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Abstract

In this supplementary document, we first present implementation details for the experiments in the main paper. Then we
show more qualitative results for estimating 3D shape from unstructured point cloud. We further demonstrate that our method
is able to “lift” the binary occupancy maps to sub voxel resolution by learning to regress the 3D shape from the occupancy
map.

1. Implementation Details
1.1. Deep Marching Squares

The marching cubes algorithm can be easily adapted to 2D, where the topology encodes the number and connectivity of
line segments in each 2D cell. Similarly, our Deep Marching Cubes can also be applied in 2D, resulting in an algorithm
which we refer to as Deep Marching Squares. Specifically, we estimate the occupancy field O ∈ [0, 1]N×N and the vertex
displacement field X ∈ [0, 1]N×N×2. There are 22 = 4 occupancy variables corresponding to the 4 corners of a grid cell, and
the number of all possible topologies is 24 = 16. Again, we only consider the 14 singly connected topologies (highlighted in
yellow in Fig. 1).

1.2. Network Architecture

We show the details of our Deep Marching Cubes network architecture in Fig. 2. Following common practice [1, 5], We
exploit skip connections to preserve details. The decoder head is split into two branches for estimating the occupancy field
O and the vertex displacement field X. Note that we apply feature concatenation to these two branches individually.

1.3. Hyperparameters

The hyperparameters in our experiments are specified in Table 1. We use the Adam optimizer [3], and we train the network
for 20 epochs.

Figure 1: Surface Topologies for the Deep Marching Squares Algorithm in 2D. There are 24 = 16 possible topologies.
In this paper, we consider all singly connected topologies (highlighted in yellow).
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Figure 2: Detailed Network Architecture. We specify the input channel, output channel and kernel size for all convolution
and deconvolution layers. We apply Batch Normalization [2] and ReLU [4] after each convolution and deconvolution layer.

Description Notation Value

Weight on Lmesh w1 1.0/N3

Weight on Locc w2 0.4/N3

Weight on Lsmooth w3 0.6/N3

Weight on Lcurve w4 0.6/N3

Learning rate 5e− 4
Batch size 8

Table 1: Hyperparameters.

Chamfer Accuracy Complete.

Occupancy + MC 0.277 0.217 0.337
TSDF + MC 0.271 0.191 0.350
TSDF (weighted) + MC 0.276 0.200 0.352
Ours 0.265 0.211 0.318

Table 2: 3D Shape Prediction from Occupancy Maps.

2. 3D Shape Prediction from X
In this section, we show more qualitative results for reconstructing 3D shapes from unstructured point clouds. In addition,

we show that our method can be applied to other input modalities such as volumetric occupancy maps.

2.1. 3D Shape from Point Cloud

Fig. 3 illustrates more 3D shapes predicted from point cloud. For car and sofa, we rendered the objects from two views for
clarity. As can be seen, our method performs better in preserving details, such as the wheels of cars (row 1-2 in (a)), the legs
of the sofa (row 1-2 in (b)) and the top of the bottles (row 2-3 in (c)). Our method is also robust to objects with holes such as
cars missing windows (row 3 in (a)), and objects with irregular shapes (row 4-5 in (a)). More interestingly, our method can
predict the complete object shape when the car underbody is partially missing (row 6-10 in (a)) or completely missing (row
11-12 in (a)), or in the presence of thin surfaces such as in the sofa example (row 3-5 in (b)), while the baseline methods fail
completely. Further note that our method not only predicts the observed part when the car underbody is completely missing,
but also reconstructs a reasonable underbody, demonstrating the ability of our model to learn reasonable 3D shape models
even in the presence of sparse, noisy and incomplete ground truth.

2.2. 3D Shape from Occupancy

Our approach can also be used to “lift” binary occupancy grids to sub-voxel accurate meshes. For this experiment, we
replace the point encoder by a standard volumetric encoder which takes a binary occupancy map as input. We train this voxel
super-resolution network using the point cloud derived from the high resolution mesh. As the input occupancy map might be
incorrect when the object is not closed as shown in Fig. 3, we filtered the occupancy maps by selecting an object only when
its occupied region is larger than a given threshold (2% of the full cube).

Again, We compare with the occupancy and TSDF prediction baselines. The results are shown in Table 2 and a qualitative
comparison is presented in Fig. 4. Our method achieves best performance in terms of the Chamfer distance. Note that our



method reduces both accuracy and completeness distances compared to the occupancy baseline, which means we effectively
learn a sub-voxel accurate mesh given the binary occupancy grids, while the TSDF baselines sacrifices completeness to
achieve a higher accuracy. As can be seen from the qualitative comparison in Fig. 4, our method learns to complete the
wheels (row 1-4) and fill missing windows (row 5-8) even when this information is missing from the input. Further note that
our method is able to predict a complete shape even when there is a larger part missing in the input (row 9-12).
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(a) Car
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(b) Sofa



Input Points Occ+MC wTSDF+MC Ours Ground Truth

(c) Bottle
Figure 3: 3D Shape Prediction from Point Clouds. Here, wTSDF+MC denotes the weighted TSDF baseline.

Input Occ Occ+MC wTSDF+MC Ours Ground Truth
Figure 4: 3D Shape Prediction from Occupancy.


