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Abstract— We present a visual odometry (VO) algorithm
for a multi-camera system and robust operation in challeng-
ing environments. Our algorithm consists of a pose tracker
and a local mapper. The tracker estimates the current pose
by minimizing photometric errors between the most recent
keyframe and the current frame. The mapper initializes the
depths of all sampled feature points using plane-sweeping
stereo. To reduce pose drift, a sliding window optimizer is
used to refine poses and structure jointly. Our formulation
is flexible enough to support an arbitrary number of stereo
cameras. We evaluate our algorithm thoroughly on five datasets.
The datasets were captured in different conditions: daytime,
night-time with near-infrared (NIR) illumination and night-
time without NIR illumination. Experimental results show that
a multi-camera setup makes the VO more robust to challenging
environments, especially night-time conditions, in which a single
stereo configuration fails easily due to the lack of features.

I. INTRODUCTION

Visual odometry (VO) is a technique used to estimate
camera motion from images. As a fundamental block for
robot navigation, virtual reality, augmented reality, and so on,
VO has made significant progress over the past few decades.
Existing approaches range across conventional feature-based
methods [15], hybrid methods [8], and direct methods [7].

To make VO useful for real-world applications, we need
to make VO work robustly under various conditions. For
example, to serve as a fundamental module for autonomous
driving, robust vehicle motion estimation is critical for
path/trajectory tracking, and environment perception mod-
ules. Motion estimation errors and failures would cause tragic
accidents, and limit wide-scale deployment of VO.

Several approaches have been proposed to improve the
robustness of VO for specific environments. Alismail et al.
[1] propose a dense binary descriptor that can be integrated
within a multi-channel Lucas Kanade framework to improve
illumination change robustness. Park et al. [21] perform
a systematic evaluation of real-time capable methods for
illumination change robustness in direct visual SLAM. Zhang
et al. [26] propose an active exposure control method for
robust visual odometry in high dynamic range (HDR) en-
vironments. For each frame, they choose an exposure time
that maximizes an image quality metric. In [22], a direct
monocular SLAM algorithm based on the Normalized Infor-
mation Distance (NID) metric is proposed. They show that
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the information-theoretic NID metric provides robustness to
appearance variations due to lighting, weather, and structural
changes in the scene.

In this paper, we propose to improve the robustness of VO
by using a multi-camera system. A multi-camera system can
cover a wide field-of-view and thus provide redundancy for
poorly textured environments. Our experimental evaluation
demonstrates that VO with a multi-camera system can still
estimate vehicle motion reliably in dark environments at
night; in contrast, a single stereo configuration is prone to
failure due to the lack of texture.

Our algorithm consists of a pose tracker and a local
mapper. The tracker estimates the current pose by minimiz-
ing photometric errors between the most recent keyframe
and the current frame across multiple cameras. The local
mapper consists of a sliding window optimizer and a two-
view stereo matcher. Both vehicle poses and structure are
jointly optimized by the sliding window optimizer. This
optimization minimizes long-term pose drift. The depths of
newly sampled feature points are initialized by the two-view
stereo matcher. We thoroughly evaluate our algorithm under
multiple challenging conditions. In particular, we select
five different datasets with different characteristics for our
evaluations. The datasets are captured in varying lighting
conditions, at different vehicle speeds, and over different
trajectory lengths.

The remainder of the paper is organized as follows.
Section II reviews related work. Section III introduces the
notation used throughout the paper. Section IV describes
our algorithm in detail. Section V provides an extensive
experimental evaluation of our method. Finally, Section VI
concludes the paper.

II. RELATED WORK

Many different camera configurations have been used in
the literature. The two most commonly used configurations
are the monocular and the stereo settings. Approaches which
use multiple cameras to build up a generalized camera system
have also been proposed in the literature. We summarize
these papers below.

To the best of our knowledge, the first work in real-
time monocular camera SLAM can be attributed to [3].
They proposed a filtering-based algorithm which runs at
30 Hz using a single thread on standard PC hardware. In
contrast to [3], Nister et al. [20] proposed a pure visual
odometry algorithm using an iterative optimization approach.
The proposed algorithm runs at video rates on a single
thread. A system to separate localization and mapping on
two parallel threads was proposed in [15], and became a



standard paradigm for subsequent VO algorithms. This sep-
aration enables the system to produce high-quality maps by
using more advanced but computational expensive inference
techniques while simultaneously achieving real-time camera
pose tracking. However, the proposed system is mainly
designed for a small AR workspace. Mur-Artal et al. [19]
extend the system to handle large-scale environments by
incorporating re-localization and loop closure techniques into
the system. Concurrently, both Engel et al. [5] and Forster
et al. [8] proposed two novel monocular SLAM systems.
They also follow the two-thread paradigm, but with new
feature representations and inference techniques in contrast
to the aforementioned algorithms. In particular, instead of
using conventional sparse corner features, [5] uses all high
gradient pixels directly for pose estimation. The camera pose
is estimated by minimizing the photometric intensity errors.
Recently, Engel et al. [7] proposed a new monocular VO sys-
tem which has the same front-end as [5] but with a different
novel back-end for both pose and structure refinements. In
particular, they jointly optimize camera poses, 3D structures
and other variables by minimizing the photometric intensity
errors directly (aka. direct method).

One of the drawbacks of monocular VO is its inability to
recover metric scale. Therefore, to make them more useful
for robot applications, additional sensor modalities [25] or
cameras [17] are typically employed to capture scale infor-
mation. For most of the above mentioned monocular systems,
there exists a stereo version which allows for metric scale
recovery. For example, Mur-Artal and Tardós [18] extend
ORB-SLAM from [19] to stereo camera configurations. Both
[5] and [8] have also been extended for stereo or multi-
camera configurations [6, 9].

For most robot applications, a wide field of view (FoV) or
even a 360◦ FoV is necessary for better situational awareness
and perception capabilities. For example, Harmat et al. [12],
Heng et al. [14] successfully demonstrated a multi-camera
SLAM system for a micro aerial vehicle (MAV).

III. NOTATION

We use lower case letters (e.g. λ) for scalar variables, bold
lower case letters (e.g. v) for vectors, and bold capital letters
(e.g. T) for matrices. A coordinate frame x is denoted as Fx.
We define TW

Bk
as the transformation matrix that transforms

vectors from frame FB to frame FW at timestamp k. We use
pWk to denote the vector variable p represented in frame FW

at timestamp k. We use bk to denote the vector variable b
at timestamp k. Furthermore, we denote ‖x‖Σ as a weighted
L2 norm, i.e., xTΣ−1x.

Coordinate frames: There are three main coordinate frames
used throughout the algorithm derivations. They are a global
world coordinate frame FW , a vehicle-centric body coor-
dinate frame FB , and a camera coordinate frame FCi

for
each camera Ci. Frame FW is defined to be fixed relative
to the global earth coordinate frame in which the cameras
navigate. Furthermore, we define the initial vehicle-centric
body coordinate frame FB to coincide with FW , i.e., FB at
timestamp 0.
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Fig. 1: Schematic representation of our VO pipeline.

Vehicle state: We describe the motion state Sk at timestamp
k by its translation and rotation from frame FB to frame
FW . The position is denoted by pWk . The orientation is
represented by a rotation matrix RW

Bk
∈ SO(3). We obtain the

homogeneous transformation matrix TW
Bk
∈ SE(3) from the

vehicle body frame FB to the world frame FW at timestamp
k:

TW
Bk

=

[
RW

Bk
pWk

01×3 1

]
. (1)

We denote the image captured at timestamp k by camera
Cj as I

Cj

k . We further denote the measured pixel intensity at
pixel coordinates u in I

Cj

k as I
Cj

k (u); the pixel intensity is a
scalar value for grayscale images. For simplicity, we denote
the image captured at the latest keyframe as I

Cj

KF .

IV. ALGORITHM

In this section, we describe our VO algorithm for a multi-
camera system. We follow [7], which describes a VO frame-
work for monocular cameras that uses direct image alignment
based on minimizing a photometric cost function for a sparse
set of pixels. We extend the formulation to a multi-camera
system which we model as a generalized camera consisting
of cameras with multiple centers of projection. As shown
in Fig. 1, our algorithm consists of two threads: a tracker
and a local mapper. The tracker estimates the vehicle pose
in real-time using direct image alignment with respect to
the latest keyframe. The local mapper is mainly used to
minimize long-term pose drift by refining both the vehicle
pose and the estimated 3D point cloud. The local mapper
uses a computationally intensive batch optimization method
for both pose and structure refinement. Thus, it runs at a
much lower frame rate compared to the tracker and only
keyframes are processed. For a new keyframe, its newly
sampled 3D points are initialized by a two-view stereo
algorithm. We will describe the algorithm in detail in the
following.

A. Hardware Configurations

To make our algorithm work for different hardware con-
figurations, we assume we have N cameras in total. Each
camera can be configured either as a reference camera for
motion tracking or as an auxiliary camera for static stereo
matching. For ease of reference, we denote using camera Ci



as a reference camera as rCi. Without loss of generality, we
assume that we have Nr reference cameras and Na auxiliary
cameras where Nr +Na = N .

B. Tracker

As shown in Fig. 1, the tracker consists of two parts: a
motion predictor and direct image alignment. Direct image
alignment is used to estimate the current vehicle pose with
respect to the latest keyframe. We use the vehicle pose
provided by the motion predictor to initialize the alignment
in order to avoid local minima.

Constant velocity motion prediction model: We use a
constant motion model to predict the current vehicle pose.
Let us define the current vehicle pose as TW

Bk
which is the

transformation from the vehicle frame FB at timestamp k
to the world frame FW . Similarly, we define the vehicle
poses corresponding to the two latest frames as TW

Bk−1
and

TW
Bk−2

respectively. We assume that the motion velocity from
timestamp k − 2 to k is constant, we thus can predict the
current vehicle pose as

TW
Bk

= TW
Bk−1

T
Bk−1

Bk
= TW

Bk−1
T

Bk−2

Bk−1
, (2)

where
T

Bk−2

Bk−1
= (TW

Bk−2
)−1TW

Bk−1
. (3)

Direct sparse tracker: Given the initial pose estimate
provided by the motion predictor, we use a direct sparse
tracker for refinement. In contrast to the local mapper which
will be explained in a later section, only images from
reference cameras are used for motion tracking. In particular,
we estimate the relative vehicle pose T̂Bk

BKF
between the

latest keyframe and the current frame by minimizing the
following energy function:

T̂Bk

BKF
= argmin

T
Bk
BKF

Nr∑
i=1

∑
u∈Ω(I

rCi
KF )

(I
rCi

KF (u)− I
rCi

k (û))2 .

(4)
Here, Nr is the number of reference cameras and Ω(I

rCi

KF )
is the set of feature pixel points sampled from the keyframe
image of reference camera rCi. For each feature point u in
the keyframe image, û is the corresponding pixel position in
the current frame, obtained as

û = π(TCi

B ·T
Bk

BKF
· (TCi

B )−1 · π−1(u, d)) . (5)

TCi

B is the relative transformation from vehicle body frame to
camera frame. π and π−1 are the camera projection function
and back projection function, respectively. d is the depth
of the feature point u in the keyframe. The only unknown
variable is TBk

BKF
since TCi

B can be obtained from offline
sensor calibration and d can be initialized by stereo matching
and refined by the joint optimization performed by the local
mapper.

The above formulation follows the standard forward com-
positional method [2] which requires the Hessians and Jaco-
bians of the residuals to be computed in every iteration of the
optimization. For improved efficiency, we adopt the inverse

compositional method [2] to minimize the energy function.
To robustify the least squares estimator which is sensitive to
outliers, we further apply a robust loss function (Huber loss)
to all residuals.

Outlier removal: Besides the use of a robust loss function, a
specific outlier removal mechanism is also used to robustify
both the tracker and the local mapper. We detect outliers
based on the template matching scores between the reference
frame and the current frame. In our implementation, we use
the Zero Mean Normalized Cross-Correlation (ZNCC) score
[24]. If the score is smaller than a predefined threshold, we
classify a feature match as an oulier and remove it from
the optimization. The tracker already uses image patches
around the feature points and the warped image patches
are already computed during direct image alignment. Thus,
the computational overhead of the outlier removal step is
marginal.

Relationship with the tracker from [7]: In contrast to the
tracker in the Direct Sparse Odometry (DSO) algorithm [7],
we do direct sparse pose tracking. To do pose tracking, DSO
projects sampled feature points from all recent keyframes to
the current keyframe and then do semi-dense pose tracking.
Compared to semi-dense pose tracking, the computational
complexity of direct tracking with sparse feature points is
far smaller than that of semi-dense tracking. Furthermore,
an outlier removal step as described in the previous section
is included to make the tracking and mapping more stable.

C. Keyframe and Feature Selections

Keyframe selection: One of the implicit assumptions
behind motion tracking is that the scene difference between
the reference keyframe and the current frame is sufficiently
small. If the difference between the current frame and the
reference keyframe becomes too large, we instantiate a new
keyframe. Intuitively, the difference between frames should
be measured based on changes in image content rather than
based on absolute pose differences (since the former strongly
depends on the depth of the scene while the latter is oblivious
to it). Therefore, we use the mean square optical flow as one
of the criterions for detecting scene changes. More precisely,
we compute

f =
1

n

n∑
i=1

‖ui − ûi‖2 , (6)

where ‖·‖2 is the Euclidean norm, ui is a feature point in the
reference keyframe, and ûi is its corresponding feature point
in the current frame. If f is above a threshold, we create a
new keyframe.

Feature selection: Once a new keyframe is created, sparse
feature points are sampled from all reference cameras. We
sample N sparse features uniformly from each image based
on their gradient magnitudes. In particular, we divide the
image into a grid and select the point with the highest
gradient magnitude per grid cell. However, we will not



sample a point from this grid cell if the highest gradient
magnitude of a grid is smaller than a pre-defined threshold.

Feature representation and depth initialization: As per
the implementation in [7], we sample all pixels by following
a predefined patch pattern (e.g., 5×5 pattern) for each sparse
feature. All these pixels are used for motion tracking and
local mapping. In particular, the created visual residuals from
the tracker and local mapper are per pixel instead of per
patch. Furthermore, pixels from the same patch are assumed
to lie on the same 3D plane, which can be parameterized
by its inverse plane depth and plane normal. The inverse
plane depths and plane normals are initialized by a stereo
matching algorithm [11]. The plane depths of the sampled
patch instead of ray depths of each pixel are refined during
the joint optimization carried out by the local mapper. Each
pixel from the same patch has different ray depths, but has
the same plane depth. It thus reduces the number of variables
to optimize and increases the computational efficiency of the
optimizer.

D. Local Mapper

Two-view stereo matching: Stereo matching is used to
initialize the depth of each sampled feature from the new
keyframe. Rather than performing disparity search along
epipolar lines, we use plane-sweeping stereo [11] to compute
the depths. This allows us to directly operate on the fisheye
images, and thus, avoid a loss of field-of-view from having
to undistort and rectify the images.

Based on the implementation from [11], we use the GPU
to accelerate plane-sweeping stereo. We sweep planes in
two directions: fronto-parallel to the viewing direction of
the keyframe and parallel to the ground plane. For each
direction, we generate 64 plane hypotheses with a constant
disparity step size between them. The planes cover the range
[0.5 30] m in front of the camera. This results in a total num-
ber of 128 plane hypotheses that are evaluated. We compute
the ZNCC score between the 7×7 image patches from ICi

and warped image patches from ICj . The plane hypothesis
with the largest template matching score is selected for each
feature point.

Sliding window optimizer: To minimize drift, the local
mapper jointly optimizes all vehicle states and the 3D
scene geometry. As the vehicle moves, the number of states
increases over time. To bound running time, we use state
marginalization to remove old states. We only keep a fixed
number of previous states, resulting in a constant compu-
tational complexity [4]. As shown in [23], a marginalized
state will result in all remaining states connected to it to
be connected with each other after marginalization. The
resulting Hessian matrix is not sparse anymore. This in
turn increases the run-time cost of computing the Schur
complement during structure optimization. For efficiency, we
follow [16, 7] and only fill terms of the Hessian that do not
involve geometry terms. For further efficiency, optimization
is only performed on selected keyframes.

In particular, we define a sliding window containing k ve-
hicle states. All states outside this sliding window are treated
as old states and are removed through partial marginalization
[7].

We use S∗ to represent the set of all vehicle states within
the sliding window and they are represented in vector form.
The local mapper estimates the vehicle states S∗ inside the
sliding window, and the set D∗ of inverse plane depths of
all the sampled features within the sliding window via

Ŝ∗, D̂∗ = argmin
S∗,D∗

E0(S∗) + Evision(S∗,D∗). (7)

Here, E0(S∗) is either a prior energy term obtained from
partial marginalization or an initial prior and Evision(S∗,D∗)
is the visual energy term between all keyframes within
the sliding window. Optimization is carried out using the
Gauss-Newton algorithm. In the following, we describe the
individual terms in more detail.

There are two types of prior terms. One is from the initial
prior. In order to fix the unobservable degrees of freedom of
the VO problem, we need to fix the initial state such that all
subsequent states are estimated relative to it. Thus, they are
usually formulated in the following form:

E0(S0) =
1

2

∥∥∥Ŝ0 − S0

∥∥∥
Σ0

, (8)

where Ŝ0 is the value of the initial state, S0 is the inital
state variable to estimate and Σ0 is the covariance matrix
of the inital state. To fix S0 as equal to Ŝ0, Σ0 is usually
selected to have infinitesimal diagonal terms. This prior term
only appears in the energy function when the initial state is
within the sliding window. Once it leaves the window, it
will be marginalized out in the same way as all other energy
terms [23, 4].

The other prior term is a direct result of partial marginal-
ization. Partial marginalization introduces priors to all re-
maining states which are connected to the marginalized states
[23, 4]. The information from eliminated states after their
removal is stored in prior Hessian and Jacobian matrices such
that we can optimally remove them. Thus, we can have the
following prior energy term for the remaining states

E0(S∗) = JT
m(Ŝ∗0 − S∗) +

1

2

∥∥∥Ŝ∗0 − S∗∥∥∥
Hm

−1
, (9)

where Ŝ∗0 is a set of prior vehicle states of S∗ estimated
from previous iterations, Jm and Hm are the Jacobian and
Hessian matrices respectively, and accumulated from state
marginalization.

The visual energy term contains the sum of all photo-
metric error residuals and is modeled as

Evision(S∗,D∗) =

k∑
m=1

Nr∑
i=1

∑
u∈Ω(I

rCi
m )

∑
n∈Θ(u)

(10)

∑
j∈Φ(Sm,u)

‖r(Sm, rCi,Sn, Cj , ρ)‖Σ .

Here, k again is the number of keyframes and Nr is the
number of reference cameras. rCi and Cj refer to the ith



and jth camera respectively. Ω(I
rCi
m ) is the set of feature

points sampled from the image of the ith reference camera
in the mth keyframe. Θ(u) is the set of indices of the
vehicle states that observe the feature point u. Φ(Sm,u)
is the set of indices of the cameras in the mth keyframe that
observe feature point u. ρ is the inverse plane depth of the
feature u. r(Sm, rCi,Sn, Cj , ρ) is a pixel intensity residual
that measures intensity differences between two projections
of the same 3D scene point (see below for a definition of the
residual). Furthermore, we use both inter-camera and intra-
camera irradiance residuals in our implementation. Finally, Σ
is the scalar variance of the photometric error residual which
is obtained from each camera’s photometric calibration.

Let I
rCi
m be the image captured by the ith camera in the

mth keyframe. Consider a feature point u sampled from that
image. Using plane sweep stereo, we know the inverse depth
ρ of its corresponding plane as well as the normal n of that
plane. The 3D point Pu corresponding to u is thus given
by:

Pu =
1

ρ cos θ
π−1

rCi
(u) , (11)

where π−1
rCi

is the inverse projection function of the camera
and cos θ = −nT ·π−1

rCi
(u) is the angle between the viewing

ray corresponding to u and the plane normal. The vehicle
poses TW

Bm
and TW

Bn
at timestamps m and n are initially

estimated by the tracker while the relative transformations
TCl

B between the vehicle frame FB and the camera frames
FCl

can be estimated offline. We use these transformations
to compute the pixel û in the jth camera and in the nth

keyframe corresponding to the feature u by projecting Pu

into the image. Given u and û, we use their intensity
difference to define the residual r(Sm, rCi,Sn, Cj , ρ):

r(Sm, rCi,Sn, Cj , ρ) = I
rCi
m (p)− ICj

n (p̂) . (12)

In order to minimize the visual energy term from Eq. 10,
we adjust the motion state parameters (namely the pose
TW

Bm
) as well as the inverse plane depth of each feature.

Rather than looking at a single pixel per feature u, we
consider a pixel patch per feature. Each pixel in the patch
is warped into the other images and contributes a residual
according to Eq. 12. In this setting, parameterizing the depth
of u based on the plane has the advantage that we only
require a single parameter per patch.

V. EXPERIMENTAL EVALUATIONS

A. Hardware Setup

We have installed twelve fisheye cameras on our vehicle
platform which is shown in Fig. 2. In particular, five cameras
are installed at the front of the vehicle, two cameras are
installed on each of the left and right sides, and three cameras
are installed at the back. We select one stereo pair from each
side to evaluate our algorithm. In particular, the front stereo
pair has a baseline of 0.722m, the back stereo pair has a
baseline of 0.755m, the left stereo pair has a baseline of
0.502m, and the right stereo pair has a baseline of 0.497m.
All cameras output 1024×544 gray scale images at 25 frames

per second, and are hardware-time-synchronized with the
GPS/INS system.

We calibrate the multi-camera system using a grid of
AprilTag markers. To compute the transformation between
the multi-camera system and the GPS/INS system, we run
semi-direct VO [13] for each stereo pair, obtain an initial esti-
mate using hand-eye calibration, triangulate landmark points
using the GPS/INS poses and feature correspondences from
VO, and refine the initial estimate together with the landmark
points by minimising the sum of squared reprojection errors
while keeping the GPS/INS poses fixed. This transformation
allows direct comparison of visual odometry pose estimates
with the post-processed GPS/INS pose estimates which are
used as ground truth.

B. Experiments and Discussions

Dataset selection: To avoid parameter overfitting, and, at
the same time, evaluate our algorithm thoroughly, we select
five datasets with different characteristics for evaluation. The
first three datasets are collected in a car-park. The first one
(Science-park-day) is collected in normal daylight condi-
tions. The second one (Science-park-night-illum) is collected
at night with NIR illumination. The third one (Science-park-
night) is collected at night without NIR illumination. The
other two datasets are collected from a public urban street.
One of them (West-coast-day) is collected in day light condi-
tions. Another one (West-coast-night-no-illum) is collected at
night without near-infrared illumination. Four sample images
are shown in Fig. 3. Furthermore, the characteristics of the
datasets are summarized in Table I.

Length (m) Max. speed (m/s)
Science-park-day 547.448 3.941
Science-park-night-illum 612.078 3.863
Science-park-night 613.096 3.685
West-coast-day 1179.13 10.68
West-coast-night-no-illum 1224.95 10.23

TABLE I: Characteristics of datasets used for evaluation.

Evaluation metrics: We follow the metric used by the
KITTI benchmark [10] for accuracy evaluation. In partic-
ular, we compute the position and orientation drifts over
sequences of length 200m, 400m, 600m and 800m for each
frame, and average drifts over all sequences. We take into
account the runtime of both the tracker and the mapper as
a metric for evaluating efficiency. Furthermore, we observe
that the ground truth heights for all science park datasets
are not reliable even though a highly accurate GPS/IMU
system was used. For example, for the Science-park-day
dataset, the closed-loop ground truth height drift is more
than 2.5 m. Since these errors introduce significant bias
into the evaluation, we only consider horizontal translations
of all three science park datasets for accuracy evaluations.
The remaining datasets are evaluated with 3-axis translation
errors.

Parameter settings: For all experiments, we sample a total



Fig. 2: Two sample images of the vehicle.

(a) Science-park-day (b) Science-park-night-illum (c) West-coast-night-no-illum

Fig. 3: Three sample images from our datasets, demonstrating the challenges of the datasets which include strong distortion
and absence of features at night.

of 800 5 × 5 feature patches. All features are uniformly
distributed in each camera. For example, if we consider four
stereo pairs, then each stereo pair has 200 features. A sliding
window with 5 keyframes is used for the local mapper. The
optical flow threshold for keyframe selection is 20 pixels.
For the Huber parameter, we use 30 for daylight conditions
and 10 for night-time conditions.

Baseline algorithm: We choose ORB-SLAM2 [18] as
the baseline algorithm for our comparisons. Since ORB-
SLAM2 does not support the fisheye camera models, we
undistort the fisheye images to generate pinhole images for
all experiments.

Our algorithm is evaluated on a laptop with an Intel i7
CPU @ 2.8 GHz. We are able to run our tracking thread at
more than 30 Hz and the local mapping thread at around 2
Hz for the current configurations.

Ablation studies: We conduct thorough ablation studies
with respect to the hardware configurations. The results can
be found in Table II. It shows that a higher number of
stereo cameras improves both the accuracy and robustness
of our VO algorithm. In particular, both ORB-SLAM2 [18]
and our single stereo configuration fail easily for all the
night sequences when using only a single or two stereo
pairs. Based on our observations, the main reason of the
failure is due to the lack of good features. However, using

a multi-camera setup which covers a larger field of view
can provide the required redundancy necessary for handling
poorly textured night environments.

From Table II, we also observe that our algorithm per-
forms better than ORB-SLAM2 [18]. We give two possible
reasons: (1) the direct method can do refinement with sub-
pixel accuracy which improves the accuracy as long as the
algorithm is well-implemented, and (2) the image quality
degrades after undistortion and stereo rectification, and can
affect ORB-SLAM’s performance. In contrast, our method
is able to directly operate on the raw fisheye input images.

By doing horizontal comparisons (i.e. same dataset) of
the same algorithm for different hardware configurations,
we can observe that by using more cameras improves the
accuracy of our VO algorithm. We think that spatially
well distributed features can give better constraints to the
optimization problem, which makes our VO algorithm more
accurate.

Furthermore, by doing vertical comparisons (i.e. same
hardware configuration) of the same algorithm for different
light conditions, we can observe that night-time conditions
degrade the performance of VO algorithms. Besides the
lack of good features, another reason is that the image
quality in night-time conditions is worse than that in daylight
conditions. When the vehicle moves fast at night, motion blur
is inherent in the captured images, especially for the left and



right stereo pairs.

Qualitative evaluations: Fig. 4 shows qualitative evaluation
results of our algorithm for all datasets with four pairs
of stereo cameras. We plot the x-y trajectories estimated
by our VO algorithm against the ground truth trajectories.
A supplementary video can also be found on our project
website https://cvg.ethz.ch/research/visual-odometry/.

VI. CONCLUSION

We present a direct sparse visual odometry algorithm for
a multi-camera system and robust operation in challenging
environments. Our algorithm includes a direct sparse pose
tracker and a local mapper. The tracker tracks the current
camera pose in real-time. The local mapper jointly optimizes
both poses and structure within a sliding window. Instead
of minimizing re-projection errors, both the tracker and
mapper directly minimize photometric errors. We evaluate
our algorithm extensively with five datasets which have
different characteristics. Experimental results show that a
multi-camera setup makes the VO more robust to challenging
night environments and also improves its accuracy.
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Datasets Alg* F B L R FB FL FR BR BL LR BLR FLR FBL FBR FBLR
SD Ours 0.449 1.266 1.185 1.194 0.56 0.282 0.632 0.86 0.64 1.24 0.511 0.635 0.838 0.524 0.352

ORB* 1.168 1.565 x 4.203 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SN1 Ours x 3.7 x x x 2.05 x 1.01 1.544 2.265 0.625 0.735 0.956 1.193 0.691

ORB* 3.24 x x x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
SN2 Ours x x x x x x x x x 1.01 1.47 0.815 1.544 1.51 1.03

ORB* x x x x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
WCD Ours 2.33 1.32 2.17 4.35 0.48 1.79 2.02 3.47 0.96 1.53 1.59 1.97 1.47 0.87 0.9

ORB* 2.34 1.86 x x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
WCN Ours x x x x 2.88 11.6 8.57 5.12 4.99 2.84 3 2.23 2.33 2.05 1.74

ORB* x x x x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

TABLE II: Accuracy evaluations with offline datasets for different hardware configurations (Accuracy (translational drift) is
in units of %, the smaller the better; SD: Science-park-day. SN1: Science-park-night-illum. SN2: Science-park-night. WCD:
West-coast-day. WCN: West-coast-night-no-illum. Alg*: Algorithms. ORB*: ORB-SLAM2. F: front stereo pair. B: back
stereo pair. L: left stereo pair. R: right stereo pair. x: fails to complete whole sequence. N.A.: not available.)

Fig. 4: Trajectories for five selected datasets (Top left: West-coast-day dataset. Top right: West-coast-night-illum dataset.
Bottom left: Science-park-day dataset. Bottom center: Science-park-night-illum dataset. Bottom right: Science-park-night
dataset).


