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This architecture allows us to
+ Traln from raw, unposed image collections

+ Model objects in 3D

+ Disentangle objects and the background

The Challenge

Most state-of-the-art GANs operate In the
two-dimensional image domain

At test time, we can generate new images of scenes
with expicit control over the object an camera poses
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However, our world Is three-dimensional _ _
Feature Field Architecture

Disentangling factors of variation very
challenging without reasoning in 3D:

Object Translation for 2D GAN

Object Translation for Ours
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256 Add more Objects at Test Time (Trained on One/Two Object Scenes)

https://bit.ly/giratte-project michael.niemeyer@tue.mpg.de




