

Max Planck Institute for Intelligent Systems Autonomous Vision Group

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

1. Motivation

Deep learning has achieved impressive results

- for image and texture generation in the **2D domain**
- for learning-based reconstruction of **3D geometry.**

However, texture generation in the 3D domain lacks far behind.

Major problem: Representation of texture in 3D

2. Existing Texture Representations

Neural Network

Colored Voxels

- Grid structure
- Memory requirement
- Low-frequency texture

Texture Atlas

- High-frequency texture
- Template required
- Discontinuities

6. Experiments - Generative Model

VAE - Samples

VAE - Latent Space Interpolations

DRIVING EMBEDDED EXCELLENCE 5. Experiments - Texture Reconstruction Texture from a Single Rendered Image

Texture Fields Learning Texture Representations in Function Space Michael Oechsle^{1,2,3} Lars Mescheder^{1,2} Michael Niemeyer^{1,2} Thilo Strauss³ Andreas Geiger^{1,2} ¹MPI for Intelligent Systems ²University of Tübingen ³ETAS GmbH, Stuttgart **Idea:** Represent texture as continuous 3D field $t_{\theta} : \mathbb{R}^3 \to \mathbb{R}^3$

3. Our Representation

- No discretization
- No template required
- Independent of
- shape representation

For learning texture reconstruction, we condition the Texture Field on an image and an untextured 3D model.

4. Our Model

GAN - Samples

KL Divergence $\mathcal{N}(0,\mathbf{I})$ \leftarrow S $\sim \mathcal{N}(\mu, \sigma) \sim \mathsf{VAE Encoder}$ Recon. Loss **Texture Field** ◀----> $: \mathbb{R}^3 imes \mathcal{S} imes \mathcal{Z} o \mathbb{R}$ Predicted Image True Image Adversaria Discriminator $D \rightarrow$ Loss

0.149

0.229

0.281

0.228

0.217

SSIM Feature- ℓ_1

0.850

0.734

0.870

Texture Field

Projection

Im2Avatar

Texture Field

NVS

14.801 0.937

Texture from a Single Rendered Image

FID

65.745

141.209

73.223

59.424 0.870

Full Pipeline with ONet

michael.oechsle@tue.mpg.de