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Our goal is to make intelligent systems
more autonomous, robust and safe



Intelligent systems interact with a 3D world



3D reconstruction is a hard problem



1963: Blocks World

Larry Roberts: Machine Perception of Three-Dimensional Solids. PhD Thesis, MIT, 1963. 5



Traditional 3D Reconstruction Pipeline

Input Images Camera Poses Dense Correspondences

Depth MapsDepth Map Fusion3D Reconstruction
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Humans recognize 3D from a single 2D image





Can we learn to infer 3D from a 2D image?



3D Reconstruction from a 2D Image

3D ReconstructionInput Images Neural Network
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What is a good output representation?



3D Representations

Voxels:
I Discretization of 3D space into grid
I Easy to process with neural networks
I Cubic memory O(n3)⇒ limited resolution
I Manhattan world bias

[Maturana et al., IROS 2015]
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3D Representations

Points:
I Discretization of surface into 3D points
I Does not model connectivity / topology
I Limited number of points
I Global shape description

[Fan et al., CVPR 2017]
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3D Representations

Meshes:
I Discretization into vertices and faces
I Limited number of vertices / granularity
I Requires class-specific template – or –
I Leads to self-intersections

[Groueix et al., CVPR 2018]
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3D Representations

This work:
I Implicit representation⇒ No discretization
I Arbitrary topology & resolution
I Low memory footprint
I Not restricted to specific class
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Occupancy Networks
Key Idea:
I Do not represent 3D shape explicitly
I Instead, consider surface implicitly

as decision boundary of a non-linear classifier:

3D
Location

Occupancy
Probability

Condition
(eg, Image)

Concurrent work:
I DeepSDF [Park et al., CVPR 2019]
I IM-NET [Chen et al., CVPR 2019]

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 13



Network Architecture

+

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 14



Training Objective

Occupancy Network:Variational Occupancy Encoder:

L(θ, ψ) =

K∑
j=1

BCE(fθ(pij , zi), oij) +KL [qψ(z|(pij , oij)j=1:K) ‖ p0(z)]

I K : Randomly sampled 3D points (K = 2048)
I BCE: Cross-entropy loss
I qψ : Encoder

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 15



Occupancy Networks

N times

marching cubesmark voxels subdivide voxels evaluate grid pointsevaluate grid points

Multiresolution IsoSurface Extraction (MISE):
I Build octree by incrementally querying the occupancy network
I Extract triangular mesh using marching cubes algorithm (1-3 seconds in total)

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 16



Results

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 17



Can we also learn about object appearance?



Texture Fields

Texture Field

Textured 3D Model

3D Model

2D Image

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 19



Texture Fields
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 20
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 20



Texture Fields

 Shape Encoder

Texture Field

 

Sampling

3D Shape

 
 
 
 
 
 
 
 

Recon.
Loss

Depth Map 3D Point Predicted Image True Image

Point Cloud

Rendering
 

Unprojection

 VAE Encoder

Conditional Model
GAN Model
VAE Model

Color Legend:

KL Divergence

Color

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 20



Representation Power

I Ground truth vs. Texture Field vs. Voxelization

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 21



Representation Power (Fit to 10 Models)

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 22



Results

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 23



What about object motion?



Occupancy Flow

I Extending Occupancy Networks to 4D is hard (curse of dimensionality)
I Represent shape at t = 0 using a 3D Occupancy Network
I Represent motion by temporally and spatially continuous vector field
I Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

∂s(t)

∂t
= v(s(t), t)

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 25



Temporal Encoder

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 26



Occupancy Flow

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 27



Loss Functions

Reconstruction Loss:

Lrecon
(
θ, θ̂
)

=
1

|B|
∑

(p,τ,x,o)∈B

BCE(ôθ,θ̂(p, τ,x), o)

Correspondence Loss:

Lcorr
(
θ̂
)

=
1

|B|
∑

(s,τ,x)∈B

‖Φx
θ̂
(s(0), τ)− s(τ)‖

2

Neat feat:
I The correspondence loss is optional
I Correspondences are implicitly established by our model!

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 28



Results

I No correspondences needed⇒ implicitly established by our model!
Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 29



Can we learn implicit representations from images?



Architecture

+ +

Occupancy
Probability

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 31



Forward Pass
(Rendering)



Differentiable Volumetric Rendering

Forward Pass:
I For all pixels u

I Find surface point p̂ along ray w
via ray marching and root finding

I Evaluate texture field tθ(p̂) at p̂
I Insert color tθ(p̂) at pixel u

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 33



Backward Pass
(Differentiation)



Differentiable Volumetric Rendering

Backward Pass:
I Image Observation I

I Loss L(̂I, I) =
∑

u ‖Îu − Iu‖
I Gradient of loss function:

∂L
∂θ

=
∑
u

∂L
∂Îu
· ∂Îu
∂θ

∂Îu
∂θ

=
∂tθ(p̂)

∂θ
+
∂tθ(p̂)

∂p̂
· ∂p̂
∂θ

I Differentiation of fθ(p̂) = τ yields:
∂p̂

∂θ
= −w

(
∂fθ(p̂)

∂p̂
·w
)−1

∂fθ(p̂)

∂θ ⇒Analytic solution and no need for
storing intermediate results

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 35



Results

Niemeyer, Mescheder, Oechsle and Geiger: Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. CVPR, 2020. 36



Very Recent Results



Universal Differentiable Renderer for Implicit Neural Representations

Yariv, Atzmon and Lipman: Universal Differentiable Renderer for Implicit Neural Representations. Arxiv, 2020. 38



Learning Implicit Surface Light Fields

Appearance Field
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Oechsle, Niemeyer, Mescheder, Strauss and Geiger: Learning Implicit Surface Light Fields. Arxiv, 2020. 39



Convolutional Occupancy Networks

Peng, Niemeyer, Mescheder, Pollefeys and Geiger: Convolutional Occupancy Networks. Arxiv, 2020. 40



PIFu: Pixel-Aligned Implicit Function

Saito, Huang, Natsume, Morishima, Kanazawa and Li: PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. ICCV, 2019. 41



Deep Structured Implicit Functions

Genova, Cole, Sud, Sarna and Funkhouser: Deep Structured Implicit Functions. CVPR, 2020. 42



NeRF: Representing Scenes as Neural Radiance Fields

C(r) =

∫ tf

tn

exp

(
−
∫ tf

tn

σ(r(s))ds

)
︸ ︷︷ ︸

Transmittance

σ(r(t))︸ ︷︷ ︸
Density

c(r(t),d)︸ ︷︷ ︸
Color

dt

Midenhall, Srinivasan, Tancik, Barron, Ramamoorthi and Ng: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Arxiv, 2020. 43



PointRend: Image Segmentation as Rendering

Kirillov, Wu, He and Girshick: PointRend: Image Segmentation as Rendering. CVPR, 2020. 44



Take-Home Messages



Take-Home Messages
Neural Implicit Models:
I Effective output representation for shape, appearance, material, motion, etc.
I No discretization, model arbitrary topology
I Can be learned from images via differentiable rendering
I Many applications: reconstruction, view synthesis, segmentation, etc.

However:
I Geometry must be extracted in post-processing step (3 sec for ONet)
I Extension to 4D not straightforward (curse of dimensionality)
I Fully connected architecture and global condition lead to oversmooth results
I Promising: Local features (ConvONet, PiFU), Better input encoding (NeRF)
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Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

