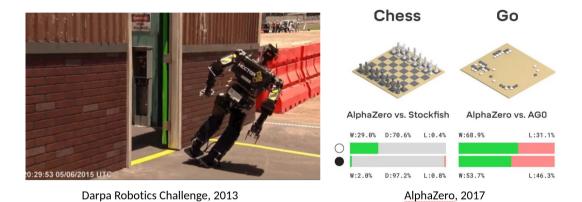
KITTI-360: A Novel Dataset and Benchmarks for Semantic Scene Understanding in 2D and 3D

Andreas Geiger

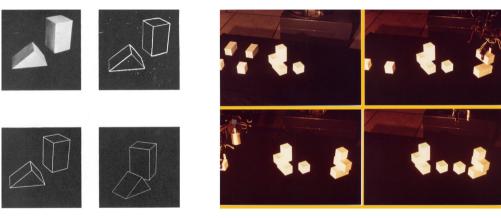
Autonomous Vision Group University of Tübingen and MPI for Intelligent Systems

Combining Perception and Action



► Robots work well in **simulation** but not yet in the **real world**

Combining Perception and Action



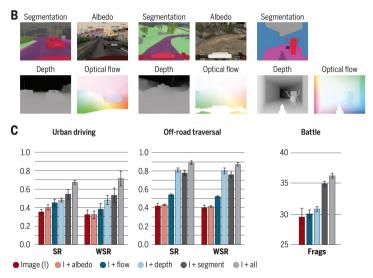
Larry Roberts, 1963

MIT Copy Demo, 1970

Early vision driven by robotics but developed into its own field

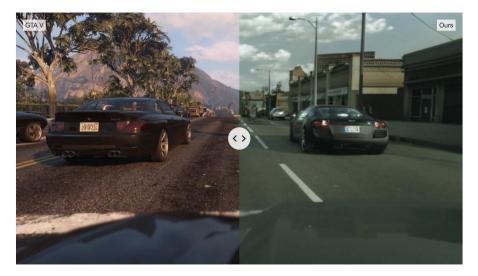
Roberts: Machine perception of three-dimensional solids. PhD Thesis, 1963.

Combining Perception and Action

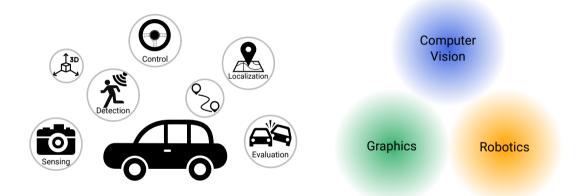


Zhou, Krähenbühl, Koltun: Does Computer Vision Matter for Action? Science Robotics, 2019.

Combining Perception and Simulation



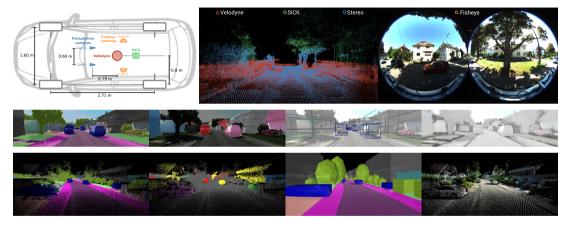
Towards Full Autonomy



Full autonomy requires a concerted effort across different fields

Which datasets and benchmarks do we need?

KITTI-360



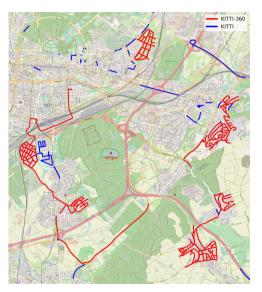
- ► Rich 360° sensory information
- ► Accurate global localization

- ► Semantic instance labels in 2D & 3D
- ► New challenging benchmarks

Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.

Data:

- ▶ **73.7** km, **4** × **83,000** frames
- ► **Georegistered** poses ⇒ OpenStreetMap
- Minimal trajectory overlap with KITTI

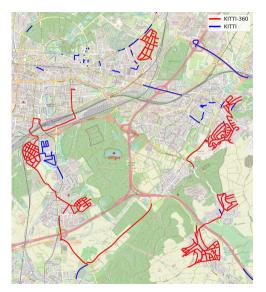


Data:

- ▶ **73.7** km, **4** × **83,000** frames
- ► **Georegistered** poses ⇒ OpenStreetMap
- ► Minimal trajectory overlap with KITTI

Sensors:

- \blacktriangleright 2 × perspective cameras
- ► 2 × fisheye cameras \Rightarrow 360° Imagery

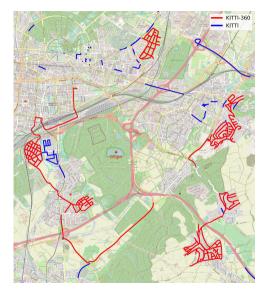


Data:

- ▶ **73.7** km, **4** × **83,000** frames
- ► **Georegistered** poses ⇒ OpenStreetMap
- Minimal trajectory overlap with KITTI

Sensors:

- \blacktriangleright 2 × perspective cameras
- ► 2 × fisheye cameras \Rightarrow 360° Imagery
- ► Velodyne HDL 64 LiDAR
- SICK pushbroom LiDAR

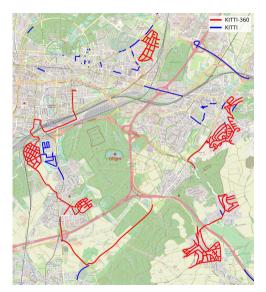


Data:

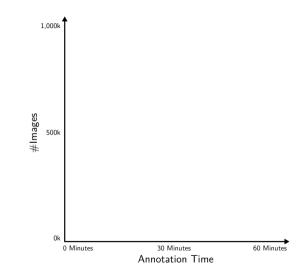
- ▶ **73.7** km, **4** × **83,000** frames
- ► **Georegistered** poses ⇒ OpenStreetMap
- Minimal trajectory overlap with KITTI

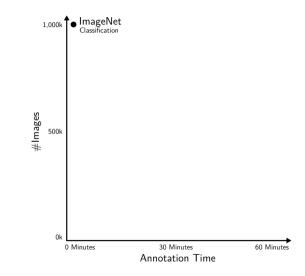
Sensors:

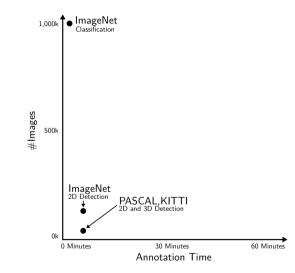
- \blacktriangleright 2 × perspective cameras
- ► 2 × fisheye cameras \Rightarrow 360° Imagery
- ► Velodyne HDL 64 LiDAR
- SICK pushbroom LiDAR
- ► IMU/GPS measurement unit



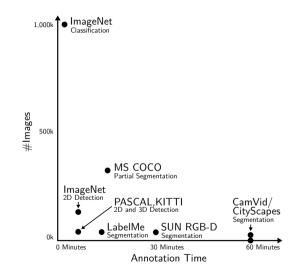
How can we annotate semantics at large scale?

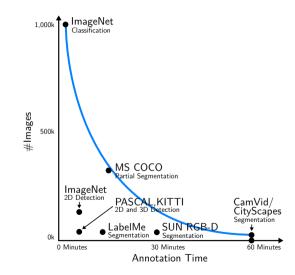


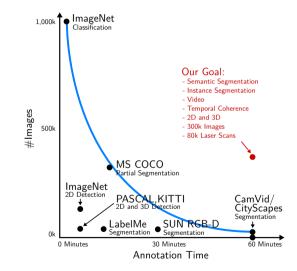




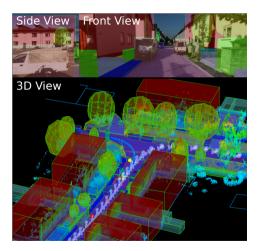
Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.

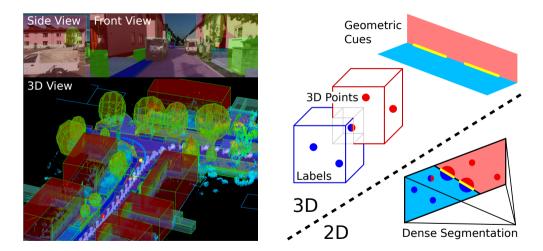






Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.





Advantages over 2D annotation:

Object instances can be more easily separated in 3D

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames
- ► 2D annotations are temporally coherent

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames
- ► 2D annotations are temporally coherent
- ► 3D annotations are useful by themselves

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames
- ► 2D annotations are temporally coherent
- ► 3D annotations are useful by themselves

Challenges:

Outdoor 3D data is sparse, noisy and incomplete

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames
- ► 2D annotations are temporally coherent
- ► 3D annotations are useful by themselves

Challenges:

- Outdoor 3D data is sparse, noisy and incomplete
- ► 3D annotations are coarse and imprecise

Advantages over 2D annotation:

- Object instances can be more easily separated in 3D
- ► A single annotated 3D object projects into many frames
- ► 2D annotations are temporally coherent
- ► 3D annotations are useful by themselves

Challenges:

- Outdoor 3D data is sparse, noisy and incomplete
- ► 3D annotations are coarse and imprecise
- Dynamic objects are challenging to annotate

Data Annotation

Annotation Tool

- ► 3D Annotation
- ► 2D Camera Views
- Supports annotation of static and dynamic objects
- ► Fast annotation functions

Data Annotation

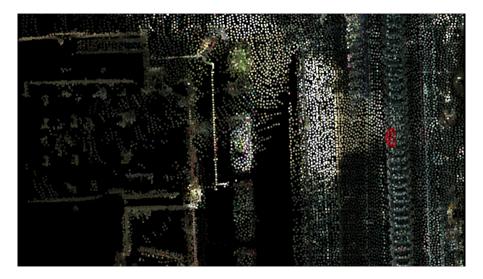
Annotation Tool

- ► 3D Annotation
- ► 2D Camera Views
- Supports annotation of static and dynamic objects
- ► Fast annotation functions

Annotation Time:

- ► 3D \Rightarrow 1 min per image
- ► 2D \Rightarrow 90 min per image

Static Object Annotation



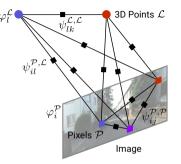
Semi-Automatic Dynamic Object Annotation

Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.

3D-to-2D Label Transfer

Variables:

- ▶ 3D Points: $\{s_i | i \in \mathcal{L}\}$
- Pixels: $\{s_i | i \in \mathcal{P}\}$



Conditional Random Fields:

$$E(\mathbf{s}) = \sum_{i \in \mathcal{P}} \varphi_i^{\mathcal{P}}(s_i) + \sum_{l \in \mathcal{L}} \varphi_l^{\mathcal{L}}(s_l) + \sum_{i,j \in \mathcal{P}} \psi_{ij}^{\mathcal{P},\mathcal{P}}(s_i,s_j) + \sum_{l,k \in \mathcal{L}} \psi_{lk}^{\mathcal{L},\mathcal{L}}(s_l,s_k) + \sum_{i \in \mathcal{P}, l \in \mathcal{L}} \psi_{il}^{\mathcal{P},\mathcal{L}}(s_i,s_l)$$

Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.

3D-to-2D Label Transfer

Inference:

- ► Factorized mean field $Q(\mathbf{s}) = \prod_{i \in \mathcal{P} \cup \mathcal{L}} Q_i(s_i)$
- Efficient variational inference [Krähenbühl & Koltun, CVPR 2011]
- Confidence map obtained via entropy over marginal distribution

3D-to-2D Label Transfer

Inference:

- ► Factorized mean field $Q(\mathbf{s}) = \prod_{i \in \mathcal{P} \cup \mathcal{L}} Q_i(s_i)$
- Efficient variational inference [Krähenbühl & Koltun, CVPR 2011]
- Confidence map obtained via entropy over marginal distribution

Learning:

- ► Empirical risk minimization
- ► Stochastic gradient descent
- ► Same loss for instance & semantic segmentation

Qualitative Comparison to Baselines

2D Label Propagation [Vijayanarasimhan et al., 2012]

Liao, Xie and Geiger: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D.

Qualitative Comparison to Baselines

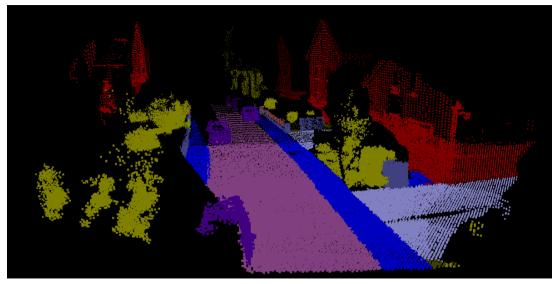
Proposed Method

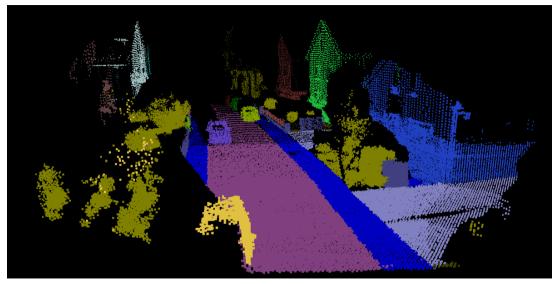
Method	JI	Acc
LA	82.1	90.0
LA+PW	84.4	91.4
LA+PW+CO+3D	88.2	93.7
Full Model	89.0	94.1
Full Model (90%)	94.9	97.4
Full Model (80%)	96.6	98.2
Full Model (70%)	97.5	98.7

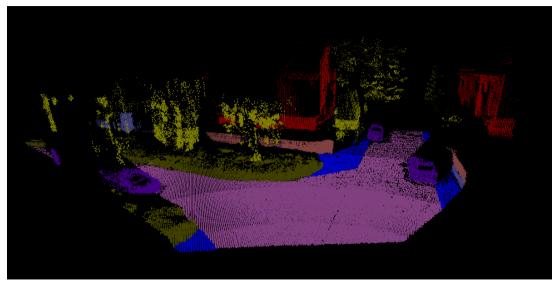
► LA: Local Appearance

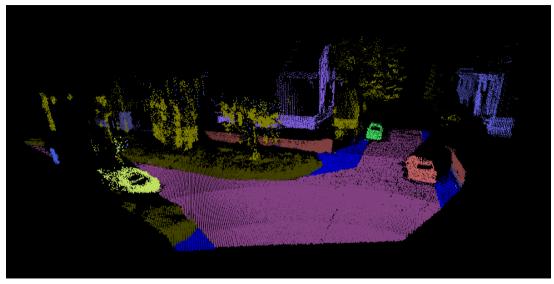
► CO: 3D Primitive Constraints

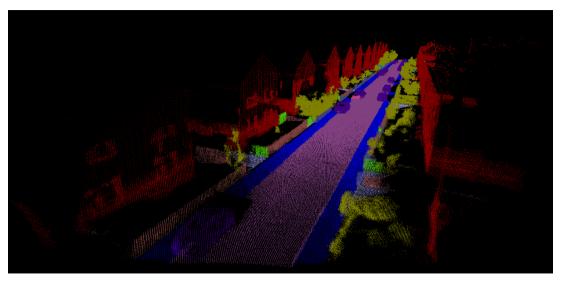
- ► PW: 2D Pairwise Potentials
- ► 3D: 3D Point Constraints

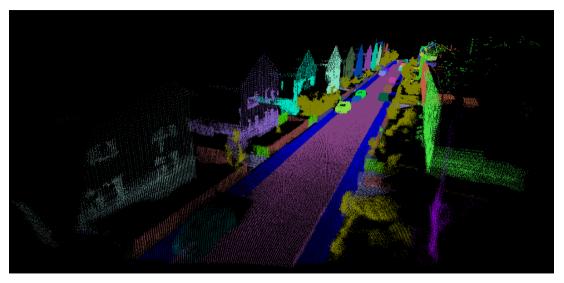




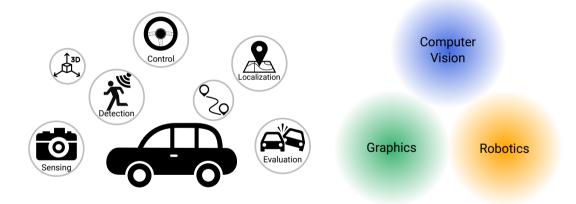


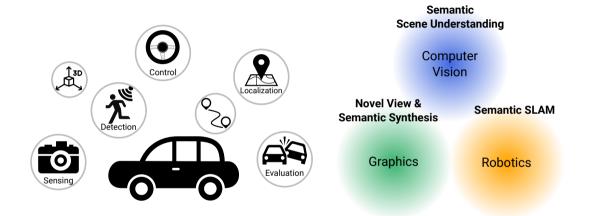






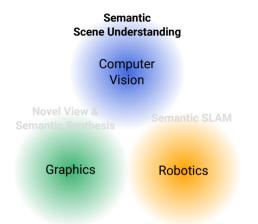
How can KITTI-360 help autonomous driving?



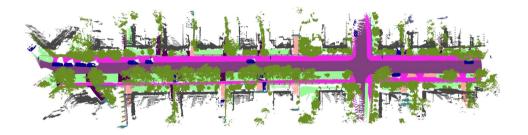


Semantic Scene Understanding

- ► 2D & 3D Semantic/Instance Segmentation
- ► 3D Bounding Box Detection
- ► Semantic Scene Completion



Semantic Scene Understanding

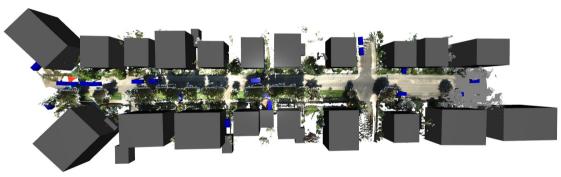


Semantic Segmentation & Completion

Semantic Scene Understanding

Instance Segmentation

Semantic Scene Understanding



3D Bounding Box Detection

Novel View Synthesis

- ► Appearance Synthesis
- ► Semantic Synthesis

Semantic Scene Understanding							
	nputer sion						
Novel View & Semantic Synthesis	Semantic SLAM						
Graphics	Robotics						

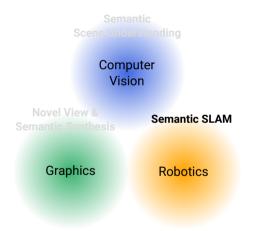
Novel View Synthesis

Task:

- Input: Perspective/fisheye image, poses, 3D point cloud (optional)
- Output: RGB Image / semantic map at novel viewpoints

Semantic SLAM

- ► Localization
- ► Geometric & Semantic Mapping



Semantic SLAM

Task:

- ► Input: Perspective images / LiDAR scans
- Output: Vehicle trajectory, scene geometry and semantics (=semantic mapping)

Evaluation:

 Mapping performance evaluated in local windows to eliminate effect of pose drift

Leaderboard

Semantic SLAM

Trajectory Estimation

We adopt the standard Absolute Pose Error (APE) and Relative Pose Error (RPE) as metrics for evaluating pose estimation. We align the predicted trajectory to the ground truth using a rigid transformation to evaluate the APE. The RPE is evaluated between two frames with a distance of 1 meter.

- APE: Absolute Pose Error
- RPE: Relative Pose Error

	Method	Setting	Code	APE	RPE	Runtime	Environment	Compare	
1	ORB-SLAM2			1.91	2.02 %		NVIDIA V100		
R. Mur-Artal and J. Tard'(o)s: ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras, TRO 2017.									
2	SUMA++			3.13	2.71 %		NVIDIA V100		
X. Chen, A. Milioto, E. Palazzolo, P. Gigu'(e)re, J. Behley and C. Stachniss: SuMa++: Efficient LiDAR-based Semantic SLAM. IROS 2019.									

Resources

KITTI-360:

Dataset and Benchmarks:

http://www.cvlibs.net/datasets/kitti-360

Utilities and Scripts:

https://github.com/autonomousvision/kitti360scripts

► Annotation Tool:

https://github.com/autonomousvision/kitti360labeltool

► Video:

https://www.youtube.com/watch?v=OonvYU5bx3s

Thank you!

http://autonomousvision.github.io

Overview of Publicly Available Datasets

	2D Annotations			3D Annotations					Coherency		Test
	#Smt. Img.	#Ins. Img.	Dense	#Smt. Pts.	#Ins. Pts.	FoV Azm.	FoV Plr.	#3D Bbox	Temporal	3D-2D	Server
CamVid	631	-	1	-	-	-	-	-	1	-	×
DUS	1k	-	1	-	-	-	-	-	1	-	×
CityScape (fine)	5k	5k	1	-	-	-	-	-	×	-	1
CityScape (coarse)	20k	20k	×	-	-	-	-	-	×	-	1
Mapillary Vistas	25k	25k	1	-	-	-	-	-	×	-	×
CityScape-VPS	Зk	Зk	1	-	-	-	-	-	1	-	×
KITTI-STEP	19k	19k	1	-	-	-	-	-	1	-	1
Toronto-3D	-	-	-	78.3M	-	360°	40°	-	-	-	×
Paris-Lille-3D	-	-	-	143.1M	-	360°	40°	-	-	-	1
DublinCity	-	-	-	260M	-	-	-	-	-	-	×
Semantic3D.net	-	-	-	4.0B	-	360°	360°	-	-	-	1
SemanticKITTI	-	-	-	4.5B	-	360°	26.8°	-	-	-	1
Argoverse	-	-	-	-	-	-	-	993k	-	-	×
Waymo	-	-	-	-	-	-	-	12M	-	-	1
A*3D	-	-	-	-	-	-	-	230k	-	-	×
KITTI	200	200	1	-	-	-	-	200k	X	×	1
ApolloScape	144k	90k	1	-	-	-	-	70k	x	×	1
nuScenes	93k	93k	1	1.2B	78.9M	360°	40°	1.2M	×	×	1
A2D2	41k	41k	1	387.1M	23.8M	60°	30°	43k	x	1	×
SemKITTI-DVPS	23k	23k	×	4.5B	400M	360°	26.8°	-	1	1	1
КІТТІ-360	2× 78k	$2 \times 78k$	1	1.0B	172.4M	360°	120°	68k	1	1	1

http://www.cvlibs.net/datasets/kitti-360/