Learning 3D Reconstruction in Function Space

Andreas Geiger

Autonomous Vision Group MPI for Intelligent Systems and University of Tübingen

April 27, 2020

University of Tübingen MPI for Intelligent Systems

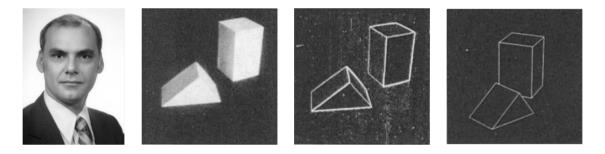
Autonomous Vision Group

Our goal is to make **intelligent systems** more autonomous, robust and safe

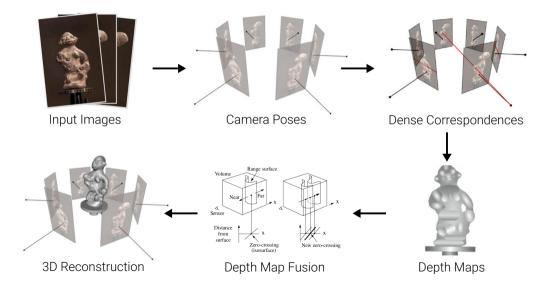
Intelligent systems interact with a 3D world

3D reconstruction is a hard problem

1963: Blocks World



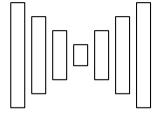
Traditional 3D Reconstruction Pipeline



Humans recognize 3D from a single 2D image

Can we learn to infer 3D from a 2D image?

3D Reconstruction from a 2D Image



Input Images

Neural Network

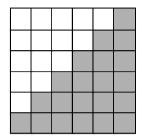
3D Reconstruction

What is a good **output** representation?

Voxels:

- ► Discretization of 3D space into grid
- ► Easy to process with neural networks
- Cubic memory $O(n^3) \Rightarrow$ limited resolution
- Manhattan world bias

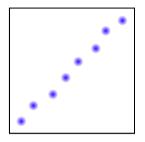
[Maturana et al., IROS 2015]



Points:

- ► Discretization of surface into 3D points
- Does not model connectivity / topology
- ► Limited number of points
- ► Global shape description

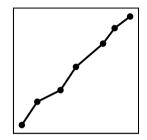
[Fan et al., CVPR 2017]



Meshes:

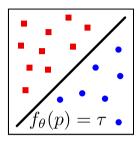
- ► Discretization into vertices and faces
- ► Limited number of vertices / granularity
- ▶ Requires class-specific template or –
- ► Leads to self-intersections

[Groueix et al., CVPR 2018]



This work:

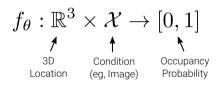
- ► Implicit representation ⇒ No discretization
- Arbitrary topology & resolution
- ► Low memory footprint
- ► Not restricted to specific class



Occupancy Networks

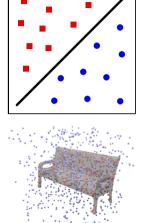
Key Idea:

- ► Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

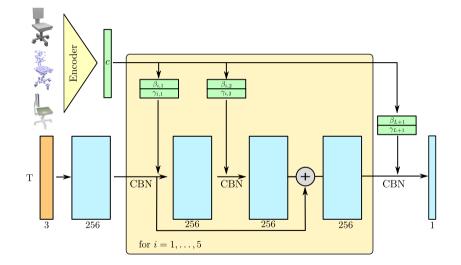


Concurrent work:

- ▶ DeepSDF [Park et al., CVPR 2019]
- ▶ IM-NET [Chen et al., CVPR 2019]



Network Architecture



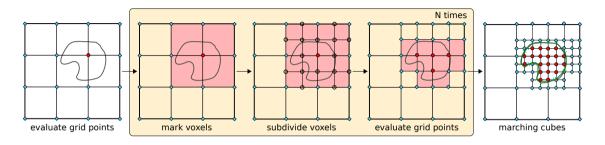
Training Objective

Occupancy Network:Variational Occupancy Encoder:

$$\mathcal{L}(\theta, \psi) = \sum_{j=1}^{K} \mathsf{BCE}(f_{\theta}(p_{ij}, z_i), o_{ij}) + KL\left[q_{\psi}(z | (p_{ij}, o_{ij})_{j=1:K}) \| p_0(z)\right]$$

- K: Randomly sampled 3D points (K = 2048)
- ► BCE: Cross-entropy loss
- ► q_{ψ} : Encoder

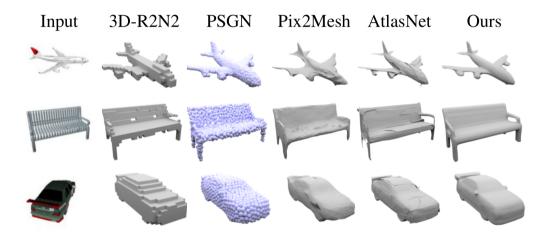
Occupancy Networks



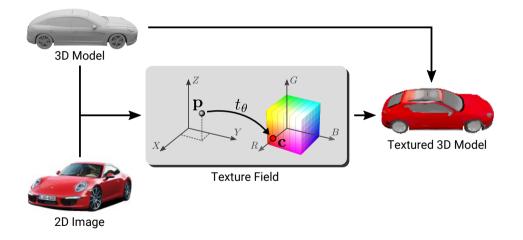
Multiresolution IsoSurface Extraction (MISE):

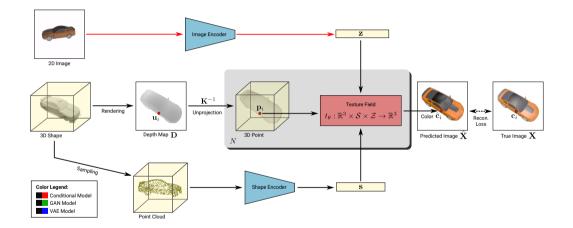
- Build octree by incrementally querying the occupancy network
- Extract triangular mesh using marching cubes algorithm (1-3 seconds in total)

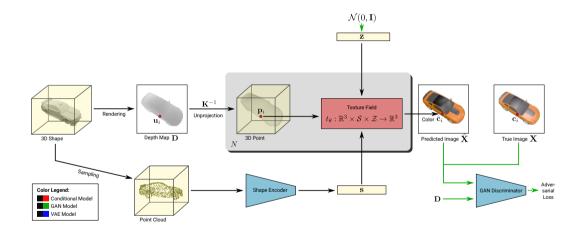
Results

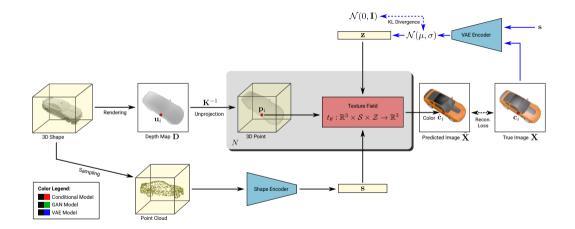


Can we also learn about object appearance?







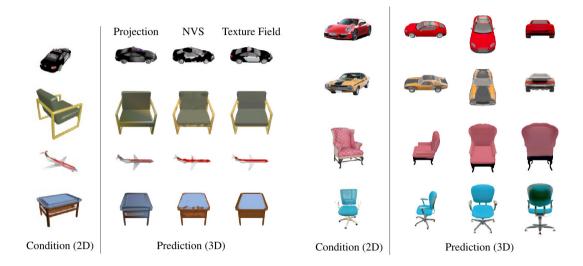


Representation Power

Ground truth vs. Texture Field vs. Voxelization

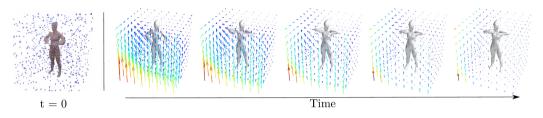
Representation Power (Fit to 10 Models)

Results



What about object motion?

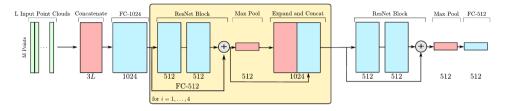
Occupancy Flow

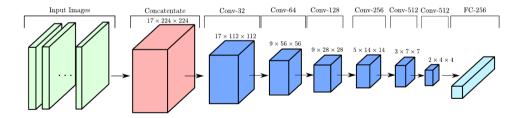


- Extending Occupancy Networks to 4D is hard (curse of dimensionality)
- Represent shape at t = 0 using a 3D Occupancy Network
- ► Represent motion by temporally and spatially continuous vector field
- ► Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

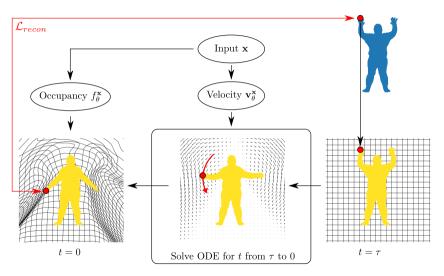
$$\frac{\partial \mathbf{s}(t)}{\partial t} = \mathbf{v}(\mathbf{s}(t), t)$$

Temporal Encoder





Occupancy Flow



Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.

Loss Functions

Reconstruction Loss:

$$\mathcal{L}_{recon}\left(\theta,\hat{\theta}\right) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{p},\tau,\mathbf{x},o)\in\mathcal{B}} \mathsf{BCE}(\hat{o}_{\theta,\hat{\theta}}(\mathbf{p},\tau,\mathbf{x}),o)$$

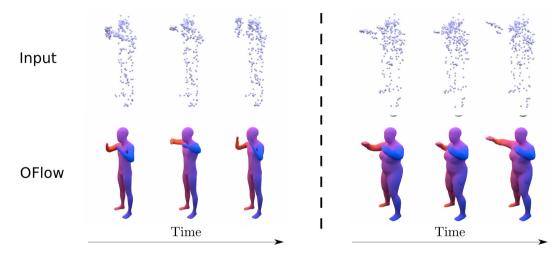
Correspondence Loss:

$$\mathcal{L}_{corr}\left(\hat{\theta}\right) = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{s},\tau,\mathbf{x})\in\mathcal{B}} \left\|\Phi_{\hat{\theta}}^{\mathbf{x}}(\mathbf{s}(0),\tau) - \mathbf{s}(\tau)\right\|_{2}$$

Neat feat:

- ► The correspondence loss is optional
- ► Correspondences are implicitly established by our model!

Results

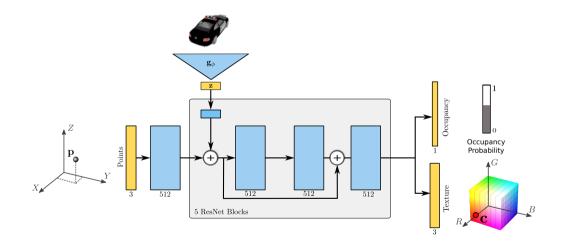


• No correspondences needed \Rightarrow implicitly established by our model!

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.

Can we learn implicit representations from images?

Architecture



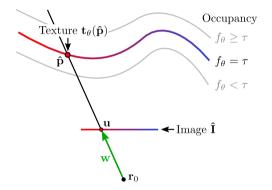
31

Forward Pass (Rendering)

Differentiable Volumetric Rendering

Forward Pass:

- $\blacktriangleright\,$ For all pixels ${\bf u}$
- Find surface point p̂ along ray w via ray marching and root finding
- Evaluate texture field $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at $\hat{\mathbf{p}}$
- ► Insert color $\mathbf{t}_{\theta}(\hat{\mathbf{p}})$ at pixel \mathbf{u}



Backward Pass (Differentiation)

Differentiable Volumetric Rendering

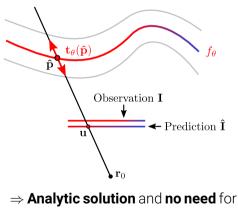
Backward Pass:

- ► Image Observation I
- \blacktriangleright Loss $\mathcal{L}(\mathbf{\hat{I}},\mathbf{I}) = \sum_{\mathbf{u}} \|\mathbf{\hat{I}_u} \mathbf{I_u}\|$
- Gradient of loss function:

$$\begin{array}{lcl} \frac{\partial \mathcal{L}}{\partial \theta} & = & \sum_{\mathbf{u}} \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{I}}_{\mathbf{u}}} \cdot \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} \\ \\ \frac{\partial \hat{\mathbf{I}}_{\mathbf{u}}}{\partial \theta} & = & \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \theta} + \frac{\partial \mathbf{t}_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \frac{\partial \hat{\mathbf{p}}}{\partial \theta} \end{array}$$

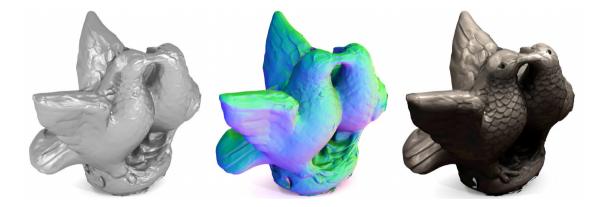
• Differentiation of $f_{\theta}(\hat{\mathbf{p}}) = \tau$ yields:

$$\frac{\partial \hat{\mathbf{p}}}{\partial \theta} = -\mathbf{w} \left(\frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \hat{\mathbf{p}}} \cdot \mathbf{w} \right)^{-1} \frac{\partial f_{\theta}(\hat{\mathbf{p}})}{\partial \theta}$$



storing intermediate results

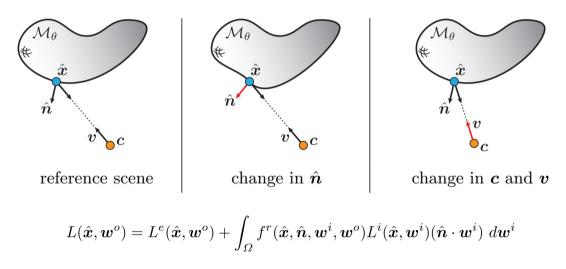
Results



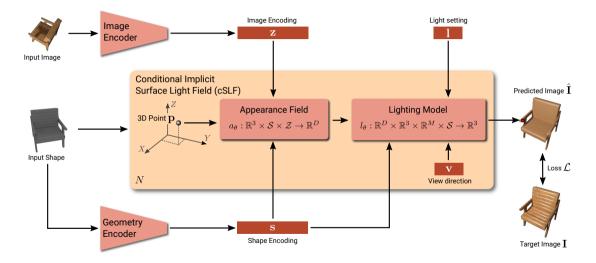
36

Very Recent Results

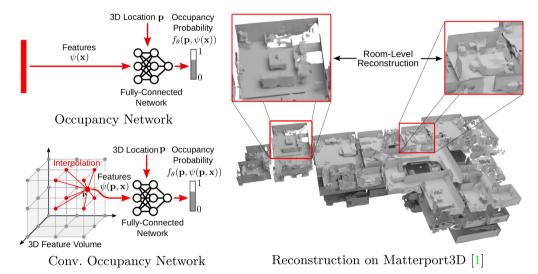
Universal Differentiable Renderer for Implicit Neural Representations



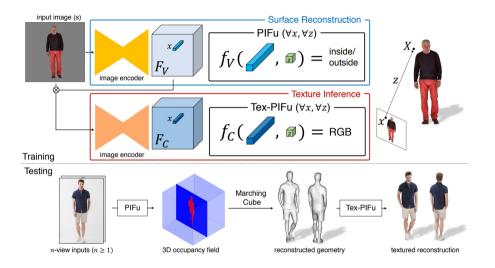
Learning Implicit Surface Light Fields



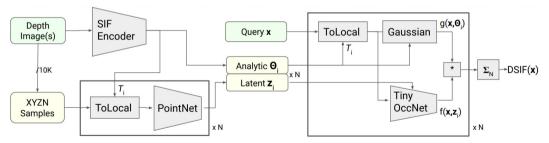
Convolutional Occupancy Networks



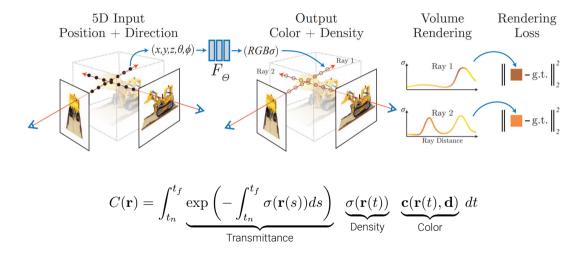
PIFu: Pixel-Aligned Implicit Function



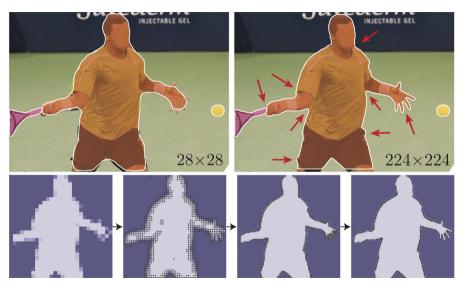
Deep Structured Implicit Functions



NeRF: Representing Scenes as Neural Radiance Fields



PointRend: Image Segmentation as Rendering



Kirillov, Wu, He and Girshick: PointRend: Image Segmentation as Rendering. CVPR, 2020.

Take-Home Messages

Take-Home Messages

Neural Implicit Models:

- Effective output representation for shape, appearance, material, motion, etc.
- ► No discretization, model arbitrary topology
- ► Can be learned from images via differentiable rendering
- ► Many applications: reconstruction, view synthesis, segmentation, etc.

However:

- Geometry must be extracted in post-processing step (3 sec for ONet)
- Extension to 4D not straightforward (curse of dimensionality)
- ► Fully connected architecture and global condition lead to oversmooth results
- ► Promising: Local features (ConvONet, PiFU), Better input encoding (NeRF)

Thank you!

http://autonomousvision.github.io

