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1. Motivation

Existing 3D Representations

Deep learning has achieved impressive results
 •

 
 
 
for image and texture generation in the 2D domain

However, texture generation in the 3D domain lacks 
far behind.

 

Major problem: Representation of texture in 3D

 

for learning-based reconstruction of 3D geometry.•
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2. Existing Texture Representations

No discretization

Independent of
shape representation

No template required

For learning texture reconstruction, we condition the Texture Field on an image 
and an untextured 3D model. 

 

Idea: Represent texture as continuous 3D field 
 

3. Our Representation
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5. Experiments - Texture Reconstruction

4. Our Model
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6. Experiments - Generative Model
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