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● Question: under what conditions can we guarantee local 
convergence of GAN training?

● Negative finding: unregularized training of GANs and WGANs
is not always locally convergent near the equilibrium point

● Positive finding: GAN training with instance noise or zero-
centered gradient penalties is provably locally convergent
in the realizable case

● Experiments: simple zero-centered gradient penalties yield 
excellent results for high-dimensional image distributions

 

 

Motivation

Which Training Methods for GANs
do actually Converge?

● GANs are powerful but hard to train
● Training dynamics are not completely 

understood
● Recently, a variety of techniques have been 

proposed to stabilize GAN training
● For which training methods can we actually 

prove local convergence?
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Qualitative Results
The Dirac GAN
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Zero-centered Gradient Penalties

Proof (Idea):

negative definitefull column rank

(builds on  prior work by Nagarajan & Kolter, 2017)

all eigenvalues have negative real part

Assumption I: the generator can represent the true data distribution

Assumption II:                  and  

Assumption III: the discriminator can detect when
the generator deviates from the equilibrium

Assumption IV: the generator and data distributions have the same
support near the equilibrium point (Nagarajan & Kolter, 2017)

Theorem: under Assumption I, II, III and some mild technical 
assumptions the GAN training dynamics for the regularized training 
objective are locally asymptotically stable near the equilibrium point
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