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Abstract

Existing learning based solutions to 3D surface predic-
tion cannot be trained end-to-end as they operate on inter-
mediate representations (e.g., TSDF) from which 3D sur-
face meshes must be extracted in a post-processing step
(e.g., via the marching cubes algorithm). In this paper, we
investigate the problem of end-to-end 3D surface predic-
tion. We first demonstrate that the marching cubes algo-
rithm is not differentiable and propose an alternative differ-
entiable formulation which we insert as a final layer into
a 3D convolutional neural network. We further propose
a set of loss functions which allow for training our model
with sparse point supervision. Our experiments demon-
strate that the model allows for predicting sub-voxel accu-
rate 3D shapes of arbitrary topology. Additionally, it learns
to complete shapes and to separate an object’s inside from
its outside even in the presence of sparse and incomplete
ground truth. We investigate the benefits of our approach
on the task of inferring shapes from 3D point clouds. Our
model is flexible and can be combined with a variety of
shape encoder and shape inference techniques.

1. Introduction
3D reconstruction is a core problem in computer vision,

yet despite its long history many problems remain unsolved.
Ambiguities or noise in the input require the integration of
strong geometric priors about our 3D world. Towards this
goal, many existing approaches formulate 3D reconstruc-
tion as inference in a Markov random field [2, 21, 41, 46]
or as a variational problem [17, 47]. Unfortunately, the ex-
pressiveness of such prior models is limited to simple local
smoothness assumptions [2, 17, 21, 47] or very specialized
shape models [1, 15, 16, 42]. Neither can such simple pri-
ors resolve strong ambiguities, nor are they able to reason
about missing or occluded parts of the scene. Hence, ex-
isting 3D reconstruction systems work either in narrow do-
mains where specialized shape knowledge is available, or
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Figure 1: Illustration comparing point prediction (a), im-
plicit surface prediction (b) and explicit surface prediction
(c). The encoder is shared across all approaches and de-
pends on the input (we use point clouds in this paper). The
decoder is specific to the output representation. All train-
able components are highlighted in yellow. Note that only
(c) can be trained end-to-end for the surface prediction task.

require well captured and highly-textured environments.
However, the recent success of deep learning [19,20,38]

and the availability of large 3D datasets [5, 6, 9, 26, 37]
nourishes hope for models that are able to learn powerful
3D shape representations from data, allowing reconstruc-
tion even in the presence of missing, noisy and incom-
plete observations. And indeed, recent advances in this
area [7, 12, 18, 24, 34, 36, 39, 40] suggest that this goal can
ultimately be achieved.

Existing 3D representation learning approaches can be
classified into two categories: voxel based methods and
point based methods, see Fig. 1 for an illustration. Voxel
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based methods [34,35,45] use a grid of voxels as output rep-
resentation and predict either voxel occupancy [34, 45] or a
truncated signed distance field (TSDF) which implicitly de-
termines the surface [35]. Point based methods [12] directly
regress a fixed number of points as output. While voxel
and point based representations are easy to implement, both
require a post processing step to retrieve the actual 3D sur-
face mesh which is the quantity of interest in 3D reconstruc-
tion. For point based methods, meshing techniques such as
Poisson surface reconstruction [25] or SSD [4] can be em-
ployed. In contrast, implicit voxel based methods typically
use marching cubes [29] to extract the zero level set.

As both techniques cannot be trained end-to-end for the
3D surface prediction task, an auxiliary loss (e.g., Chamfer
distance on point sets, `1 loss on signed distance field) must
be used during training. However, there are two major lim-
itations in this setup: firstly, while implicit methods require
3D supervision on the implicit model, the ground truth of
the implicit representation is often hard to obtain, e.g., in
the presence of a noisy and incomplete point cloud or when
the inside and outside of the object is unknown. Secondly,
these methods only optimize an auxiliary loss defined on an
intermediate representation and require an additional post-
processing step for surface extraction. Thus they are unable
to directly constrain the properties of the predicted surface.

In this work, we propose Deep Marching Cubes (DMC),
a model which predicts explicit surface representations of
arbitrary topology. Inspired by the seminal work on March-
ing Cubes [29], we seek for an end-to-end trainable model
that directly produces an explicit surface representation and
optimizes a geometric loss function. This avoids the need
for defining auxiliary losses or converting target meshes
to implicit distance fields. Instead, we directly train our
model to predict surfaces that agree with the 3D observa-
tions. We demonstrate that direct surface prediction can
lead to more accurate reconstructions while also handling
noise and missing observations. Besides, this allows for
separating inside from outside even if the ground truth is
sparse or not watertight, as well as easily integrating addi-
tional priors about the surface (e.g., smoothness). We sum-
marize our contributions as follows:

• We demonstrate that Marching Cubes is not differen-
tiable with respect to topological changes and propose
a modified representation which is differentiable.

• We present a model for end-to-end surface prediction
and derive appropriate geometric loss functions. Our
model can be trained from unstructured point clouds
and does not require explicit surface ground truth.

• We propose a novel loss function which allows for sep-
arating an object’s inside from its outside even when
learning with sparse unstructured 3D data.

• We apply our model to several surface prediction tasks
and demonstrate its ability to recover surfaces even in
the presence of incomplete or noisy ground truth.

Our code and data is available on the project website1.

2. Related Work

Point Based Representations: Point based representa-
tions have a long history in robotics and computer graph-
ics. However, the irregular structure complicates the us-
age of point clouds in deep learning. Qi et al. [31] pro-
posed PointNet for point cloud classification and segmen-
tation. Invariance wrt. the order of the points is achieved
by means of a global pooling operation over all points. As
global pooling does not preserve local information, a hierar-
chical neural network that applies PointNet recursively on
a nested partitioning of the input point set has been pro-
posed in follow-up work [33]. Fan et al. [12] proposed a
model for sparse 3D reconstruction, predicting a point set
from a single image. While point sets require less parame-
ters to store compared to dense volumetric grids, the maxi-
mal number of points which can be predicted is limited to a
few thousand due to the simple fully connected decoder. In
contrast to the method proposed in this paper, an additional
post-processing step [4,25] is required to “lift” the 3D point
cloud to a dense surface mesh.

Implicit Surface Representations: Implicit surface repre-
sentations are amongst the most widely adopted representa-
tions in 3D deep learning as they can be processed by means
of standard 3D CNNs. By far the most popular representa-
tion are binary occupancy grids which have been applied
to a series of discriminative tasks such as 3D object clas-
sification [30, 32], 3D object detection [38] and 3D recon-
struction [7, 13, 34, 44, 45]. Its drawback, however, is obvi-
ous: the accuracy of the predicted reconstruction is limited
to the size of a voxel. While most existing approaches are
limited to a resolution of 323 voxels, methods that exploit
adaptive space partitioning techniques [18, 39] scale up to
2563 or 5123 voxel resolution. Yet, without sub voxel es-
timation, the resulting reconstructions exhibit voxel-based
discretization artefacts. Sub voxel precision can be achieved
by exploiting the truncated signed distance function (TSDF)
[8] as representation where each voxel stores the truncated
signed distance to the closest 3D surface point [10, 28, 35].

While the aforementioned works require post-processing
for isosurface extraction, e.g., using Marching Cubes [29],
here we propose an end-to-end trainable solution which in-
tegrates this step into one coherent model. This allows for
training the model directly using point based supervision
and geometric loss functions. Thus, our model avoids the
need for converting the ground truth point cloud or mesh

1https://avg.is.tue.mpg.de/research projects/deep-marching-cubes
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into an intermediate representation (e.g., TSDF) and defin-
ing auxiliary loss functions. It is worth noting that this
conversion is not only undesirable but often also very diffi-
cult, i.e., when learning from unordered point sets or non-
watertight meshes for which inside/outside distinction is
difficult. Our approach avoids the conversion step and in-
stead infers such relationships using weak prior knowledge.

Explicit Surface Representations: Compared to implicit
surface representations, explicit surface representations are
less structured as they are typically organized as a set of
vertices and faces, complicating their deployment in deep
learning. Several works consider the problem of shape
classification and segmentation by defining neural networks
which operate on the graph spanned by the edges and ver-
tices of a 3D mesh [3, 14, 43]. However, these methods
assume a fixed input graph while in 3D reconstruction the
graph (i.e., mesh) itself needs to be inferred. Very limited
results have been presented for mesh based inference, and
existing works are restricted by a fixed 3D topology or mild
deviations from a 3D template. Rezende et al. [34] predict
a small number of vertices using a fully connected network.
Each vertex is constrained to move along a pre-defined line.
Thus, their method is limited to very simple convex shapes
(they consider spheres, cuboids and cylinders) with a small
number of vertices. Kong et al. [27] predict a mesh by de-
forming the vertices of a nearest neighbor CAD model, re-
sulting in predictions close to the original shape templates.
Kanazawa et al. [23] also predict meshes, however their
method is specialized to human body shapes.

Our goal is to overcome these difficulties by combining
voxel and mesh based representations. Our decoder oper-
ates in a volumetric space, but predicts the local face param-
eters of the surface mesh. Compared to the aforementioned
methods, our representation is scalable regarding the num-
ber of vertex points while allowing for arbitrary topologies
and the prediction of non-convex shapes. No shape tem-
plates are required at test time and the model generalizes
well to unseen shape categories.

3. Deep Marching Cubes

We tackle the problem of predicting an explicit surface
representation (i.e., a mesh) directly from raw observations
(e.g., a mesh, point cloud, volumetric data or an image). Ex-
isting works formulate this problem as the prediction of an
intermediate signed distance representation using an auxil-
iary (typically `1) loss [10, 35], followed by applying the
Marching Cubes (MC) algorithm [29]. In this work we
aim at making this last step differentiable, hence allowing
for end-to-end training using surface based geometric loss
functions.

We first provide a formal introduction to the Marching
Cubes algorithm [29]. We then demonstrate that backprop-

Figure 2: Mesh Topology. The 28 = 256 topologies can be
grouped into 15 equivalence classes due to rotational sym-
metry. In this paper, we consider only the singly connected
topologies (highlighted in yellow).
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Figure 3: Representation used by Marching Cubes (a) and
the proposed Differentiable Marching Cubes (b). The for-
mer uses an implicit surface representation based on signed
distances D while the latter exploits an explicit surface rep-
resentation which is parameterized in terms of occupancy
probabilites O and vertex displacements X.

agation through this algorithm is intractable and propose
a modified differentiable representation which avoids these
problems. We exploit this representation as a Differentiable
Marching Cubes Layer (DMCL) in a neural network for
end-to-end surface prediction of arbitrary topology.

3.1. Marching Cubes

The Marching Cubes (MC) algorithm extracts the zero
level set of a signed distance field and represents it as a set
of triangles. It comprises two steps: estimation of the topol-
ogy (i.e., the number and connectivity of triangles in each
cell of the volumetric grid) and the prediction of the vertex
locations of the triangles, determining the geometry.

More formally, let D ∈ RN×N×N denote a (discretized)
signed distance field obtained using volumetric fusion [8] or
predicted by a neural network [10,35] where N denotes the
number of voxels along each dimension. Let further dn ∈ R
denote the n’th element of D where n = (i, j, k) ∈ N3

is a multi-index (i, j, k correspond to the 3 dimensions of
D). As D is a signed distance field, |dn| is the distance



between voxel n and its closest surface point. Without loss
of generality, let us assume that dn > 0 if voxel n is lo-
cated inside an object and dn < 0 otherwise. The zero level
set of the signed distance field D defines the surface which
can be represented by means of a triangular mesh M. This
mesh M can be extracted from D using the Marching Cubes
(MC) algorithm [29] which iterates (“marching”) through
all cells of the grid connecting the voxel centers and inserts
triangular faces whenever a sign change is detected2. More
specifically, MC performs the following two steps:

First, the cell’s surface topology T is determined based
on the sign of dn at its 8 corners. T can be represented as
a binary tensor T ∈ {0, 1}2×2×2 where each element rep-
resents a corner. The total number of configurations equals
28 = 256, see Fig. 2 for an illustration. A vertex is created
in case of a sign change of the distance values of two adja-
cent corners of the cell (i.e., corners connected by an edge).
The vertex is placed at the edge connecting both corners.

In a second step, the vertex location of each triangular
face along the edge is determined using linear interpolation.
More formally, let x ∈ [0, 1] denote the relative location of
a triangle vertex w along edge e = (v, v′) where v and v′

are the corresponding edge vertices as illustrated in Fig. 3a.
In particular, let’s assume x = 0 if w = v and x = 1 if
w = v′. Let further d ∈ R and d′ ∈ R denote the signed
distance values at v and v′, respectively. In the Marching
Cubes algorithm, x is determined from d and d′ as the zero
crossing of the linear interpolant of d and d′. This inter-
polant is given as f(x) = d+ x(d′ − d). Setting f(x) = 0
yields x = d/(d− d′), see also Fig. 3a.

Discussion: Given the MC algorithm, can we construct a
deep neural network for end-to-end surface prediction? In-
deed, we could try to construct a deep neural network which
predicts a signed distance field that is converted into a trian-
gular mesh using MC. We could then compare this surface
to a ground truth surface or point cloud and backpropagate
errors through the MC layer and the neural network. Unfor-
tunately, this approach is intractable for two reasons:

• First, x = d/(d − d′) is singular at d = d′, thus pre-
venting topological changes during training. However,
the topology is unknown at training time if a point
cloud or a partial mesh is used as input. Instead, the
network needs to learn the topology during training.

• Second, observations affect only grid cells in their im-
mediate vicinity, i.e., they act solely on cells where the
surface passes through. Thus gradients are not propa-
gated to cells further away from the predicted surface.

2We distinguish voxels and cells in this paper: voxels are the regular
representation used by occupancy maps, while cells are displaced by a
distance of 0.5 voxels and connect the voxel centers. Marching cubes as
well as our algorithm operates on the edges and vertices of these cells.

To circumvent these problems we propose a modified differ-
entiable representation which separates the mesh topology
from the geometry. In contrast to predicting signed distance
values, we predict the probability of occupancy for each
voxel. The mesh topology is then implicitly (and proba-
bilistically) defined by the state of the occupancy variables
at its corners. In addition, we predict a vertex location for
every edge of each cell. The combination of both implic-
itly defined topology and vertex location defines a distribu-
tion over meshes which is differentiable and can be used for
backpropagation. The second problem can be tackled by in-
troducing appropriate loss functions on the occupancy and
the vertex location variables.

Note that predicting occupancies instead of distance val-
ues is not a limitation as the surface computed via MC does
not depend on cells further away. Similar to MC, our repre-
sentation is flexible in terms of the output topology.

3.2. Differentiable Marching Cubes

We now formalize our Differentiable Marching Cubes
Layer (DMCL). Let again n = (i, j, k) ∈ N3 denote a
multi-index into a 3D tensor and let 1 = (1, 1, 1) index the
first element of the tensor. Let O ∈ [0, 1]N×N×N denote
the occupancy field and let X ∈ [0, 1]N×N×N×3 denote
the vertex displacement field predicted by a neural network
(see Section 3.3 for details on the network architecture). Let
on ∈ [0, 1] denote the n’th element of O, representing the
occupancy probability of that voxel with o = 1 if the voxel
is occupied. Similarly, let xn ∈ [0, 1]3 denote the n’th el-
ement of X, representing the displacements of the triangle
vertices along the edges associated with xn. Note that xn is
a 3-dimensional vector as we need to specify one vertex dis-
placement for each dimension of the 3D space (see Fig. 3b).
Let w denote a vertex of the output mesh located on edge
e = (v, v′). As before, we have x = 0 if w = v and x = 1
if w = v′. In other words, w is displaced linearly between
v and v′ based on x.

The topology can be implicitly defined via the occupancy
variables. We consider the predictions of the neural network
on ∈ [0, 1] as parameters of a Bernoulli distribution

pn(t) = (on)t(1− on)1−t (1)

where t ∈ {0, 1} is a random variable and pn(t) is the prob-
ability of voxel n being occupied (t = 1) or unoccupied
(t = 0). Let now {on, . . . , on+1} denote the 23 = 8 occu-
pancy variables corresponding to the 8 corners of the n’th
grid cell. Let further T ∈ {0, 1}2×2×2 denote a binary ran-
dom tensor representing the topology. The probability for
topology T at grid cell n is the product of the 8 occupancy
probabilities at its corners

pn(T) =
∏

m∈{0,1}3
(on+m)tm(1− on+m)1−tm (2)
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Figure 4: Network Architecture. The input point cloud P is converted into a volumetric representation using grid pooling.
The grid pooling operation (highlighted in yellow) takes as input a set of K points with their D = 16 dimensional feature
maps and performs max pooling within each cell. Empty cells are associated with the zero vector. The pooled features are
processed by an encoder-decoder network with skip connections. The decoder has two heads: one for occupancies O and
one for vertex displacements X. All details of the architecture can be found in the supplementary material.

with tm ∈ {0, 1} denoting the m’th element of T. Note that
jointly with the vertex displacement field X, the distribution
over topologies pn(T) at cell n defines a distribution over
triangular meshes within cell n. Considering all cells n ∈
T we obtain a distribution over meshes in the entire grid as

p({Tn|n ∈ T }) =
∏
n∈T

pn(Tn) (3)

where T = {1, . . . , N − 1}3 and the vertex displacements
X are fixed to the predictions of the neural net.

Remark: While the total number of possible topologies
within a voxel is 28 = 256, many of them represent discon-
nected meshes. As those are unlikely to occur in practice
given a fine enough voxel resolution, in this paper we only
consider the 140 singly connected topologies (highlighted
in yellow in Fig. 2) and renormalize (2) accordingly.

3.3. Network Architecture

This section describes our complete network architecture
which integrates the Differentiable Marching Cubes Layer
described in the previous section as a final layer for explicit
surface prediction. We adopt an encoder-decoder architec-
ture as illustrated in Fig. 4. The encoder extracts features
from the raw observations and the decoder predicts an ex-
plicit surface. In this paper we consider a 3D point cloud
P ∈ RK×3 with K points as input. However, note that the
encoder could be easily adapted to other types of observa-
tions including 3D volumetric information or 2D images.

Our point cloud encoder is a variation of PointNet++
[33] which is invariant to the local point ordering while re-
taining local information. Similar to PointNet++, we first
extract a local feature vector for each point using fully con-
nected layers. The major difference is that our feature repre-
sentation is tightly coupled with the discrete structure of the
voxel grid. While PointNet++ recursively samples points
for grouping, we group all points falling into a voxel into
one set and apply pooling within this voxel. Thus, we retain

the regular grid structure of the decoder which allows for
exploiting skip connections in our model (see Fig. 4).

The result of the grid pooling operation is fed into a stan-
dard 3D encoder-decoder CNN for increasing the size of
the receptive field. This subnetwork is similar to the one
used in [11,36] and comprises convolution, pooling and un-
pooling layers as well as ReLU non-linearities. Following
common practice, we exploit skip connections to preserve
details. The decoder head is split into two branches, one for
estimating the occupancy probabilities O and one for pre-
dicting the vertex displacement field X. A sigmoid layer
is added to both O and X to ensure valid probabilities be-
tween 0 and 1 for O, and valid vertex displacements for X.
The distribution over topologies is given by equation (3).
For more details we refer to the supplementary material.

3.4. Loss Functions

At training time, our goal is to minimize the distance be-
tween the ground truth point cloud and the predicted surface
mesh M. Note that our model predicts a distribution over
surface meshes p(M) thus we minimize the expected sur-
face error. We add additional constraints to regularize the
occupancy variables and the smoothness of the estimated
mesh. Our loss function decomposes into four parts

L(θ) = w1

∑
n

Lmesh
n (θ) + w2 Locc(θ) + (4)

w3

∑
n∼m

Lsmooth
n,m (θ) + w4

∑
n∼m

Lcurve
n,m(θ)

where θ represents the parameters of the neural network in
Fig. 4, {wi} are the weights of the loss function and n ∼m
denotes the set of adjacent cells in the grid. Each part of this
loss function will be described in the following paragraphs.

Point to Mesh Loss: We first introduce a geometric loss
which measures the compatibility of the predicted 3D sur-
face mesh with respect to the observed 3D points. Let Y
denote the set of observed 3D points (i.e., the ground truth)



and let Yn ⊆ Y denote the set of observed points falling
into cell n. As our model predicts a distribution of topolo-
gies pn(T) and hence also meshes at every cell n, we seek
to minimize the expected error with respect to this distribu-
tion. More formally, we have

Lmesh
n (θ) = Epn(T|θ)

 ∑
y∈Yn

∆(Mn(T,X(θ)),y)

 (5)

where y ∈ R3 is an observed 3D point, Mn(T,X) repre-
sents the mesh induced by topology T and vertex displace-
ment field X at cell n, and ∆(M,y) denotes the point-to-
mesh distance if . The point-to-mesh distance is calculated
by finding the triangle closest to y in terms of euclidean (`2)
distance. Note that in contrast to losses defined on implicit
surface representations (e.g., TSDF), the loss in (5) directly
measures the geometric error of the inferred mesh.

While (5) ensures that the inferred mesh covers all obser-
vations the converse is not true. That is, surface predictions
far from the observations are not penalized as long as all ob-
servations are covered by the predicted surface mesh. Un-
fortunately, such a penalty is not feasible in our case as the
ground truth may be incomplete. We therefore add a small
constant loss on all non-empty topologies for cells without
observed points. Moreover, we introduce additional loss
functions that prefer simple solutions in the following para-
graphs. In particular, these constraints enforce free-space at
the boundary of the volume and smoothness of the surface.

Occupancy Loss: As mentioned above, the occupancy sta-
tus is ambiguous when considering unstructured 3D point
clouds as observations. That is, flipping the occupied with
the free voxels will result in exactly the same geometric loss
as only the distance to the surface can be measured, but no
information about what is inside or outside is present in the
data. However, we observe that for most scenes objects are
surrounded by free space, thus we can safely assume that the
6 faces of the cube bounding the 3D scene are unoccupied.
Defining a prior for occupied voxels is more challenging.
One could naı̈vely assume that the center of the bounding
cube must be occupied, yet this is not true in general. Thus,
we relax this assumption by encouraging a sub-volume in-
side the scene to be occupied. More formally, we have:

Locc(θ) =
1

|Γ|
∑
n∈Γ

on(θ) + w(1− 1

|Ω|
∑
n∈Ω

on(θ)) (6)

where Γ denotes the boundary of the scene cube (i.e., all
voxels on its six faces) and Ω denotes a sub-volume inside
the cube (e.g., half the size of the scene cube). Minimizing
the first term of (6) encourages the boundary voxels to be-
come unoccupied. Minimizing the second term enforces a
region within the scene cube to become occupied depending

on the adaptive weight w, which decreases with the number
of high confident occupied voxels in the scene.

Smoothness Loss: Note that both Lmesh as well as Locc

act only locally on the volume. To propagate occupancy in-
formation within the volume, we therefore introduce an ad-
ditional smoothness loss. In particular, we assume that the
majority of all neighboring voxels take the same occupancy
state. This assumption is justified by the fact that transi-
tions happen only at the surface of an object (covering the
minority of voxels). We therefore introduce the following
pairwise loss, encouraging occupancy smoothness:

Lsmooth
n,m = |on(θ)− om(θ)| (7)

Curvature Loss: Similarly to the smoothness loss on the
occupancy variables we can encourage smoothness of the
predicted mesh geometry. This is particularly important if
the ground truth point cloud is sparse and noisy as assumed
in this paper. We therefore add a curvature loss which en-
forces smooth transitions between adjacent cells by mini-
mizing the expected difference in normal orientation:

Lcurve
n,m(θ) = Epn,m(T,T′|θ) [ϕn,m(T,T′,X(θ))] (8)

Here, pn,m(T,T′|θ) = pn(T|θ) pm(T′|θ) is the joint
distribution over the topologies of voxel n and voxel m.
Furthermore, ϕn,m(·) denotes a function which returns the
squared `2 distance between the normals of the faces in cell
n and m which are connected by a joint edge, and 0 if the
faces in both cells are not topologically connected.

4. Experimental Evaluation
In this section, we first thoroughly evaluate the effective-

ness and robustness of the proposed method in 2D. Then we
demonstrate the ability of our method to predict 3D meshes
from 3D point clouds.

4.1. Model Validation in 2D

For clarity, we validate our model in 2D before we con-
sider the 3D case. In 2D, the total number of topologies
reduces to 24 = 16 as illustrated in the supplementary mate-
rial. We rendered silhouettes of 1547 different car instances
from ShapeNet [5], which we split into 1237 training sam-
ples and 310 test samples. We randomly sampled 300 points
from the silhouette boundaries which we feed as input to
the network. We use a voxel grid of size N ×N ×N with
N = 32 throughout all of our experiments. All other hyper-
parameters are specified in the supplementary material. For
evaluation, we use Chamfer distance, accuracy and com-
pleteness. We follow common practice [22] and specify all
measures as distances, thus lower accuracy / completeness
values indicate better results.



(a) Lmesh (b) +Locc (c) +Lsmooth (d) +Lcurve (e) Car→Bot. (f) Topology

Chamfer Acc. Comp. Hamming

Lmesh 0.339 0.388 0.289 83.69%
+Locc 0.357 0.429 0.285 4.67%
+Lsmooth 0.240 0.224 0.255 0.56%
+Lcurve 0.245 0.219 0.272 0.53%

(g) Quantitative Results (Lower is Better)

Figure 5: 2D Ablation Study. (a)-(d)+(g) show our results when incrementally adding the loss functions of (4). (e)+(f)
demonstrate the ability of our model to generalize to novel categories (train: car, test: bottle) and more complex surface
topologies (in this case, two separated objects). The top row shows the input points in gray and the estimated occupancy field
O with red indicating occupied voxels. The bottom row shows the most probable surface M in red.

Ablation Study: We first validate the effectiveness of each
component of our loss function in Fig. 5. Starting with the
point to mesh loss Lmesh, we incrementally add the occu-
pancy loss Locc, smoothness loss Lsmooth and curvature loss
Lcurve. We evaluate the quality of the predicted mesh by
measuring the Chamfer distance in voxels, which considers
both accuracy and completeness of the predicted mesh. For
this experiment, we also evaluated the Hamming distance
between our occupancy prediction and the ground truth oc-
cupancy to assess the ability of our model in separating in-
side from outside. Using only Lmesh, the network predicts
multiple surfaces around the true surface and fails to pre-
dict occupancy (a). Adding the occupancy loss Locc allows
the network to separate inside from outside, but still leads
to fragmented surface boundaries (b). Adding the smooth-
ness loss Lsmooth, removes these fragmentations (c). The
curvature loss Lcurve further enhances the smoothness of the
surface without decreasing performance. Thus, we adopt
the full model in the following evaluation.

Generalization & Topology: To demonstrate the flexibil-
ity of our approach, we apply our model trained on the cat-
egory “car” to point clouds from the category “bottle”. As
evidenced by Fig. 5e, our model generalizes well to novel
categories; it learns local shape representations rather than
capturing purely global shape properties. Fig. 5f shows that
our method, trained and tested with multiple separated car
instances also handles complex topologies, correctly sepa-
rating inside from outside, even when the center voxel is not
occupied, validating the robustness of our occupancy loss.

Model Robustness: In practice, 3D point cloud measure-
ments are often noisy or incomplete due to sensor occlu-
sions. In this section, we demonstrate that our method is
able to reconstruct surfaces even in the presence of noisy
and incomplete observations. Note that this is a challeng-
ing problem which is typically not considered in learning-
based approaches to 3D reconstruction which assume that
the ground truth is densely available. We vary the level

Chamfer Accuracy Complete.

σ = 0.00 0.245 0.219 0.272
σ = 0.15 0.246 0.219 0.273
σ = 0.30 0.296 0.267 0.325

Table 1: Robustness wrt. Noisy Ground Truth.

Chamfer Accuracy Complete.

θ = 15◦ 0.234 0.210 0.257
θ = 30◦ 0.250 0.227 0.273
θ = 45◦ 0.308 0.261 0.354

Table 2: Robustness wrt. Incomplete Ground Truth.

of noise and completeness in Table 1 and Table 2. For
moderate levels of noise, the predicted mesh degrades only
slightly. Moreover, our model correctly predicts the shape
of the car in Table 2 even though information within an an-
gular range of up to 45◦ was not available during training.

4.2. 3D Shape Prediction from Point Clouds

In this section, we verify the main hypothesis of this pa-
per, namely if end-to-end learning for 3D shape prediction
is beneficial wrt. regressing an auxiliary representation and
extracting the 3D shape in a postprocessing step. Towards
this goal, we compare our model to two baseline methods
which regress an implicit representation as widely adopted
in the 3D deep learning literature [7, 13, 34, 44, 45], as well
as to the well-known Screened Poisson Surface Reconstruc-
tion (PSR) [25]. Specifically, given the same point cloud en-
coder as introduced in Section 3.3, we construct two base-
lines which predict occupancy and Truncated Signed Dis-
tance Functions (TSDFs), respectively, followed by classi-
cal Marching Cubes (MC) for extracting the meshes. For
a fair comparison, we use the same decoder architecture as
our occupancy branch and predict at the same resolution
(32 × 32 × 32 voxels). We apply PSR with its default pa-



Resolution Method Chamfer Accuracy Complete.

323

Occ. + MC 0.407 0.246 0.567
TSDF + MC 0.412 0.236 0.588
wTSDF + MC 0.354 0.219 0.489
PSR-5 0.352 0.405 0.298
Ours 0.218 0.182 0.254

2563 PSR-8 0.198 0.196 0.200

Table 3: 3D Shape Prediction from Point Clouds.

rameters3. While the default resolution of the underlying
grid (with reconstruction depth d = 8) is 256 × 256 × 256
we also evaluate PSR with d = 5 (and hence a 32×32×32
grid as in our method) for a fair comparison.

Again, we conduct our experiments on the ShapeNet
dataset, but this time we directly use the provided 3D mod-
els. More specifically, we train our models jointly on ob-
jects from 3 classes (bottle, car, sofa). As ShapeNet mod-
els comprise interior faces such as car seats, we rendered
depth images and applied TSDF fusion at a high resolution
(128 × 128 × 128 voxels) for extracting clean meshes and
occupancy grids. We randomly sampled points on these
meshes which are used as input to the encoder as well as
observations. Note that training the implicit representation
baselines requires dense ground truth of the implicit surface
/ occupancy grid while our approach only requires a sparse
unstructured 3D point cloud for supervision. For the input
point cloud we add Gaussian noise with σ = 0.15 voxels.

Table 3 shows our results. All predicted meshes are com-
pared to the ground truth mesh extracted from the TSDF at
128× 128× 128 voxels resolution. Here, wTSDF refers to
a TSDF variant where higher importance is given to voxels
closer to the surface resulting in better meshes.

Our method outperforms both baseline methods and PSR
in all three metrics given the same resolution. This validates
our hypothesis that directly optimizing a surface loss leads
to better surface reconstructions. Note that our method in-
fers occupancy using only unstructured points as supervi-
sion while both baselines require this knowledge explicitly.

A qualitative comparison is shown in Fig. 6. Our method
significantly outperforms the baseline methods in recon-
structing small details (e.g., wheels of the cars in rows 1-4)
and thin structures (e.g., back of the sofa in rows 6+8). The
reason for this is that implicit representations require dis-
cretization of the ground truth while our method does not.
Furthermore, the baseline methods fail completely when the
ground truth mesh is not closed (e.g., car underbody is miss-
ing in row 4) or has holes (e.g., car windows in row 2).
In this case, large portions of the space are incorrectly la-
beled free space. While the baselines use this information
directly as training signal, our method uses a surface-based

3PSR: https://github.com/mkazhdan/PoissonRecon;
We use Meshlab to estimate normal vectors as input to PSR.

Input Occ wTSDF PSR-5 PSR-8 Ours GT

Figure 6: 3D Shape Prediction from Point Clouds. Sur-
faces are colored: the outer surface is yellow, the inner red.

loss. Thus it is less affected by errors in the occupancy
ground truth. Even though PSR-8 beats our method on com-
pleteness given its far higher resolution, it is less robust to
noisy inputs compared to PSR-5, while our method handles
the trade-off between reconstruction and robustness more
gracefully. Furthermore, PSR sometimes flips inside and
outside (rows 2+4+6+7) as estimating oriented normal vec-
tors from a sparse point set is a non-trivial task.

We also provide some failure cases of our method in the
last two rows of Fig. 6. Our method might fail on very thin
surfaces (row 9) or connect disconnected parts (row 10) al-
though in both cases our method still convincingly outper-
forms the other methods. Those failures are caused by the
rather low-resolution output (a 323 grid), which could be
addressed using octree networks [18, 35, 36, 39].

5. Conclusion
We proposed a flexible framework for learning 3D mesh

prediction. We demonstrated that training the surface pre-
diction task end-to-end leads to more accurate and complete
reconstructions. Moreover, we showed that surface-based
supervision results in better predictions in case the ground
truth 3D model is incomplete. In future work, we plan to
adapt our method to higher resolution outputs using octrees
techniques [18,36,39] and integrate our approach with other
input modalities like the ones illustrated in Fig. 1.
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[15] F. Güney and A. Geiger. Displets: Resolving stereo ambigu-
ities using object knowledge. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 1

[16] C. Haene, N. Savinov, and M. Pollefeys. Class specific 3d
object shape priors using surface normals. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),
2014. 1

[17] C. Haene, C. Zach, A. Cohen, R. Angst, and M. Pollefeys.
Joint 3D scene reconstruction and class segmentation. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2013. 1
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