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Abstract

In this supplementary material, we discuss potentital negative impact of our method on society in Sec. 1. In Sec. 2, we
report implementation details. We report data processing steps in Sec. 3. Finally, we report additional qualitative as well as
quantitative results in Sec. 4. The supplementary video shows animated camera trajectories for our method and baselines.

1. Potential Negative Impact on Society
In this section we discuss the potentital negative impact this work could have on society.

Unintended Uses and Security Considerations: Our proposed method enables the synthesis of novel views from a sparse
set of input images (as few as 3 images). While highly beneficial for domains where access to densely captured data is
challenging, it can also lead to negative consequences when applied to sensitive or private data without the consent of the
involved parties. As such, we view it as crucial for potential users to always check the data license and contact the involved
parties when in doubt. Similar to content creation methods, our approach could be used to create misleading content, e.g., by
selecting input views in a way that the novel views either hide content or present it in a misleading manner. To this effect,
work on deep fake detection methods would provide great value to aid in identifying generated content.
Fairness Considerations: Similar to most deep learning approaches, optimizing our method requires access to AI accel-
erators like GPUs or TPUs and the required optimization time reduces with larger infrastructure. As a result, the amount
of infrastructure or monetary support available for an organization directly affects their ability to explore certain research
topics. Research work investigating the use of efficient algorithms as well as active collaboration within the broader research
community are key to addressing this challenge.
Environmental Impact: Deep learning-based optimization and inference are compute intensive processes leading to high
energy usage. In an attempt to curb the unnecessary energy usage, we apply high learning rates to reduce the optimization
time (see Sec. 3.4 of the main paper). We regard methods that investigate finding optimal weights within a few iterations as
an interesting direction for future work that further tackles this topic.

2. Implementation Details
In this section, we discuss relevant implementation details regarding our method as well as baselines.

2.1. Hyperparameters

Neural Radiance Field: We adhere to the mip-NeRF [1] implementation and parameterize our neural radiance field as a
fully-connected ReLU network with 8 layers and a hidden dimension of 256. We use 128 samples along the ray for both
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PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
6-view 9-view 6-view 9-view 6-view 9-view 6-view 9-view

PixelNeRF [12] (original) 17.470 17.715 0.712 0.724 0.263 0.257 0.137 0.132
PixelNeRF [12] (retrained) 19.110 20.400 0.745 0.768 0.232 0.220 0.115 0.100

Table 1. Improving PixelNeRF’s Performance. We report object-level evaluation for PixelNeRF in the original and the re-trained setting
on the DTU dataset. While in PixelNeRF [12], Yu et al. train the model with 3 input views and evaluate it with different numbers of input
views, we find that the performance can be improved when re-training the model with 6 and 9 input views, respectively, for the 6 and 9
input view scenarios.

PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

PixelNeRF [12] (original) 16.820 19.110 20.400 0.695 0.745 0.768 0.270 0.232 0.220 0.147 0.115 0.100
PixelNeRF [12] (ft long) 18.851 18.253 19.850 0.713 0.714 0.779 0.262 0.242 0.190 0.126 0.132 0.104
PixelNeRF [12] (ft optimized) 18.945 18.699 21.831 0.710 0.720 0.781 0.269 0.237 0.203 0.125 0.125 0.090

Table 2. Improving PixelNeRF’s Performance via Finetuning on DTU.

PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

PixelNeRF [12] (original) 7.927 8.735 8.613 0.272 0.280 0.274 0.682 0.676 0.665 0.461 0.433 0.432
PixelNeRF [12] (ft long) 14.828 14.752 18.174 0.380 0.418 0.520 0.546 0.527 0.425 0.253 0.253 0.176
PixelNeRF [12] (ft optimized) 16.171 17.034 18.916 0.438 0.473 0.535 0.512 0.477 0.430 0.217 0.196 0.163

Table 3. Improving PixelNeRF’s Performance via Finetuning on LLFF.

sample levels. Our model is implemented using the JAX framework [2] on top of the mip-NeRF code base.
Optimization Curriculum: We use the Adam optimizer [8] with an exponential learning rate decay from 2·10−3 to 2·10−5
and 512 warm up steps [1] with a delay multiplier of 0.01. We clip gradients by value at 0.1 and then by norm at 0.1. The
model is always optimized for 500 pixel epochs with a pixel batch size of 4096.
Scene Space Annealing: The scene sampling space is annealed over the first iterations for the 3 and 6 input scenarios as
discussed in the main paper. More specifically, we linearly anneal the sample space over the first Nt = 256 iterations starting
at tm as the mid point between tn and tf and an initial range of ps = 0.5 (see Eq. 13 of the main publication). For the LLFF
dataset where NDC ray parameterization is used [1, 10], we use 512 steps starting at the far plane tm = tf and with a small
initial range of ps = 0.0001.
Loss Weights: The reconstruction loss LMSE is weighted with a value of λMSE = 1.0, the depth smoothness loss LDS with
λDS = 0.1 and the negative log-likelihood loss LNLL with λNLL = 10−6. For training stability we linearly anneal the loss
weight for the depth smoothness loss λDS from a high value (400.0) to the end value of 0.1 over the first 512 optimization
steps.

2.2. Baseline Implementations

PixelNeRF: For PixelNeRF [12], We use the official implementation provided by the authors and use the published pre-
trained model for the 3 input view scenario. While in their publication, the authors train only one model with 3 input views
and then test with varying numbers of input views, we re-train one model for each scenario leading to improved performance
(see Tab. 1). We further report PixelNeRF when additionally optimized per scene (“ft” for “fine-tuned”). We find that this
additional fine-tuning improves performance for the DTU dataset (see Tab. 2) as well as the LLFF dataset (see Tab. 3). We
observe that optimizing per scene for the same number of iterations as our model (“PixelNeRF ft (long)”) leads to overfitting
and we hence report PixelNeRF ft for the optimized iteration number of 20K (“PixelNeRF ft (optimized)”) similar to [7].
MVSNeRF: For MVSNeRF [3], we similarly use the implementation provided by the authors and use the published pre-
trained model. We observe that for sparse input scenarios the official fine-tuning curriculum, which is optimized for fine-
tuning on many input views, can be improved by reducing the learning rate to 10−5 (“Improved Curriculum 1”) as well as
10−6 (“Improved Curriculum 2”) (see Tab. 4). To ensure a fair comparison, we report results obtained with the top-performing
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PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

MVSNeRF [3] (Official Curriculum) 16.049 17.329 17.055 0.456 0.544 0.554 0.452 0.374 0.376 0.208 0.175 0.177
MVSNeRF [3] (Improved Curriculum 1) 17.652 19.694 20.089 0.589 0.654 0.667 0.329 0.280 0.272 0.160 0.128 0.120
MVSNeRF [3] (Improved Curriculum 2) 17.875 19.986 20.466 0.584 0.660 0.695 0.327 0.264 0.244 0.157 0.122 0.111

Table 4. Improving MVSNeRF’s Finetuning Curriculum on LLFF.

PSNR ↑ SSIM ↑ LPIPS ↓
DietNeRF [6] 23.147 0.866 0.109
DietNeRF LMSE ft [6] 23.591 0.874 0.097
DietNeRF (our implementation) 24.345 0.880 0.100

Table 5. DietNeRF’s Improved Performance on the Blender Dataset.

curriculum in the main paper.
Stereo Radiance Fields: We use the official implementation of Stereo Radiance Fields [4] and train one model for each of
the 3, 6, and 9 input view scenarios on the DTU dataset. For fine-tuning, we adhere to the published curriculum.
DietNeRF: As no official code is available for DietNeRF [6], we implement the proposed semantic consistency loss our-
selves on top of the mip-NeRF code base. To validate our implementation, we compare results to the published table on the
synthetic Blender dataset [10] and find that our reimplementation leads to an improvement in the performance compared to
the published results (see Tab. 5).

2.3. Geometry Regularization

In Tab. (4) of the main publication, we report an ablation study of various geometry regularization techniques which we
describe more detailed in the following.
Opacity Regularization: The opacity regularization [9] is defined as

Lopacity(θ,Rr) =
∑
r∈Rr

log (α̂θ(r)) + log (1− α̂θ(r)) (1)

where α̂θ(r) indicates the accumulated alpha weight for ray r.
Ray Density Entropy: The ray density entropy regularization we investigate is

LRDE(θ,Rr) =
∑
r∈Rr

Ns∑
i=1

−w
i
θ

δi
log

(
wiθ
δi

)
where wiθ = T (i)(1− exp(−σiθδi)) (2)

and Ns = 128 are the number of ray samples. We drop the dependency of r for wiθ and δi to avoid cluttered notation.
Normal Smoothness: The normal smoothness prior [11] is defined as

LNS(θ,Rr) =
∑
r∈Rr

||n(xr)− n(xr + ε)||22 (3)

where n(·) denotes the normal vector, xr a sample point along ray r and ε a noise vector drawn from a Gaussian.
Density Surface Regularization: We enforce solid surfaces along the ray using

LSR(θ,Rr) =
∑
r∈Rr

Ns∑
i=1

log(viθ) + log(1− viθ) where viθ = 1− exp(−σiθδi) (4)

where Ns = 128 are the number of ray samples. Similar to before, we drop the dependency of viθ on r for clarity.
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Figure 1. Optimization Progress. Our model requires 75% fewer iterations to match mip-NeRF’s test error on DTU (9 input views).

Setting PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF [4]
Trained on DTU

15.84 17.77 18.56 0.532 0.616 0.652 0.482 0.401 0.359 0.207 0.162 0.145
PixelNeRF [12] 18.74 21.02 22.23 0.618 0.684 0.714 0.401 0.340 0.323 0.154 0.119 0.105
MVSNeRF [3] 16.33 18.26 20.32 0.602 0.695 0.735 0.385 0.321 0.280 0.184 0.146 0.114

SRF ft [4] Trained on DTU
and

Optimized per Scene

16.06 18.69 19.97 0.550 0.657 0.678 0.431 0.353 0.325 0.196 0.143 0.125
PixelNeRF ft [12] 17.38 21.52 21.67 0.548 0.670 0.680 0.456 0.351 0.338 0.185 0.121 0.117
MVSNeRF ft [3] 16.26 18.22 20.32 0.601 0.694 0.736 0.384 0.319 0.278 0.185 0.146 0.113

mip-NeRF [1]
Optimized per Scene

7.64 14.33 20.71 0.227 0.568 0.799 0.655 0.394 0.209 0.485 0.231 0.098
DietNeRF [6] 10.01 18.70 22.16 0.354 0.668 0.740 0.574 0.336 0.277 0.383 0.149 0.098
Ours 15.33 19.10 22.30 0.621 0.757 0.823 0.341 0.233 0.184 0.189 0.118 0.079

Table 6. Quantitative Results on Full Images for DTU.

Sparsity Regularization: The sparsity regularization [5] is defined as

LSR(θ,Rr) =
∑
r∈Rr

Ns∑
i=1

log

(
1 +

σiθ
2

c

)
where c = 0.5 (5)

and, similar to before, Ns = 128 are the number of ray samples.

3. Data
We report the test set selection procedure for the DTU and LLFF dataset in this section.

DTU Dataset: We adhere to the evaluation protocol from [12] and use the following scan IDs as the test set: 8, 21, 30, 31,
34, 38, 40, 41, 45, 55, 63, 82, 103, 110, 114. The following image IDs (starting with “0”): 25, 22, 28, 40, 44, 48, 0, 8, 13
are used as input. For the 3 and 6 input scenarios, we use the first 3/6 image IDs, respectively. For evaluation, the remaining
images are used with the exception of the following image IDs due to wrong exposure: 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21,
36, 37, 38, 39. We use an image resolution of 300× 400 pixels.
LLFF: For the LLFF dataset, we use every 8-th image as the holdout test set similar to previous works [10]. As input views,
image IDs are selected evenly across the remaining views. We use an image resolution of 378× 504.
Masked Evaluation: Due to the background evaluation bias, we propose to perform masked evaluation for DTU (see Fig.
4 of the main publication). More specifically, we use object masks and calculate PSNR only within the mask. For SSIM and
LPIPS, we use the masks to composite the predicted object-of-interest onto white background before calculating the metrics.

4. Experiments
In this section, we report additional quantitative as well as qualitative results.

Optimization Convergence: In Fig. 1 we show average test set error for mip-NeRF and our method over the optimization
progress on DTU (9 input views). Our model requires 75% fewer iterations to achieve mip-NeRF’s top 5% performance.
Additional Quantitative Results: In Tab. 6 we report quantitative results for the full images on the DTU dataset. As
discussed in the main publication, full image evaluation leads to a bias preferring correct background prediction over the
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PixelNeRF [12] MVSNeRF [3] DietNeRF [6] Ours GT

Figure 2. Additional Qualitative Results on DTU for 3 Input Views.

PixelNeRF [12] MVSNeRF [3] DietNeRF [6] Ours GT

Figure 3. Additional Qualitative Results on DTU for 6 Input Views.

object-of-interest (see Fig. 4 of the main publication). In the main paper, we avoid this bias by applying object masks to the
images before evaluation.
Additional Qualitative Results: We show additional qualitative comparisons in Fig. 2, Fig. 3, Fig. 5, and Fig. 6 for
the DTU dataset and in Fig. 7, Fig. 8, Fig. 9, and Fig. 10 for the LLFF dataset. Further, we report multiple novel views for
all scenes in Fig. 11, Fig. 12, and Fig. 13 for DTU and in Fig. 14, Fig. 15, and Fig. 16 for LLFF.
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PixelNeRF [12] MVSNeRF [3] DietNeRF [6] Ours GT

Figure 4. 9 Input Views

Figure 5. Additional Qualitative Results on DTU for 9 Input Views.

PixelNeRF [12] SRF [4] MVSNeRF [3] mip-NeRF [1] DietNeRF [6] Ours GT

(a) 3 Input Views

(b) 6 Input Views

(c) 9 Input Views

Figure 6. Additional Qualitative Comparison on DTU.
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PixelNeRF [12] PixelNeRF ft [12] MVSNeRF ft [3] DietNeRF [6] Ours GT

Figure 7. Additional Qualitative Results on LLFF for 3 Input Views.

PixelNeRF [12] PixelNeRF ft [12] MVSNeRF ft [3] DietNeRF [6] Ours GT

Figure 8. Additional Qualitative Results on LLFF for 6 Input Views.

PixelNeRF [12] PixelNeRF ft [12] MVSNeRF ft [3] DietNeRF [6] Ours GT

Figure 9. Additional Qualitative Results on LLFF for 9 Input Views.
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PixelNeRF [12] SRF [4] MVSNeRF [3] mip-NeRF [1] DietNeRF [6] Ours GT

(a) 3 Input Views

(b) 6 Input Views

(c) 9 Input Views

Figure 10. Additional Qualitative Comparison on LLFF.
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Figure 11. Synthesized Novel Views for our Method with 3 Input Views on DTU.
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Figure 12. Synthesized Novel Views for our Method with 6 Input Views on DTU.
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Figure 13. Synthesized Novel Views for our Method with 9 Input Views on DTU.
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Figure 14. Synthesized Novel Views for our Method with 3 Input Views on LLFF.

Figure 15. Synthesized Novel Views for our Method with 6 Input Views on LLFF.
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Figure 16. Synthesized Novel Views for our Method with 9 Input Views on LLFF.
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