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Abstract

We propose a novel model and dataset for 3D scene flow estimation
with an application to autonomous driving. As outdoor scenes often
decompose into a small number of independently moving objects, we
represent each element in the scene by its rigid motion parameters
and each superpixel by a 3D plane and an index to the correspond-
ing object. This minimal representation increases robustness and
is formalized in a discrete-continuous CRF. Our model intrinsically
segments the scene into its constituting dynamic components. We
demonstrate the performance of our model on existing benchmarks
and a novel realistic dataset with scene flow ground truth. We ob-
tain this dataset by annotating 400 dynamic scenes from the KITTI
raw data collection using 3D CAD models for all vehicles in motion.
Our experiments reveal novel challenges which cannot be handled by
existing methods.

Results and Ground Truth. Estimated segmentation into moving objects (top),
optical flow (center) and proposed optical flow ground truth (bottom).

Representation

•Following the idea of piecewise-rigid shape and motion [8], the 3D
scene is approximated by planar superpixels from StereoSLIC

s = {si|i ∈ S}
•As opposed to existing works, we assume a finite number of rigidly
moving objects in the scene o = {oi|i ∈ O}

•Superpixels are parameterized by a plane n and an object index k:
si = (ni, ki)T

•Objects store their rigid motion parameters oj = (Rj, tj)T

•The superpixels inherit motion parameters from the assigned object

Model

E(s,o) = ∑
i∈S

ϕi(si,o)︸ ︷︷ ︸
data

+ ∑
i∼j
ψij(si, sj)︸ ︷︷ ︸
smoothness

Data Term

The data term ϕ consists of pairwise potentials which are evaluated
for 3 pairs of images (see figure below)

ϕi(si,o) = ∑
j∈O

[ki = j] ·Di(ni,oj)

where the Iverson bracket restricts ϕ to the selected object.

To compute Di(ni,oj) we leverage:
•Dense Census features
•Sparse optical flow from feature matches
•SGM disparity maps for both rectified pairs

Smoothness Term

Our smoothness potential ψij(si, sj) decomposes as:

ψij(si, sj) = θ3ψ
depth
ij (ni,nj) + θ4ψ

orient
ij (ni,nj) + θ5ψ

motion
ij (si, sj)

with weights θ controlling the individual terms:
•Regularization of depth is achieved by penalizing differences in
disparity at shared boundary pixels (ψdepth

ij )
•We encourage the orientation of neighboring planes to be similar by
evaluating the difference of plane normals n (ψorient

ij )
•Coherence of the assigned object indices is enforced by an
orientation-sensitive Potts model (ψmotion

ij )

Inference

•We use max-product particle BP to jointly infer shape and motion
parameters with TRW-S for the inner loop

•Particles are drawn from normal distributions around the current
MAP solution and from neighboring superpixels

Dataset

3D
Po

int
s

An
no

ta
tio

n
SG

M
Di
sp
ar
ity

M
ap

Before Optimization After Optimization

•We propose a novel realistic scene flow dataset which includes dynamic objects
•We annotated 200 training and 200 test scenes based on KITTI raw data
•The static background of the scenes is recovered from laser scanner data by removing all dynamic
objects and compensating for the vehicle’s ego-motion

•Dynamic objects are captured by fitting detailed CAD models to
•accumulated 3D laser point clouds in each frame
•manually annotated 2D control points
•SGM disparity maps

Ground Truth. Disparity at t0 (left) and optical flow (right).

Qualitative Results
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Qualitative Results. Each subfigure shows from top-to-bottom: disparity and
optical flow ground truth in the reference view, the disparity map (D1) and optical
flow map (Fl) estimated by our algorithm, and the respective error images using
the color scheme depicted in the legend. The four scenes below the horizontal line
are failure cases.

Results on the ”Sphere” sequence

Input Disparity 1 Error D1

Segmentation Disparity 2 Error D2

Superpixels Optical Flow Error Fl

[7] [5] [9] [8] Ours
RMSE 2D Flow 0.63 0.69 0.77 0.63 0.55
RMSE Disparity 3.8 3.8 10.9 2.84 2.58
RMSE Scene Flow 1.76 2.51 2.55 1.73 0.75

Illustration of our results for the
synthetic “Sphere” sequence [5].
Top-left to bottom-right: The left input
image of the first frame, our first dispar-
ity/error map, the obtained segmenta-
tion into different rigid body motions,
the second disparity/error map, the su-
perpixels we use, the recovered optical
flow/error map.

Quantitative Results

bg fg bg+fg
Huguet [5] 67.69 64.03 67.08
GCSF [2] 52.92 59.11 53.95
SGM [3] + LDOF [1] 43.99 44.77 44.12
SGM [3] + Sun [6] 38.21 53.03 40.68
SGM [3] + Sphere Flow [4] 23.09 37.11 25.42
PRSF [8] 13.49 33.71 16.85
Our full model 7.01 28.76 10.63

Quantitative Results on the Proposed Scene Flow Dataset. This table
shows scene flow errors in %, averaged over all 200 test images. We provide
separate numbers for the background region (bg), all foreground objects (fg) as well
as all pixels in the image (bg+fg). Outliers are defined as those values exceeding
ground truth by at least 3 px and 5%.
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Parameter Variation.
This figure shows the scene
flow errors of our method
on the proposed dataset
with respect to the number
of object proposals and
MP-PBP iterations.
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