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Abstract

In this paper, we analyze the numerics of common algorithms for training Gener-
ative Adversarial Networks (GANs). Using the formalism of smooth two-player
games we analyze the associated gradient vector field of GAN training objectives.
Our findings suggest that the convergence of current algorithms suffers due to two
factors: i) presence of eigenvalues of the Jacobian of the gradient vector field with
zero real-part, and ii) eigenvalues with big imaginary part. Using these findings,
we design a new algorithm that overcomes some of these limitations and has better
convergence properties. Experimentally, we demonstrate its superiority on training
common GAN architectures and show convergence on GAN architectures that are
known to be notoriously hard to train.

1 Introduction

Generative Adversarial Networks (GANs) [10] have been very successful in learning probability
distributions. Since their first appearance, GANs have been successfully applied to a variety of
tasks, including image-to-image translation [12], image super-resolution [13], image in-painting [27]
domain adaptation [26], probabilistic inference [14, 9, 8] and many more.

While very powerful, GANs are known to be notoriously hard to train. The standard strategy for
stabilizing training is to carefully design the model, either by adapting the architecture [21] or by
selecting an easy-to-optimize objective function [23, 4, 11].

In this work, we examine the general problem of finding local Nash-equilibria of smooth games. We
revisit the de-facto standard algorithm for finding such equilibrium points, simultaneous gradient
ascent. We theoretically show that the main factors preventing the algorithm from converging are
the presence of eigenvalues of the Jacobian of the associated gradient vector field with zero real-part
and eigenvalues with a large imaginary part. The presence of the latter is also one of the reasons that
make saddle-point problems more difficult than local optimization problems. Utilizing these insights,
we design a new algorithm that overcomes some of these problems. Experimentally, we show that
our algorithm leads to stable training on many GAN architectures, including some that are known to
be hard to train.

Our technique is orthogonal to strategies that try to make the GAN-game well-defined, e.g. by adding
instance noise [24] or by using the Wasserstein-divergence [4, 11]: while these strategies try to ensure
the existence of Nash-equilibria, our paper deals with their computation and the numerical difficulties
that can arise in practice.
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In summary, our contributions are as follows:

• We identify the main reasons why simultaneous gradient ascent often fails to find local
Nash-equilibria.

• By utilizing these insights, we design a new, more robust algorithm for finding Nash-
equilibria of smooth two-player games.

• We empirically demonstrate that our method enables stable training of GANs on a variety of
architectures and divergence measures.

The proofs for the theorems in this paper can be found the supplementary material.1

2 Background

In this section we first revisit the concept of Generative Adversarial Networks (GANs) from a
divergence minimization point of view. We then introduce the concept of a smooth (non-convex)
two-player game and define the terminology used in the rest of the paper. Finally, we describe
simultaneous gradient ascent, the de-facto standard algorithm for finding Nash-equilibria of such
games, and derive some of its properties.

2.1 Divergence Measures and GANs

Generative Adversarial Networks are best understood in the context of divergence minimization:
assume we are given a divergence function D, i.e. a function that takes a pair of probability
distributions as input, outputs an element from [0,∞] and satisfies D(p, p) = 0 for all probability
distributions p. Moreover, assume we are given some target distribution p0 from which we can draw
i.i.d. samples and a parametric family of distributions qθ that also allows us to draw i.i.d. samples. In
practice qθ is usually implemented as a neural network that acts on a hidden code z sampled from
some known distribution and outputs an element from the target space. Our goal is to find θ̄ that
minimizes the divergence D(p0, qθ), i.e. we want to solve the optimization problem

min
θ
D(p0, qθ). (1)

Most divergences that are used in practice can be represented in the following form [10, 16, 4]:

D(p, q) = max
f∈F

Ex∼q [g1(f(x))]− Ex∼p [g2(f(x))] (2)

for some function class F ⊆ X → R and convex functions g1, g2 : R→ R. Together with (1), this
leads to mini-max problems of the form

min
θ

max
f∈F

Ex∼qθ [g1(f(x))]− Ex∼p0 [g2(f(x))] . (3)

These divergences include the Jensen-Shannon divergence [10], all f-divergences [16], the Wasserstein
divergence [4] and even the indicator divergence, which is 0 if p = q and∞ otherwise.

In practice, the function class F in (3) is approximated with a parametric family of functions,
e.g. parameterized by a neural network. Of course, when minimizing the divergence w.r.t. this
approximated family, we no longer minimize the correct divergence. However, it can be verified that
taking any class of functions in (3) leads to a divergence function for appropriate choices of g1 and
g2. Therefore, some authors call these divergence functions neural network divergences [5].

2.2 Smooth Two-Player Games

A differentiable two-player game is defined by two utility functions f(φ, θ) and g(φ, θ) defined over a
common space (φ, θ) ∈ Ω1×Ω2. Ω1 corresponds to the possible actions of player 1, Ω2 corresponds
to the possible actions of player 2. The goal of player 1 is to maximize f , whereas player 2 tries to
maximize g. In the context of GANs, Ω1 is the set of possible parameter values for the generator,
whereas Ω2 is the set of possible parameter values for the discriminator. We call a game a zero-sum
game if f = −g. Note that the derivation of the GAN-game in Section 2.1 leads to a zero-sum game,

1The code for all experiments in this paper is available under https://github.com/LMescheder/
TheNumericsOfGANs.
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Algorithm 1 Simultaneous Gradient Ascent (SimGA)

1: while not converged do
2: vφ ← ∇φf(θ, φ)
3: vθ ← ∇θg(θ, φ)
4: φ← φ+ hvφ
5: θ ← θ + hvθ
6: end while

whereas in practice people usually employ a variant of this formulation that is not a zero-sum game
for better convergence [10].

Our goal is to find a Nash-equilibrium of the game, i.e. a point x̄ = (φ̄, θ̄) given by the two conditions

φ̄ ∈ argmax
φ

f(φ, θ̄) and θ̄ ∈ argmax
θ

g(φ̄, θ). (4)

We call a point (φ̄, θ̄) a local Nash-equilibrium, if (4) holds in a local neighborhood of (φ̄, θ̄).

Every differentiable two-player game defines a vector field

v(φ, θ) =

(
∇φf(φ, θ)
∇θg(φ, θ)

)
. (5)

We call v the associated gradient vector field to the game defined by f and g.

For the special case of zero-sum two-player games, we have g = −f and thus

v′(φ, θ) =

(
∇2
φf(φ, θ) ∇φ,θf(φ, θ)

−∇φ,θf(φ, θ) −∇2
θf(φ, θ)

)
. (6)

As a direct consequence, we have the following:

Lemma 1. For zero-sum games, v′(x) is negative (semi-)definite if and only if∇2
φf(φ, θ) is negative

(semi-)definite and∇2
θf(φ, θ) is positive (semi-)definite.

Corollary 2. For zero-sum games, v′(x̄) is negative semi-definite for any local Nash-equilibrium
x̄. Conversely, if x̄ is a stationary point of v(x) and v′(x̄) is negative definite, then x̄ is a local
Nash-equilibrium.

Note that Corollary 2 is not true for general two-player games.

2.3 Simultaneous Gradient Ascent

The de-facto standard algorithm for finding Nash-equilibria of general smooth two-player games
is Simultaneous Gradient Ascent (SimGA), which was described in several works, for example in
[22] and, more recently also in the context of GANs, in [16]. The idea is simple and is illustrated in
Algorithm 1. We iteratively update the parameters of the two players by simultaneously applying
gradient ascent to the utility functions of the two players. This can also be understood as applying the
Euler-method to the ordinary differential equation

d

dt
x(t) = v(x(t)), (7)

where v(x) is the associated gradient vector field of the two-player game.

It can be shown that simultaneous gradient ascent converges locally to a Nash-equilibrium for a
zero-sum game, if the Hessian of both players is negative definite [16, 22] and the learning rate is
small enough. Unfortunately, in the context of GANs the former condition is rarely met. We revisit
the properties of simultaneous gradient ascent in Section 3 and also show a more subtle property,
namely that even if the conditions for the convergence of simultaneous gradient ascent are met, it
might require extremely small step sizes for convergence if the Jacobian of the associated gradient
vector field has eigenvalues with large imaginary part.
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(a) Illustration how the eigenvalues
are projected into unit ball.
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(b) Example where h has to be cho-
sen extremely small.
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(c) Illustration how our method alle-
viates the problem.

Figure 1: Images showing how the eigenvalues of A are projected into the unit circle and what causes
problems: when discretizing the gradient flow with step size h, the eigenvalues of the Jacobian at a
fixed point are projected into the unit ball along rays from 1. However, this is only possible if the
eigenvalues lie in the left half plane and requires extremely small step sizes h if the eigenvalues are
close to the imaginary axis. The proposed method moves the eigenvalues to the left in order to make
the problem better posed, thus allowing the algorithm to converge for reasonable step sizes.

3 Convergence Theory

In this section, we analyze the convergence properties of the most common method for training
GANs, simultaneous gradient ascent2. We show that two major failure causes for this algorithm
are eigenvalues of the Jacobian of the associated gradient vector field with zero real-part as well as
eigenvalues with large imaginary part.

For our theoretical analysis, we start with the following classical theorem about the convergence of
fixed-point iterations:

Proposition 3. Let F : Ω → Ω be a continuously differential function on an open subset Ω of Rn
and let x̄ ∈ Ω be so that

1. F (x̄) = x̄, and

2. the absolute values of the eigenvalues of the Jacobian F ′(x̄) are all smaller than 1.

Then there is an open neighborhood U of x̄ so that for all x0 ∈ U , the iterates F (k)(x0) converge
to x̄. The rate of convergence is at least linear. More precisely, the error ‖F (k)(x0) − x̄‖ is in
O(|λmax|k) for k →∞ where λmax is the eigenvalue of F ′(x̄) with the largest absolute value.

Proof. See [6], Proposition 4.4.1.

In numerics, we often consider functions of the form

F (x) = x+ hG(x) (8)

for some h > 0. Finding fixed points of F is then equivalent to finding solutions to the nonlinear
equation G(x) = 0 for x. For F as in (8), the Jacobian is given by

F ′(x) = I + hG′(x). (9)

Note that in general neither F ′(x) nor G′(x) are symmetric and can therefore have complex eigenval-
ues.

The following Lemma gives an easy condition, when a fixed point of F as in (8) satisfies the
conditions of Proposition 3.

2A similar analysis of alternating gradient ascent, a popular alternative to simultaneous gradient ascent, can
be found in the supplementary material.
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Lemma 4. Assume that A ∈ Rn×n only has eigenvalues with negative real-part and let h > 0. Then
the eigenvalues of the matrix I + hA lie in the unit ball if and only if

h <
1

|<(λ)|
2

1 +
(
=(λ)
<(λ)

)2 (10)

for all eigenvalues λ of A.

Corollary 5. If v′(x̄) only has eigenvalues with negative real-part at a stationary point x̄, then
Algorithm 1 is locally convergent to x̄ for h > 0 small enough.

Equation 10 shows that there are two major factors that determine the maximum possible step size h:
(i) the maximum value of <(λ) and (ii) the maximum value q of |=(λ)/<(λ)|. Note that as q goes to
infinity, we have to choose h according to O(q−2) which can quickly become extremely small. This
is visualized in Figure 1: if G′(x̄) has an eigenvalue with small absolute real part but big imaginary
part, h needs to be chosen extremely small to still achieve convergence. Moreover, even if we make h
small enough, most eigenvalues of F ′(x̄) will be very close to 1, which leads by Proposition 3 to very
slow convergence of the algorithm. This is in particular a problem of simultaneous gradient ascent
for two-player games (in contrast to gradient ascent for local optimization), where the Jacobian G′(x̄)
is not symmetric and can therefore have non-real eigenvalues.

4 Consensus Optimization

In this section, we derive the proposed method and analyze its convergence properties.

4.1 Derivation

Finding stationary points of the vector field v(x) is equivalent to solving the equation v(x) = 0. In
the context of two-player games this means solving the two equations

∇φf(φ, θ) = 0 and ∇θg(φ, θ) = 0. (11)

A simple strategy for finding such stationary points is to minimize L(x) = 1
2‖v(x)‖2 for x. Unfor-

tunately, this can result in unstable stationary points of v or other local minima of 1
2‖v(x)‖2 and in

practice, we found it did not work well.

We therefore consider a modified vector field w(x) that is as close as possible to the original vector
field v(x), but at the same time still minimizes L(x) (at least locally). A sensible candidate for such
a vector field is

w(x) = v(x)− γ∇L(x) (12)

for some γ > 0. A simple calculation shows that the gradient∇L(x) is given by

∇L(x) = v′(x)Tv(x). (13)

This vector field is the gradient vector field associated to the modified two-player game given by the
two modified utility functions

f̃(φ, θ) = f(φ, θ)− γL(φ, θ) and g̃(φ, θ) = g(φ, θ)− γL(φ, θ). (14)

The regularizer L(φ, θ) encourages agreement between the two players. Therefore we call the
resulting algorithm Consensus Optimization (Algorithm 2). 3 4

3This algorithm requires backpropagation through the squared norm of the gradient with respect to the
weights of the network. This is sometimes called double backpropagation and is for example supported by the
deep learning frameworks Tensorflow [1] and PyTorch [19].

4As was pointed out by Ferenc Huzsár in one of his blog posts on www.inference.vc, naively implementing
this algorithm in a mini-batch setting leads to biased estimates of L(x). However, the bias goes down linearly
with the batch size, which justifies the usage of consensus optimization in a mini-batch setting. Alternatively,
it is possible to debias the estimate by subtracting a multiple of the sample variance of the gradients, see the
supplementary material for details.
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Algorithm 2 Consensus optimization

1: while not converged do
2: vφ ← ∇φ(f(θ, φ)− γL(θ, φ))
3: vθ ← ∇θ(g(θ, φ)− γL(θ, φ))
4: φ← φ+ hvφ
5: θ ← θ + hvθ
6: end while

4.2 Convergence

For analyzing convergence, we consider a more general algorithm than in Section 4.1 which is given
by iteratively applying a function F of the form

F (x) = x+ hA(x)v(x). (15)

for some step size h > 0 and an invertible matrix A(x) to x. Consensus optimization is a special
case of this algorithm for A(x) = I − γ v′(x)T. We assume that 1

γ is not an eigenvalue of v′(x)T for
any x, so that A(x) is indeed invertible.
Lemma 6. Assume h > 0 and A(x) invertible for all x. Then x̄ is a fixed point of (15) if and only if
it is a stationary point of v. Moreover, if x̄ is a stationary point of v, we have

F ′(x̄) = I + hA(x̄)v′(x̄). (16)

Lemma 7. Let A(x) = I − γv′(x)T and assume that v′(x̄) is negative semi-definite and invertible5 .
Then A(x̄)v′(x̄) is negative definite.

As a consequence of Lemma 6 and Lemma 7, we can show local convergence of our algorithm to a
local Nash equilibrium:
Corollary 8. Let v(x) be the associated gradient vector field of a two-player zero-sum game and
A(x) = I − γv′(x)T. If x̄ is a local Nash-equilibrium, then there is an open neighborhood U of x̄ so
that for all x0 ∈ U , the iterates F (k)(x0) converge to x̄ for h > 0 small enough.

Our method solves the problem of eigenvalues of the Jacobian with (approximately) zero real-part.
As the next Lemma shows, it also alleviates the problem of eigenvalues with a big imaginary-to-real-
part-quotient:

Lemma 9. Assume that A ∈ Rn×n is negative semi-definite. Let q(γ) be the maximum of |=(λ)||<(λ)|
(possibly infinite) with respect to λ where λ denotes the eigenvalues of A − γATA and <(λ) and
=(λ) denote their real and imaginary part respectively. Moreover, assume that A is invertible with
|Av| ≥ ρ|v| for ρ > 0 and let

c = min
v∈S(Cn)

|v̄T(A+AT)v|
|v̄T(A−AT)v|

(17)

where S(Cn) denotes the unit sphere in Cn. Then

q(γ) ≤ 1

c+ 2ρ2γ
. (18)

Lemma 9 shows that the imaginary-to-real-part-quotient can be made arbitrarily small for an appro-
priate choice of γ. According to Proposition 3, this leads to better convergence properties near a local
Nash-equilibrium.

5 Experiments

Mixture of Gaussians In our first experiment we evaluate our method on a simple 2D-example
where our goal is to learn a mixture of 8 Gaussians with standard deviations equal to 10−2 and modes

5Note that v′(x̄) is usually not symmetric and therefore it is possible that v′(x̄) is negative semi-definite and
invertible but not negative-definite.
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(a) Simultaneous Gradient Ascent

(b) Consensus optimization

Figure 2: Comparison of Simultaneous Gradient Ascent and Consensus optimization on a circular
mixture of Gaussians. The images depict from left to right the resulting densities of the algorithm
after 0, 5000, 10000 and 20000 iterations as well as the target density (in red).

v′(x) w′(x)

Before
training

After
training

Figure 3: Empirical distribution of eigenvalues before and after training using consensus optimization.
The first column shows the distribution of the eigenvalues of the Jacobian v′(x) of the unmodified
vector field v(x). The second column shows the eigenvalues of the Jacobian w′(x) of the regularized
vector field w(x) = v(x)− γ∇L(x) used in consensus optimization. We see that v′(x) has eigenval-
ues close to the imaginary axis near the Nash-equilibrium. As predicted theoretically, this is not the
case for the regularized vector field w(x). For visualization purposes, the real part of the spectrum of
w′(x) before training was clipped.

uniformly distributed around the unit circle. While simplistic, algorithms training GANs often fail to
converge even on such simple examples without extensive fine-tuning of the architecture and hyper
parameters [15].

For both the generator and critic we use fully connected neural networks with 4 hidden layers and
16 hidden units in each layer. For all layers, we use RELU-nonlinearities. We use a 16-dimensional
Gaussian prior for the latent code z and set up the game between the generator and critic using the
utility functions as in [10]. To test our method, we run both SimGA and our method with RMSProp
and a learning rate of 10−4 for 20000 steps. For our method, we use a regularization parameter of
γ = 10.

The results produced by SimGA and our method for 0, 5000, 10000 and 20000 iterations are depicted
in Figure 2. We see that while SimGA jumps around the modes of the distribution and fails to
converge , our method converges smoothly to the target distribution (shown in red). Figure 3 shows
the empirical distribution of the eigenvalues of the Jacobian of v(x) and the regularized vector field
w(x). It can be seen that near the Nash-equilibrium most eigenvalues are indeed very close to the
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(a) cifar-10 (b) celebA
Figure 4: Samples generated from a model where both the generator and discriminator are given as in
[21], but without batch-normalization. For celebA, we also use a constant number of filters in each
layer and add additional RESNET-layers.

(a) Discriminator loss (b) Generator loss (c) Inception score

Figure 5: (a) and (b): Comparison of the generator and discriminator loss on a DC-GAN archi-
tecture with 3 convolutional layers trained on cifar-10 for consensus optimization (without batch-
normalization) and alternating gradient ascent (with batch-normalization). We observe that while
alternating gradient ascent leads to highly fluctuating losses, consensus optimization successfully
stabilizes the training and makes the losses almost constant during training. (c): Comparison of the
inception score over time which was computed using 6400 samples. We see that on this architecture
both methods have comparable rates of convergence and consensus optimization achieves slightly
better end results.

imaginary axis and that the proposed modification of the vector field used in consensus optimization
moves the eigenvalues to the left.

CIFAR-10 and CelebA In our second experiment, we apply our method to the cifar-10 and celebA-
datasets, using a DC-GAN-like architecture [21] without batch normalization in the generator or the
discriminator. For celebA, we additionally use a constant number of filters in each layer and add
additional RESNET-layers. These architectures are known to be hard to optimize using simultaneous
(or alternating) gradient ascent [21, 4].

Figure 4a and 4b depict samples from the model trained with our method. We see that our method
successfully trains the models and we also observe that unlike when using alternating gradient ascent,
the generator and discriminator losses remain almost constant during training. This is illustrated
in Figure 5. For a quantitative evaluation, we also measured the inception-score [23] over time
(Figure 5c), showing that our method compares favorably to a DC-GAN trained with alternating
gradient ascent. The improvement of consensus optimization over alternating gradient ascent is even
more significant if we use 4 instead of 3 convolutional layers, see Figure 11 in the supplementary
material for details.

Additional experimental results can be found in the supplementary material.

6 Discussion

While we could prove local convergence of our method in Section 4, we believe that even more
insights can be gained by examining global convergence properties. In particular, our analysis from

8



Section 4 cannot explain why the generator and discriminator losses remain almost constant during
training.

Our theoretical results assume the existence of a Nash-equilibrium. When we are trying to minimize
an f-divergence and the dimensionality of the generator distribution is misspecified, this might not be
the case [3]. Nonetheless, we found that our method works well in practice and we leave a closer
theoretical investigation of this fact to future research.

In practice, our method can potentially make formerly instable stationary points of the gradient vector
field stable if the regularization parameter is chosen to be high. This may lead to poor solutions. We
also found that our method becomes less stable for deeper architectures, which we attribute to the fact
that the gradients can have very different scales in such architectures, so that the simple L2-penalty
from Section 4 needs to be rescaled accordingly.

Our method can be regarded as an approximation to the implicit Euler method for integrating the
gradient vector field. It can be shown that the implicit Euler method has appealing stability properties
[7] that can be translated into convergence theorems for local Nash-equilibria. However, the implicit
Euler method requires the solution of a nonlinear equation in each iteration. Nonetheless, we believe
that further progress can be made by finding better approximations to the implicit Euler method.

An alternative interpretation is to view our method as a second order method. We hence believe that
further progress can be made by revisiting second order optimization methods [2, 18] in the context
of saddle point problems.

7 Related Work

Saddle point problems do not only arise in the context of training GANs. For example, the popular
actor-critic models [20] in reinforcement learning are also special cases of saddle-point problems.

Finding a stable algorithm for training GANs is a long standing problem and multiple solutions have
been proposed. Unrolled GANs [15] unroll the optimization with respect to the critic, thereby giving
the generator more informative gradients. Though unrolling the optimization was shown to stabilize
training, it can be cumbersome to implement and in addition it also results in a big model. As was
recently shown, the stability of GAN-training can be improved by using objectives derived from
the Wasserstein-1-distance (induced by the Kantorovich-Rubinstein-norm) instead of f-divergences
[4, 11]. While Wasserstein-GANs often provide a good solution for the stable training of GANs, they
require keeping the critic optimal, which can be time-consuming and can in practice only be achieved
approximately, thus violating the conditions for theoretical guarantees. Moreover, some methods
like Adversarial Variational Bayes [14] explicitly prescribe the divergence measure to be used, thus
making it impossible to apply Wasserstein-GANs. Other approaches that try to stabilize training, try
to design an easy-to-optimize architecture [23, 21] or make use of additional labels [23, 17].

In contrast to all the approaches described above, our work focuses on stabilizing training on a wide
range of architecture and divergence functions.

8 Conclusion

In this work, starting from GAN objective functions we analyzed the general difficulties of finding
local Nash-equilibria in smooth two-player games. We pinpointed the major numerical difficulties that
arise in the current state-of-the-art algorithms and, using our insights, we presented a new algorithm
for training generative adversarial networks. Our novel algorithm has favorable properties in theory
and practice: from the theoretical viewpoint, we showed that it is locally convergent to a Nash-
equilibrium even if the eigenvalues of the Jacobian are problematic. This is particularly interesting
for games that arise in the context of GANs where such problems are common. From the practical
viewpoint, our algorithm can be used in combination with any GAN-architecture whose objective can
be formulated as a two-player game to stabilize the training. We demonstrated experimentally that
our algorithm stabilizes the training and successfully combats training issues like mode collapse. We
believe our work is a first step towards an understanding of the numerics of GAN training and more
general deep learning objective functions.
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