source' (e.g., its location in 3D space and color). s € S and
z € Z encode the object shape and image content, respec-
tively. We use encodings s and z only for tasks involving
unseen objects, such as single view appearance prediction.

We represent L.gsp p implicitly using a neural network. In
contrast to traditional surface light fields (2), our implicit
representation allows for querying the light field for any
light configuration 1 and object encoding (s,z). This al-
lows our model to generalize to novel, previously unseen
3D objects.

While our cSLF model considers a single point light
source during training, more complex light settings, includ-
ing spatial varying illumination, can be achieved by com-
bining multiple evaluations of Eq. (3) at inference time.
Discretizing the domain €2 in Eq. (1) and letting £ =
{11,...,1k} denote a sampling-based approximation of the
environment map (i.e., 1 in £ corresponds to one pixel
in the environment map), we obtain the aggregated surface
light field as:

1
L(p7V7£,S,Z) = | ZLCSLF(paValaSaZ) (4)

|£ lel

We split the parameterization of Eq. (3) into a two-step
process. We first map the 3D location p conditioned on
global shape (s) and image (z) information into an D-
dimensional appearance feature f. The resulting appear-
ance field is described by:

ag(p,s,z):R3xSxZ—>RD (5)

Note that in contrast to the global image feature, f =
ap(p,s,z) is a localized appearance representation of the
3D object. As f is independent of the viewpoint v and
lighting 1, it captures mostly material properties. The in-
teraction between the object surface and light is modeled
using a lighting model which maps the appearance f, the
viewpoint v, the light 1 and the shape s into an RGB value:

lo(f,v,1,8) : RP xR3 x RM x § — R? (6)

'In practice, we use a small area light source to avoid hard non-
differentiable shadows.
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Figure 2. Model Overview. Our Conditional Implicit Surface Light Field (cSLF) takes an encoding of a real image (z) and corresponding
3D shape (s) as well as a light configuration (1) as input and outputs a color value for every 3D location p € R>.

Splitting the inference process into two steps allows for pre-
computing the appearance features. Thus, when manipulat-
ing the light setting, only the lighting model ly(v, f,1,s)
needs to be evaluated. This is particularly important when
considering more complex light settings (e.g., environment
lighting) as in Eq. (4).

3.3. Network Architectures

We now briefly discuss the network architectures. See
supplementary for details.

Image Encoder: We use the image encoder of [36] which
consists of a ResNet-18 that outputs a 512-dimensional im-
age encoding z.

Geometry Encoder: To provide global shape information
to our model, we sample 2048 points from the object surface
and use the PointNet-based residual network of [36] which
encodes the 3D point cloud into a shape vector s.

Surface Light Field: @~ We parameterize the networks
ap(+) and lp(-) of our surface light field model using fully-
connected residual networks. To circumvent the intrinsic
low-frequency bias of fully-connected neural networks, we
encode all spatial inputs (p, v, 1) with a Fourier encoding ~y
using k octaves [37,46]:

v(x) = [sin(27x), cos(2%mx)... sin(2F7x), cos(2k7rx)]

@)
We found this partiularly useful for single object experi-
ments with high-frequency details, see supp. material.

3.4. Loss Functions

We train our model in a supervised fashion on photo-
realistic renderings of 3D models. More specifically, we

randomly sample a batch of 3D models along with one ran-
dom input and one random target view. We also randomly
sample the point light source location and color (1). We
randomly select N pixels from the target view and project
them into 3D, resulting in a set of 3D points p. We also
render photo-realistic RGB images for both the input and
the target view using the Blender Cycles renderer. During
training, we apply a photometric loss between the predicted
color values I and the ground truth color values I:

N 1 ~
£(1,1) = EZHIZ, L, (8)
beB

where I, represents the predicted color values for all N
points of batch B.

As our generative model, we use a Variational Au-
toencoder (VAE) [23, 48]. More specifically, we use a
ResNet-based encoder ¢4(z|I,s) which maps an image I
and a shape representation s to the mean and variance of a
normally-distributed latent variable z. The decoder is given
by the surface light field model described in Section 3.2
which predicts a color value for every pixel, given its 3D
location p, the viewpoint v, the light configuration 1, the
object shape s and the latent code z. The loss function for
training our VAE model is thus given by

1
Lyae = 1 > 18 KL(qs(2 [Ty, 85) || N (20, 1))+
1Bl 7% ©)

1T — L],

where KL(-) represents the Kullback-Leibler divergence,
z;, follows the posterior distribution ¢,(z|Iy,sp) and § =
1 is a trade-off parameter [15] between the KL-divergence
and the reconstruction loss.



4. Experimental Evaluation

We conduct three different types of experiments. First,
we investigate the ability of our method to capture the sur-
face light field of a single object illuminated by a point light
source. Next, we use our model to predict the surface light
field of previously unseen objects from a single image. Fur-
thermore, we provide results for geometry reconstruction
and appearance prediction from a single image by applying
our method to the output of Occupancy Network [36] re-
constructions. Finally, we show qualitative results from our
generative model which learns the conditional distribution
of surface light fields given the object geometry.

Dataset: In our single object experiments, we show results
on 3D models with high-quality materials, texture and ge-
ometry from free3d.com and turbosquid.com. To
further investigate high-frequency appearance details, we
use a planar high-quality svBRDF scan from [35]. For our
single view prediction task, we choose ShapeNet categories
(cars, lamps, sofas) with rich appearance information [7].
While ShapeNet provides a large variety of 3D models, it
is limited in terms of complex materials. We therefore ad-
ditionally use the Photoshapes dataset [44] which contains
5452 meshes of chairs with a large variety of realistic ma-
terials. We split the datasets into a training set, a validation
set and a test set with ratio 7 : 1 : 2. For testing our models
on real-world data we use the Pix3D dataset [55].

Rendering: We use the Blender Cycles Renderer [4] to
generate ground truth RGB images and depth maps from
random viewpoints and light locations, sampled from the
upper hemisphere. More details on the rendering process
are provided in the supplementary.

Baselines: As many existing neural rendering techniques
use 2D CNNs for image synthesis, we consider a CNN-
based image-to-image translation network as a baseline for
our method. Similar to [42,56], we employ a U-Net archi-
tecture [49] which maps a depth image from the same view-
point to an RGB image, conditioned on the light location
and the geometry of the object. We refer to this baseline as
Img2Img, see supplementary for details. As a second base-
line, we use Texture Fields [42], a state-of-the-art implicit
texture model.

4.1. Single Object Experiment

We first investigate the representation power of our
model wrt. high-frequency textures, shadows and reflec-
tions by training separate models for all objects and test our
model’s ability to generalize to novel unseen viewpoints and
light configurations. In Fig. 3, we provide predictions of our
model for a diverse set of 3D models, varying views and
light locations. We use renderings from 100 views with 40
light configurations. We apply our method for representing

planar svBRDF samples and show a zoom-in of the barrel
model in Fig. 4. To analyze shadows, we choose a chair
with thin armrests in Fig. 5. For analyzing reflections, we
use a car model which contains highly specular materials
in Fig. 6. For training, we render 50 views with 30 light-
ing conditions each. For evaluation, we choose views that
are substantially different from the training views wrt. view-
point and light location. We also show the nearest neighbor
from the training set (Fig. 5 left).

High-frequency Details: Our model is able to accurately
infer textural details as well as complex appearances in dif-
ferent light settings, see Fig. 3. For a more in-depth investi-
gation, we also train our model to represent high-frequency
planar svBRDFs. Our method performs on par with the
Img2Img baseline, even though this architecture is known
to be highly effective for representing 2D images. In the
3D domain our method performs superior to the baseline in
capturing high-frequency details (see results on 3D barrel).

Shadow Analysis: Fig. 5 shows a comparison of our
model to Texture Fields [42], a state-of-the-art implicit
model for texture representation and the Im2Im baseline.
As illustrated in Fig. 5, our method successfully infers shad-
ows for novel view and lighting configurations. Note that
synthesizing accurate shadows requires reasoning about the
underlying geometry and is hence very challenging. In con-
trast, the texture-based model [42] “averages” shadows and
texture details due to its inability to capture illumination ef-
fects. The Im2Im baseline is not able to properly represent
shadows, that may result from missing 3D reasoning.

Reflection Analysis: To further investigate the capability
of our model to accurately represent surface light fields, we
apply our method to a car model which consists of highly
specular materials in Fig. 6. By representing complex illu-
mination as a combination of light sources, our method is
able to reason about the appearance of 3D objects in com-
plex illumination settings. We represent environment maps
as the superposition of point light sources using Eq. (4) and
show examples of the car model rendered using different
environment maps in Fig. 6. We find that our model is able
to accurately capture specular reflections, which allows for
rendering 3D objects under complex illumination.

4.2. Single View Appearance Prediction

While reasoning about the inter-dependence between
light, surface, and viewpoint of a single object is a challeng-
ing task, we now address the even more challenging prob-
lem of inferring surface light fields for novel, previously
unseen objects. To successfully solve this task, the network
must implicitly infer appearance properties and geometric
properties (e.g., surface normals, shadowing effects, etc.) of
objects from the input image and shape encoding. For this
experiment, we render images and depth maps from 10 dif-
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Figure 3. Generalization to unseen viewpoints and light configurations. Predicted novel views of high-quality 3D models for different
light locations. Our method predicts photo-realistic visual appearances with high-frequency details as well as plausible shadows, reflections

and specularities.
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Figure 4. High-frequency Details. Qualitative comparison to
the Img2Img baseline. Our method performs similarly for planar
svBRDFs, while showing more textural details for 3D objects.
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Figure 5. Shadow Analysis. Comparison of TextureFields [42],
the Im2Im baseline and our model with respect to the nearest
neighbor and ground truth for two different views.
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Figure 6. Reflection Analysis. We show results for a highly spec-
ular car with two different environment maps.

ferent viewpoints per object with 4 randomly sampled light
locations per view. For each object class, we train a separate
model using an image resolution of 2562 pixels.

Metrics: We evaluate all methods on three different met-
rics. First, we compute the FID score between a set of pre-
dicted images and ground truth images [14]. We further re-
port the Structure Similarity Image Metric (SSIM) [57] and
a [y distance measure in the Inception feature space between
the predicted image and the ground truth as in [42].

Surface Light Field Prediction: In our first experiment,
we predict the appearance of a novel object from a single
RGB image and the corresponding ground truth geometry
embedding. Fig. 7 shows the predictions for different light
locations using our method, the Img2Img baseline and Tex-
ture Fields [42].

Does the model predict accurate textures? Fig. 7 shows
that our method is able to reconstruct details from the in-
put view like the brown armrests and chair legs. While our
methods reconstruct plausible colors, the Img2Img baseline
produces artifacts at borders between two color regions.
Does the model predict plausible shadows for different light
configurations? Fig. 7 shows that our method is able to
reason about shadows. Note that even for the geometry
of the last example, our model predicts a rough silhou-
ette. However, a general limiting factor is the presence of
fine-structured geometry that complicates predicting shad-
ows and reflections. The Img2Img baseline leads to very
noisy predictions. The Texture Field baseline lacks a phys-
ical understanding of image formation and thus “averages”
shadows in the training data, leading to blurry results.

How well does the model represent specular reflections?
The examples in Fig. 7 contain specularities as well as more
diffuse reflection properties. In contrast to the Img2Img
Baseline and Texture Fields, our method is able to predict
plausible specular reflections (brown chair) as well as dif-
fuse materials (red couch). Note that our approach can’t
model transparencies.
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Figure 7. Single View Appearance Prediction. Results of our

method and the provided baselines for predicting the appearance
of a novel, previously unseen object.

Quantitative Comparison: In Table 1, we quantitatively
compare our method to the baselines. While our method
and the Img2Img baseline compare similarly in SSIM, our
method performs favorably in terms of FID and Feature-{;
distance. As expected, the Texture Field baseline is signif-
icantly worse compared to the other methods, since it does
not capture the full visual appearance. However, we remark
that none of the metrics focuses explicitly on shadows or
surface properties, highlighting the importance of our qual-
itative comparisons.

Ablation Study: We hypothesized that our model relies on
geometric information (shape encoding s in Fig. 2) to model
shadows and surface properties. We therefore compare our
approach against a version without shape encoding (Ours
w/o shape s) in Table 2. Indeed, removing the shape encod-
ing leads to a degradation in all metrics. We further investi-
gate if our method can also be trained on only two views per
object with different light settings (2 views). While two in-
put views per object are sufficient for learning to infer plau-
sible appearance from a single image, the complex physical
light formation process cannot be modeled well. We pro-

Input Image Predictions

Figure 8. Image-based Reconstruction. Reconstruction of geom-
etry and appearance based on a single RGB image. We show the
input image in the first column and predictions of our 2-step model
for different light configurations in the following columns.

vide qualitative results in the supplementary.

Image-based Reconstruction: While we use ground truth
geometry as input in all previous experiments, such infor-
mation is often not available in real-world settings. We
therefore investigate whether our approach allows for in-
ferring the appearance when using inaccurate image-based
3D reconstructions as input. Towards this goal, we train
the model proposed in [41] on our renderings and combine
it with our surface light field to reconstruct both geometry
and appearance from a single RGB image. As evidenced
by Fig. 8, our surface light field model allows for inferring
accurate textures, reflections and shadow effects even when
using less accurate, inferred 3D geometry as input.

Real Images: We now investigate if our approach trained
on synthetic data generalizes to real images as input. We
use the Pix3D dataset [55] for this purpose, as it offers real
input images with aligned 3D geometry and apply the pro-
vided instance masks to the input images. As illustrated in
Fig. 9, our approach successfully reasons about the appear-
ance of real objects despite being trained on synthetic data
only (both in terms of input and ground truth supervision).



FID SSIM Feature-¢;
TexFields Img2Img  Ours ‘ TexFields Img2Img  Ours ‘ TexFields Img2Img  Ours
photoshape | 33.467 27.019  20.602 0.949 0.964 0.961 0.160 0.142 0.131
cars 75.411 89.401  39.170 0.927 0.941 0.935 0.215 0.223 0.187
lamps 48.297 46.617  42.464 0.960 0.970 0.969 0.165 0.153 0.150
sofas 43.593 40.424 32172 0.937 0.963 0.961 0.163 0.145 0.136
mean | 50192  50.865 33.602 | 0.943 0959 0957 | 0.176 0.166  0.151

Table 1. Single View Appearance Prediction. Quantitative comparison of our approach with the Img2Img baseline. Our method performs
better on the FID and Feature-l; metric. In the less accurate SSIM metric all methods perform similarly.

FID SSIM  Feature-¢;
Ours 20.602 0.961 0.131
Ours 2V) 25922 0952 0.149
Oursw/os 24.771 0.956 0.143

Table 2. Ablation Study. Quantitative results when removing
the input shape encoding (s) and reducing the number of training
views per object to 2.

Figure 9. Real Images. Results of our method when using real im-
ages of unseen objects as input. Even though our model is trained
on synthetic images, it predicts plausible appearance for real im-
ages. Note that we used masked images as input.

4.3. Generative Model

In addition to predicting appearance from a single im-
age, we use our approach as a generative model for learning
the conditional distribution of surface light fields given a 3D
model. In Fig. 10, we show the output of our model for ran-
domly sampled appearance codes z as well as latent space
interpolations using our VAE-based generative model. Our
model learns a meaningful latent space, which also allows
for transferring appearance from one model to another. We
observe that the predictions contain plausible specular re-
flections and shadows.

5. Conclusion

We proposed conditional implicit surface light fields, a
novel representation of visual appearance of 3D objects.

4444

Interpolated latent code z
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Input Image Surface Light Field Transfer

Figure 10. Generative Model. We show latent space interpola-
tions (top), samples with varying light and camera locations (mid-
dle) and surface light field transfer to different shapes (bottom).

Our model reasons about complex visual effects including
texture, diffuse and specular reflection as well as shadows.
Our representation allows for inferring arbitrary viewpoints
with novel light configurations. We find that conditional
implicit surface light fields are an effective representation
of visual appearance. In future work, we plan to further in-
crease the representation power of this model by exploiting
convolutional features.
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