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Our goal is to make intelligent systems
more autonomous, robust and safe







3D reconstruction is a hard problem




1963: Blocks World

Larry Roberts: Machine Perception of Three-Dimensional Solids. PhD Thesis, MIT, 1963.



Traditional 3D Reconstruction Pipeline
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Humans recognize 3D from a single 2D image







Can we learn to infer 3D from a 2D image”?




3D Reconstruction from a 2D Image
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What is a good output representation?




3D Representations

Voxels:
» Discretization of 3D space into grid
» Easy to process with neural networks
» Cubic memory O(n?) = limited resolution

» Manhattan world bias

[Maturana et al., IROS 2015]




3D Representations

Points:
» Discretization of surface into 3D points
» Does not model connectivity / topology
» Limited number of points

» Global shape description

[Fan et al., CVPR 2017]




3D Representations

Meshes:
» Discretization into vertices and faces
» Limited number of vertices / granularity
» Requires class-specific template — or —

» | eads to self-intersections

[Groueix et al., CVPR 2018]




3D Representations

This work:
» Implicit representation = No discretization
» Arbitrary topology & resolution
» Low memory footprint

» Not restricted to specific class




Occupancy Networks

Key Idea:
» Do not represent 3D shape explicitly

» Instead, consider surface implicitly
as decision boundary of a non-linear classifier:

fo:R® x X —[0,1]
i } \

3D Condition Occupancy
Location (eg, Image) Probability

Concurrent work:

» DeepSDF [Park et al., CVPR 2019]
» IM-NET [Chen et al., CVPR 2019]

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



Network Architecture
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Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



Training Objective

Occupancy Network:Variational Occupancy Encoder:

K

L(0,4) =Y BCE(fo(pij: ), 0ij) + KL [ay(=[(pij. 0ij) j=1.5¢) || po(2)]

Jj=1

» : Randomly sampled 3D points (K = 2048)
» BCE: Cross-entropy loss

» ¢.: Encoder

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.



Occupancy Networks
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Multiresolution IsoSurface Extraction (MISE):

» Build octree by incrementally querying the occupancy network

» Extract triangular mesh using marching cubes algorithm (1-3 seconds in total)

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.




Results

Input 3D-R2N2  PSGN Pix2Mesh AtlasNet

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019.
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Can we also learn about object appearance?




Texture Fields

3D Model

Textured 3D Model

Texture Field
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019.



Texture Fields
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019.
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Texture Fields
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019.
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Texture Fields
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Representation Power

AR

» Ground truth vs. Texture Field vs. Voxelization

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019.

21



Representation Power (Fit to 10 Models)
Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 22
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Results
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019 23



What about object motion?




Occupancy Flow

» Extending Occupancy Networks to 4D is hard (curse of dimensionality)
» Represent shape at ¢ = 0 using a 3D Occupancy Network
» Represent motion by temporally and spatially continuous vector field

» Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

Os(t)
5 =v(s(t),t)

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 25



Temporal Encoder
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Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.



Occupancy Flow
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Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.



Loss Functions

Reconstruction Loss:
R 1 .
Lrecon (07 9) = @ Z BCE(OQ@A (p> T, X)7 0)
(p,7,%,0)€B

Correspondence Loss:

Lecorr (‘9> = ‘;‘ Z ||q))9§(s(0)>7—) - S(T)||2

(s,7x)EB

Neat feat:
» The correspondence loss is optional

» Correspondences are implicitly established by our model!

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.
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Results
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» No correspondences needed =- implicitly established by our model!

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 29



Can we learn implicit representations from images?




Architecture
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Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020.
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Forward Pass
(Rendering)




Differentiable Volumetric Rendering

i \ Occupancy
Forward Pass: Texture to(p) P
JOo — 1

fo=1

fo<Tt

» For all pixels u

» Find surface point p along ray w

via ray marching and root finding
» Evaluate texture field ty(p) at p

<Image i

» Insert color ty(p) at pixel u

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020.
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Backward Pass
(Differentiation)




Differentiable Volumetric Rendering

Backward Pass:
» Image Observation I

> Loss L(I,T) =3, |ITu — L]

» Gradient of loss function: fo
oL 3 oL ol
99 u L, 0 Observation I
O _ 9t(p) , dto(d) P o
20 20 8}3 90 < Prediction I

» Differentiation of fp(p) = 7 yields:
op _ __ (2fs®) _\ " 0fe(P) , ,
90 op 90 = Analytic solution and no need for
storing intermediate results

ro
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Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020.



Results

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 36



Very Recent Results




Universal Differentiable Renderer for Implicit Neural Representations
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Yariv, Atzmon and Lipman: Universal Differentiable Renderer for Implicit Neural Representations. Arxiv, 2020. 38



Learning Implicit Surface Light Fields
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. Arxiv, 2020. 39



Convolutional Occupancy Networks
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Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. Arxiv, 2020.



PIFu: Pixel-Aligned Implicit Function
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Saito, Huang, Natsume, Morishima, Kanazawa and Li: PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. ICCV, 2019.
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Deep Structured Implicit Functions
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Genova, Cole, Sud, Sarna and Funkhouser: Deep Structured Implicit Functions. CVPR, 2020.
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NeRF: Representing Scenes as Neural Radiance Fields
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Midenhall, Srinivasan, Tancik, Barron, Ramamoorthi and Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Arxiv, 2020.



PointRend: Image Segmentation as Rendering
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Kirillov, Wu, He and Girshick: PointRend: Image Segmentation as Rendering. CVPR, 2020.
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Take-Home Messages




Take-Home Messages

Neural Implicit Models:
» Effective output representation for shape, appearance, material, motion, etc.
» No discretization, model arbitrary topology
» Can be learned from images via differentiable rendering

» Many applications: reconstruction, view synthesis, segmentation, etc.

However:
» Geometry must be extracted in post-processing step (3 sec for ONet)
» Extension to 4D not straightforward (curse of dimensionality)
» Fully connected architecture and global condition lead to oversmooth results
» Promising: Local features (ConvONet, PiFU), Better input encoding (NeRF)
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Thank you!

http://autonomousvision.github.io
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http://autonomousvision.github.io

