
Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis
Yiyi Liao1,2,∗ Katja Schwarz1,2,∗ Lars Mescheder1,2,3,† Andreas Geiger1,2

1Max Planck Institute for Intelligent Systems, Tübingen
2University of Tübingen 3Amazon, Tübingen

Motivation

Task: 3D Controllable Image Synthesis
• 3D controllability is essential in many applications, e.g., gaming,

simulation, virtual reality and data augmentation
• 3D controllable properties: 3D pose, shape, appearance of multiple

objects and camera viewpoint
• Is it possible to learn the simulation pipeline including 3D content cre-

ation from raw 2D image observations?
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Our Approach

Efficient and can be learned from only 2D images
3D controllable

Idea: Learning the image generation process jointly in 3D and 2D space
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3D Representations:

Foreground objects oi:
• oi = (si,Ri, ti,ϕi)

• ϕi: Appearance feature
• Primitive type: Point clouds,

cuboids, spheres

Scene background obg:
• Spherical environment map

Loss Functions:

• Adversarial Loss:

Ladv(θ, ψ, c) = Ep(z)[f (dψ(gθ(z, c), c))] + EpD(I|c)[f (−dψ(I, c))]

• Compactness Loss:

Lcom(θ) = Ep(z)
[∑N

i=1 max
(
τ,

∥Ai∥1
H×W

)]
• Geometric Consistency Loss:

Lgeo(θ) = Ep(z)
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i=1 ∥A′
i⊙ (X′

i− X̃′
i)∥1

]
+Ep(z)
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Quantitative Results

Ablation Study on Different 3D Representations
FID FIDt FIDR FIDi MVC1 X Â Î

Vanilla GAN 50 – – 41

Point cloud 38 43 44 66 Good

Cuboid 38 45 45 60 Good

Sphere 33 45 45 53 Good

Deformable primitive w/o g2Dθ 69 71 74 69 Good

Single primitive 30 38 44 – Pool

1Multi-view consistency

Comparison to Baselines
Car Indoor

FID FIDt FIDR FID FIDt FIDR

Vanilla GAN 43 – – 89 – –

Layout2Im 43 56 – 84 93 –

2D Baseline 80 79 – 107 102 –

Ours (w/o c) 65 71 75 120 120 120

Ours 44 54 66 88 90 100

Qualitative Results
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Failure Cases
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https://github.com/autonomousvision/controllable_image_synthesis {firstname.lastname}@tue.mpg.de


