

Motivation

Task: 3D Controllable Image Synthesis

UNIVERSITÄT TÜBINGEN

- **3D** controllability is essential in many applications, e.g., gaming, simulation, virtual reality and data augmentation
- 3D controllable properties: 3D pose, shape, appearance of multiple objects and camera viewpoint
- Is it possible to learn the simulation pipeline including 3D content creation from raw 2D image observations?

3D controllable image synthesis on Real-world Fruit Dataset

Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis

Yiyi Liao^{1,2,*} Katja Schwarz^{1,2,*} Lars Mescheder^{1,2,3,†} Andreas Geiger^{1,2} ¹Max Planck Institute for Intelligent Systems, Tübingen ²University of Tübingen ³Amazon, Tübingen

Training images

3D Representations:

Foreground objects o_i :

- $ullet \mathbf{o}_i = (\mathbf{s}_i, \mathbf{R}_i, \mathbf{t}_i, oldsymbol{\phi}_i)$
- ϕ_i : Appearance feature
- Primitive type: Point clouds, cuboids, spheres

Scene background o_{bq} :

Spherical environment map

Loss Functions:

• Adversarial Loss:

- \mathcal{L}_{adv}

Quantitative Results

Ablation Study on Different 3D Representations

	FID	FID_{t}	$FID_{\mathbf{R}}$	FID_i	\mathbf{MVC}^1	
Vanilla GAN	50	—	—	41		
Point cloud	38	43	44	66	Good	
Cuboid	38	45	45	60	Good	
Sphere	33	45	45	53	Good	
Deformable primitive w/o $g_{ heta}^{2D}$	69	71	74	69	Good	4
Single primitive	30	38	44	_	Pool	

 1 Multi-view consistency

Method

$$(\theta, \psi, c) = \mathbb{E}_{p(\mathbf{z})}[f(d_{\psi}(g_{\theta}(\mathbf{z}, c), c))] + \mathbb{E}_{p_{\mathcal{D}}(\mathbf{I}|c)}[f(-d_{\psi}(\mathbf{I}, c))]$$

Compactness Loss:

$$\mathcal{L}_{com}(\theta) = \mathbb{E}_{p(\mathbf{z})} \left[\sum_{i=1}^{N} \max\left(\tau, \frac{\|\mathbf{A}_i\|_1}{H \times W}\right) \right]$$

• Geometric Consistency Loss:

$$\mathcal{L}_{geo}(\theta) = \mathbb{E}_{p(\mathbf{z})} \left[\sum_{i=1}^{N} \|\mathbf{A}'_{i} \odot (\mathbf{X}'_{i} - \tilde{\mathbf{X}}'_{i})\|_{1} \right] \\ + \mathbb{E}_{p(\mathbf{z})} \left[\sum_{i=1}^{N} \|\mathbf{A}'_{i} \odot (\mathbf{D}'_{i} - \tilde{\mathbf{D}}'_{i})\|_{1} \right]$$

Comparison to Baselines

	Car			Indoor		
	FID	$FID_{\mathbf{t}}$	$FID_{\mathbf{R}}$	FID	$FID_{\mathbf{t}}$	$FID_{\mathbf{R}}$
Vanilla GAN	43	—	_	89	_	_
Layout2Im	43	56	_	84	93	
2D Baseline	80	79	_	107	102	
Ours (w/o c)	65	71	75	120	120	120
Ours	44	54	66	88	90	100

Qualitative Results

Car Dataset

Indoor Dataset

Failure Cases

